
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automatic Inference of Translation Rules for Native
Cross-Platform Mobile Applications

Kijin An, Na Meng, and Eli Tilevich
Dept. of Computer Science

Virginia Tech
{ankijin,nm8247,tilevich}@cs.vt.edu

ABSTRACT

A native cross-platform mobile app has multiple platform-speci�c
implementations. Typically, an app is developed for one platform
and then ported to the remaining ones. Translating an app from one
language (e.g., Java) to another (e.g., Swi�) by hand is tedious and
error-prone, while automated translators either require manually
de�ned translation rules or focus on translating APIs. To automate
the translation of native cross-platform apps, we present tInferer,
a novel approach that iteratively infers syntactic transformation
rules and API mappings from Java to Swi�. Given a so�ware cor-
pus in both languages, tInferer �rst identi�es the semantically
equivalent code based on braces and string similarity. For each
pair of similar code segments, tInferer then creates syntax trees
of both languages, leveraging the minimalist domain knowledge of

language correspondence (e.g., operators and markers) to iteratively
align syntax tree nodes, and to infer both syntax and API mapping
rules. tInferer represents inferred rules as string templates, stored
in a database, to translate code from Java to Swi�. We evaluated
tInferer with four applications, using one part of the data to in-
fer translation rules, and the other part to apply the rules. With
76% in-project accuracy and 65% cross-project accuracy, tInferer
outperforms in accuracy j2swi�, a state-of-the-art Java-to-Swi�
conversion tool. As native cross-platform mobile apps grow in pop-
ularity, tInferer can shorten their time to market by automating
the tedious and error prone task of source-to-source translation.
ACM Reference format:

Kijin An, Na Meng, and Eli Tilevich. 2016. Automatic Inference of Transla-
tion Rules for Native Cross-Platform Mobile Applications. In Proceedings

of ACM MOBILESo�’18, Gothenburg, Sweden, May 2018 (MOBILESo�’18),

11 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

To increase market share, so�ware companies and open source orga-
nizations release di�erent versions of their mobile apps for multiple
mobile platforms. To ensure a satisfactory user experience, mobile
developers �nd themselves having to produce platform-speci�c
implementations of their apps. We refer to such applications as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESo�’18, Gothenburg, Sweden

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

native cross-platform mobile apps. As a speci�c example, a native
cross-platform mobile app can have three di�erent versions: one
implemented in Java for Android, another implemented in Swi�
for iOS, and yet another one implemented in C# or C++ for Win-
dows Phone. When developing multi-platform apps, programmers
commonly �rst focus on one platform. Once the app developed for
this platform matures, it is then ported to the remaining platforms.
For example, �rst an app can be developed in Java for Android.
�e resulting Android Java version of the app (i.e., the source) is
then translated into an iOS Swi� version (i.e., the target). As the
source and target programming languages follow di�erent gram-
mars and feature dissimilar so�ware libraries, the developers of
native mobile apps must be equally versed in both languages and
their APIs to correctly port code. Translating the code of an app
by hand can be quite tedious and error-prone, thus motivating the
need for approaches that can automate the translation process.

1.1 Related Work

Existing code migration tools require users to manually de�ne the
transformation rules [10, 16–18, 24, 31, 32]. However, de�ning
these rules by hand is still laborious and error-prone, as a variety
of API and syntax mapping rules need to be speci�ed. For example,
Java2CSharp [18] and j2swi� [10] can convert program structures
based on prede�ned translation rules, but are unable to translate
many APIs due to the large volume of libraries available for di�erent
languages.

Zhong et al. [34] and Nguyen et al. [27] automatically mined
API usage mappings between Java and C#. Speci�cally, Zhong
et al. aligned the code in two versions based on similar names of
classes and methods, and then constructed the API transformation
graphs for each pair of aligned statements to identify API map-
pings [34]. Nguyen et al. mined API usage sequence mappings by
conducting program dependency analysis [25] and representing
API usage as groums [28]. However, neither approach automati-
cally applies the inferred rules to translate code. mppSMT [26] is
a state-of-the-art approach that automatically migrates Java code
to C# using phrase-based statistical machine translation. It infers
and applies both structure and API mapping rules, as guided by the
following two developer-provided kinds of domain knowledge: (1)
the basic mapping rules between statement types across languages,
such as SuperCall in Java mapped to baseCall in C#, and (2) the syn-
tactic symbol sequences encoded for each statement type in both
languages, such as StatementExpression; in Java encoded as “EXPR
SC”.

Given a Java Android code block, Native-2-Native [15] extracts
program identi�ers to search for Swi� iOS code blocks relevant to
those identi�ers using popular web programming resources (e.g.,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

MOBILESo�’18, May 2018, Gothenburg, Sweden Kijin An, Na Meng, and Eli Tilevich

Google Code, StackOver�ow, etc.). Unlike tInferer, Native-2-
Native neither infers nor applies any translation rules between the
languages.

In the context of the same language, various approaches infer pro-
gram transformation rules by comparing the old and new versions
of one or more code change examples [19–23, 30, 33]. However,
these approaches rely on the source and target codebases shar-
ing the same grammar, thus being unable to infer cross-language
translation rules.

Some existing HTML5 frameworks (e.g., Sencha [13], Phone-
Gap [11], Appcelerator [3], React Native [12]) can automatically
translate Javascript/HTML5 to Java or Swi�. However, these tools
require that developers follow speci�c JavaScript APIs rather than
supporting general language-to-language translation.

1.2 Novelty and Contributions

�is paper describes the design and implementation of our novel
automated approach tInferer that complements prior work. We
notice that the source and target codebases of native cross-platform
mobile apps encode translation rules over a variety of syntax levels.
Our approach captures these rules and automatically applies them
to guide the porting process. Speci�cally, tInferer operates in two
phases. In the �rst phase, tInferer infers rules by comparing the
existing implementations in both languages; it iteratively aligns
and matches Java and Swi� code based on braces (i.e., { and })
and string similarity. As both languages are object-oriented, they
share the basic syntactic components, including class declarations,
method declarations, loop structures, and conditional statements.
�e braces that delimit these components are used identically in
both languages, and thus can serve as anchors to align the code
regions that are potentially semantically equivalent.

tInferer is the �rst approach that iteratively infers and applies
both syntax and API migration rules from Java to Swi� based on
the minimalist developer-provided domain knowledge of language
correspondence. tInferer leverages two intuitions. First, with the
meaning of key arithmetic and logic operators being internalized
as part of elementary math education, language designers tend to
avoid rede�ning this meaning. Second, other operators and markers
o�en also have historically established semantics in modern OO
languages. For example, the dot operator (i.e., .) accesses object
members, parentheses (i.e., ()) delimit expressions, and braces (i.e.,
{}) mark code blocks. As these operators and markers have the same
semantics across di�erent languages, they can serve as anchors
for tInferer, which aligns and compares the equivalent coding
idioms.

Additionally, tInferer uses the Java and Swi� syntax trees of
matched code to determine in which order multiple operators of
an expression should serve as alignment anchors. Leveraging the
operator precedence commonality between languages, tInferer
can iteratively �nd the highest matching operator in syntax trees
to split code in di�erent ways, and may infer multiple code migra-
tion rules at di�erent levels from a single code pair. By relying
on tree-based string spli�ing and matching, tInferer can infer
more template and argument mappings than pure, delimiter-based,
non-iterative approaches. tInferer works without requiring devel-
opers to manually specify the correspondence between syntactic

components of di�erent languages, or to encode syntactic struc-
tures as sequences of syntactic symbols, thus increasing the level
of automation it provides.

In summary, this paper makes the following contributions:
• We designed and implemented tInferer, the �rst delimiter-

based iterative rule inference and application approach for

automated Java-to-Swi� migration, in which delimiters
include keywords, operators, and markers. �is novel ap-
proach can match not only divergent grammars between
languages, but also APIs de�ned in di�erent libraries.

• We designed and implemented a novel way to represent
transformation rules as string templates, and to maintain
the rules using a database. �is novel application of the
database enables users to easily understand and modify the
inferred rules, and even augment the database with missing
rules to enhance tInferer’s code migration capability.

• We conducted a comprehensive evaluation of tInferer
with 3,859 real code migration examples. Our evaluation
shows that tInferer was able to accurately infer and ap-
ply many translation rules for statements, expressions, and
API usage. It will save the manual e�ort required to en-
force these rules for syntax and API mappings. Hence, by
automating the simple migration tasks that require mild
changes, tInferer can e�ectively improve so�ware quality
and increase programmer productivity.

2 MOTIVATION AND APPROACH OVERVIEW

2.1 Motivating Scenario

To give an overview of our approach, we present a running exam-
ple based on the charts application. Suppose that a new developer,
Alex, joins a development team that maintains both Java and Swi�
versions of a mobile app. Figure 2(a) shows the abbreviated versions
of the app’s current implementation, with the Java and Swi� ver-
sions depicted on the le� and right, respectively. Although the two
versions have similar layouts of their respective class and method
declarations, they di�er in the following three aspects.

• �e keyword sets. For example, extends is unique to Java,
while let only exists in Swi�.
• �e statement syntaxes. For instance, the header of for-

loop has the format for([ForInit]; [Expression]; [ForUpdate])

in Java; nevertheless in Swi�, it becomes for Pattern in

Expression.
• �e API usage of �elds, methods, and types. On line

6 of Figure 2(a), mData.get(i) in Java corresponds to data[i]

in Swi�.

Suppose that Alex is expert in Java, but is fairly new to Swi�. To
add a new feature to the app, Alex �rst would have to implement
and test a new method calcNewAngle() in Java (see Figure 2(b)), and
then manually translate the tested implementation statement-by-
statement to Swi�. Such manual code migration is laborious and
intellectually tiresome for two reasons. First, Alex has to consis-
tently replace language keywords and adjust program structures,
while ensuring that control and data dependencies between local
variables and �elds remain intact. Second, Alex needs to learn how
the APIs correspond between the languages to correctly translate

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automatic Inference of Translation Rules for Cross-Platform Apps MOBILESo�’18, May 2018, Gothenburg, Sweden

Java	code	

Swi,	code	

Phase	I:	Rule	Inference		

Code	Alignment		

Rule	
Database	

Code	Matching	 Syntax	Tree	
Alignment	

Mapping		
Genera=on	

Java	
Program	

Mapping	
Selec=on	

Code	
Transla=on	

Generated	
Swi,	Program	

Phase	II:	Rule	Applica3on		

Figure 1: tInferer consists of two phases: rule inference and application. �e �rst phase takes in both Java and Swi� code-

bases to infer translation rules. �e second phase takes in a Java program to produce a Swi� implementation.

API method calls, �eld accesses (e.g., data.entryCount), or member
accesses (e.g., set[i]) from Java to Swi�.

2.2 Approach Overview

As per Figure 1, tInferer operates in two main phases: rule infer-
ence and rule application.

In Phase I, given a corpus of so�ware with both Java and Swi�
versions provided (Pj and Ps), tInferer extracts semantically equiv-
alent code regions by iteratively aligning and matching code. Specif-
ically, tInferer �rst aligns and matches source �les between Pj
and Ps based on �le names. If two �les are named similarly, they are
likely to implement the same functionalities. Among the aligned
�les and based on the usage of nested braces (i.e. { and }), tInferer
then iteratively (1) aligns class declarations, method declarations,
as well as statements, and (2) matches code based on the string
similarity. Next, for each matched pair of statements (e.g., ¡Sj , Ss ¿),
tInferer parses syntax trees; it relies on keywords (e.g., while),
operators (e.g., =), and markers (e.g., ,) to align syntax subtrees.
Leveraging a novel tree-traversal algorithm that matches seman-
tically equivalent syntax tree nodes, tInferer �exibly infers the
translation rules for statements, expressions, as well as API invo-
cations, even though Java and Swi� have di�erent grammars and
many divergent syntax node types. Finally, tInferer saves the
rules as string templates in its database.

In Phase II, given a Java program, tInferer performs statement-
to-statement translation to generate a translated Swi� version by
searching for any applicable translation rule for each statement. If
one rule is applicable, tInferer transforms code accordingly. If
there are multiple rules applicable, tInferer ranks the rules based
on their occurrence frequencies in Phase I, and picks the most
popular rule to apply. When no rule is applicable, users can either
augment tInferer’s database with the missing rules to automate
the transformation, or manually translate code based on the tool-
generated version.

To evaluate tInferer, we created a dataset based on the Java and
Swi� versions of four applications: charts [6, 7], antlr4-runtime [2],
cardboard [4, 5], and geometry-api [8, 9]. Exploiting the itera-
tive aligning and matching method of Phase I, we extracted 3,859

statement-level matches between the two versions of all four ap-
plications. �e extracted code was used for tInferer’s accuracy
evaluation. To measure tInferer’s in-project translation accuracy,
for each project, we used 75% data for rule inference, and the other
25% for rule application. We found tInferer to correctly translate
code with 76% accuracy on average. To evaluate the cross-project
translation accuracy, we leveraged the data of three apps for rule
inference, and the data of the fourth one for rule application. tIn-
ferer achieved 65% accuracy on average. Finally, we used one half
of the extracted code for tInferer to infer rules, and the other half
for both tInferer and j2swi� [10] to translate code. By comparing
the generated code of both tools against the original Swi� version,
we found that tInferer achieved 76% accuracy, which was much
higher than j2swi�’s accuracy of 57%.

Based on the outmost brace pair of Figure 2(a), tInferer aligns
lines 1-7, compares the code regions, and �nds their string content
to be similar. Leveraging this �nding, tInferer further aligns lines
2-7 based on the intermediate brace pair, and lines 5-7 based on
the innermost brace pair. It then compares code line-by-line within
each aligned region. �is iterative process continues until every pair
of similar lines are identi�ed. A�er identifying similar lines, tIn-
ferer represents each line as one or more string templates [29],
with every template containing abstract parameters ($p) that can
be concretized with arguments (i.e., expressions or iden�ers). tIn-
ferer maps the string templates and arguments between languages
by aligning the program syntax trees based on commonly used key-

words, operators, and markers across languages, as the meaning of

these notations seldom vary between di�erent object-oriented (OO)

languages. For our example in Table 3, tInferer extracts string
templates from both versions, and records the corresponding Java
syntax node type of each template. It also records the argument
mappings, such as PieChart and PieChartView shown in Table 4.

�e �rst phase of tInferer produces a collection of migration
rules, in which each rule comprises a string template and argument
mappings. �e second phase applies these mappings to translate
Java to Swi� line by line. Speci�cally, it coverts each Java line to a
syntax tree. According to the root node’s type, tInferer searches
its rule database to �nd all matching Java templates. �e found

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

MOBILESo�’18, May 2018, Gothenburg, Sweden Kijin An, Na Meng, and Eli Tilevich

(a) The Java and Swift versions of PieChart used for rule inference
 //PieChart.java
1 public class PieChart extends PieChartBase<PieData> {
2 private void calcAngles() { ...
3 int entryCount = mData.getEntryCount();
4 int cnt = 0;
5 for(int i = 0; i < mData.getDataSetCount(); i++){
6 IPieDataSet set = mData.get(i);
7 ...}}}

//PieChartView.swift
public class PieChartView: PieChartViewBase {
 private func calcAngles() { ...
 let entryCount = data.entryCount
 var cnt = 0
 for i in 0 ..< data.dataSetCount {
 let set = data[i]
 ...}}}

(b) Generating Swift code from a given Java program with rule application
 //new example
1 private void calcNewAngle(){...
2 int c = set.getDataSetCount();
3 for (int j = 1; j < c; j++) {
4 IPieDataSet elem = set.get(i);
5 mAbsoluteAngles[cnt] += elem.get();
6 ...}}

//translated code from templates
private func calcNewAngle() {...//translated
 let c = set.dataSetCount //translated
 for j in 1 ..< c { //translated
 let elem = set[i] //translated
 mAbsoluteAngles[cnt] += elem.get()//?
 ...}}

Figure 2: A code migration example

No. Java syntax node type Java template Swift template
1 typeDeclaration public class $p10 extends $p11 {...} public class $p10: $p11 {...}
2 classBodyDeclaration private void $p20() {...} private func $p20() {...}
3 localVarDeclStatement

expression
$p30 $p31 = $p32;
$p33.getEntryCount()

let $p31 = $p32
$p33.entryCount

4 localVarDeclStatement $p40 $p41 = $p42; var $p41 = $p42
5 statement

expression
for($p50 $p51 = $p52; $p51 < $p53; $p51++) {...}
$p54.getDataSetCount()

for $p51 in $p52 ..< $p53 {...}
$p54.dataSetCount

6 localVarDeclStatement
expression

$p60 $p61 = $p62;
$p63.get($p64)

let $p61 = $p62
$p63[$p64]

Figure 3: String template mappings

Parameter Argument in Java Argument in Swift
$p10 PieChart PieChartView
$p11 PieChartBase<PieData> PieChartViewBase
$p20 calcAngles calcAngles
$p31 entryCount entryCount
$p32 mData.getEntryCount() data.entryCount
$p33 mData data
...

Figure 4: Argument mappings

templates are then ranked based on their occurrence frequencies in
the codebase, with the most frequently used template selected for
the translation. Starting with the selected Java template, tInferer
creates a Swi� code fragment based on the related Swi� template
and relevant argument mappings.

By applying tInferer, Alex obtains a partially translated Swi�
version of the application, with the lines that tInferer could not
translate simply copied over and explicitly marked (e.g., //? on line
5 in Figure 2 (b)). By focusing Alex’s manual e�ort on these hard-to-
translate lines, tInferer can simplify the tedious and error-prone
task of translating applications between di�erent languages.

3 DESIGN AND IMPLEMENTATION

As shown in Figure 1, tInferer contains two phases: rule inference
and rule application. �e �rst phase takes as input a corpus of
so�ware implemented in both Java and Swi�, and iteratively aligns

and matches code and syntax trees to generate string template
and argument mappings. �e second phase takes as input a new
Java program, selects applicable template and argument mapping
rules, and iteratively applies the rules to produce Swi� code. In
this section, we �rst discuss how code is aligned and matched
(Section 3.1), and then describe how rules are generated (Section 3.2)
and applied (Section 3.3).

3.1 Alignment and Matching of Code

Intuitively, when translating code from one OO language to an-
other, developers are likely to convert code statement by statement.
�erefore, to mimic developers’ intuitive code translation practice,
we designed tInferer to infer Java-to-Swi� translation rules from
a corpus of so�ware in Java and Swi� by �rst identifying the code
regions that may have statement-to-statement correspondences be-
tween the versions. To locate these regions, our approach leverages
braces, line separators, and string similarity.

String Similarity-Based Source File Comparison. When a
program is implemented in Java (Pj) and in Swi� (Ps), tInferer
�rst compares the string similarity of �le names in both programs
using SimMetrics [14]. If the string similarity between two names is
above 0.7, tInferer considers the �les (i.e., Fj and Fs) as a matching
pair that may implement identical functionalities.

Code Normalization. Before further aligning and matching
code for each �le pair, tInferer normalizes source code to remove
comments and any unnecessary line break within a statement,
and to add braces to delimit the body of compound statements
(e.g., while-loop’s body) if there is none. By standardizing code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automatic Inference of Translation Rules for Cross-Platform Apps MOBILESo�’18, May 2018, Gothenburg, Sweden

representation, tInferer ensures that the same type of statements
always have the same layout and format, and thus can be processed
in the same way. With more details, tInferer creates a syntax
tree for each �le using ANTLR [1], and implements a pre�y printer
to traverse the tree and to print source code in a standard way.
Figure 2 (a) demonstrates the source code a�er normalization.

Code Region Alignment Based on Braces and Line Separa-

tors. Starting from the normalized representation, tInferer aligns
code based on braces, because OO languages commonly use braces
to delimit the body of class declarations, method declarations, and
compound statements (e.g., switch-statement and for-loop). We
use the term braced region to refer to the block delimited by { and
} plus the code right before but on the same line as the open brace
(such as class header and if-condition). Here the code line right
before the open brace is called header. For our example in Figure 2,
lines 1-7 in both versions are aligned in this way. By delimiting
code blocks and statements with line separators and braces, we
aimed to simplify the problem of inferring statement-level program
syntactic mappings across languages to the problem of reasoning
about mappings between similar code lines.

Code Region Matching Based On String Similarity. tIn-
ferer compares the aligned code region for string similarity. If two
code regions (e.g., Rj and Rs) have at least 0.5 similarity, tInferer
further aligns and matches any braced region inside them to estab-
lish �ner-granularity matching. If Rj and Rs do not contain any
matching inner braces, tInferer compares their code line by line.
Code lines are considered to match if they have at least 0.5 similar-
ity. As mentioned in Section 2, Java and Swi� code can be di�erent
in several aspects. By using a relatively low similarity threshold
(i.e., 0.5), we are able to match semantically equivalent implemen-
tations while tolerating some syntactic di�erences. If one line Lj in
Rj matches multiple lines in Rs or vice versa, tInferer picks the
line with the highest similarity score in Rs as the best match for
Lj . �is iterative alignment and matching process continues until
every pair of similar lines is identi�ed. Due to our code normaliza-
tion, each matched line pair can be simply considered as a pair of
matching statements. tInferer aims to infer translation rules from
matched statements, and then to automate statement-to-statement
translation by applying the inferred rules.

3.2 Syntax Tree Alignment and Mapping

For each pair of similar lines or matching statements, tInferer
parses syntax trees, and aligns subtrees relying on basic language
features like the commonly used keywords, operators, and markers.
Our insight is that di�erent OO languages have similar basic language

features. By using the common features as anchors, we can align

distinct code fragments across languages and thus infer the underlying

translation rules. To align syntax trees and generate mappings,
tInferer takes �ve steps. Algorithm 1 formally describes the �ve-
step process.

To facilitate the explanation of our algorithm, we also present
the ANTLR-genereated syntax trees of a matching code pair in
Figure 5. Both the Java and Swi� statements implement the same
functionality (i.e., obtaining the size of a collection). As shown
in Figure 5, ANTLR generates a separate branch for each identi-
�er, keyword, operator, and marker. It may create a sequence of

Algorithm 1: Generating template and argument mappings
Input : (Lj , Ls) /* pair of matching lines between

Java and Swift */

Output : (Mt , Ma) /* mappings of string templates and

arguments */
Mt := ∅, Ma := ∅;
queuej := ∅, queues := ∅;
/* 1. initial subtree matching */
Tj := getST(Lj);
Ts := getST(Ls);
queuej .enque(Tj);
queues .enque(Ts);
while !queuej .isEmpty() do

/* 2. operator-based substring extraction */
streej :=queuej .deque(), strees :=queues .deque();
opj := getHighestOp(streej)
ops := getHighestOp(strees);
tmpLj :=getString(streej);
tmpSj :=getString(strees);
if opj ! = ops then

if opj == “;” then

specialMatch(tmpLj , tmpSj , Mt , Ma);
end

else

�atMatch(tmpLj , tmpSj , Mt , Ma);
end

end

else

strsj := split(tmpLj , opj), strss := split(tmpSj , ops);
/* 3. substring comparison */

foreach String sj ∈ strsj do
ss = �ndBestMatch(strss);
if ss ! = null then

Ma :=Ma ∪ (sj , ss);
strss = strss - ss ;

end

end

end

/* 4. template generation */
parameterize(Lj , Ls , Ma);
templatej :=moreParameterize(tmpLj);
templates :=moreParameterize(tmpSj);
javaNodeType := streej .getNodeType();
Mt := Mt ∪ (javaNodeType, templatej , templates);
/* 5. mapping inference for substrings */

foreach (sj , ss) ∈ Ma do

if !isLeaf(sj , streej) && !isLeaf(ss , strees) then
tj :=getST(sj);
ts :=getST(ss);
queuej .enque(tj);
queues .enque(ts);

end

end

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

MOBILESo�’18, May 2018, Gothenburg, Sweden Kijin An, Na Meng, and Eli Tilevich

int entryCount = mData.getEntryCount(); 	 let entryCount = data.entryCount	

(a)	 (b)	

Figure 5: Syntax trees of a pair of matching lines

single-child inner nodes before producing a leaf node or several
branches (e.g., mData and data.entryCount as circled with dashed
lines). Although the two statements look similar, their syntax trees
di�er in terms of the tree heights, node types, and tree structures.
Semicolons are mandatory in Java but optional in Swi�.

Step 1: Initial Subtree Matching. Given the matching code
pair, tInferer traverses their syntax trees to �nd the lowest level
of subtree pairs that re�ect the string matching while ignoring semi-
colons. As shown in Figure 5 (a), the inner node localVariableDeclaration
in Java corresponds to int entryCount =mData.getEntryCount(),
while the node constant declaration in Swi� corresponds to
let entryCount =data.entryCount. Based on the similar strings, we
match these two subtrees (localVariableDeclaration, constant -

declaration), and adds the subtrees to two separate queues—queuej
and queues—for further processing.

Step 2: Operator-Based Substring Extraction. Given two
matching subtrees: streej and strees , tInferer searches for the
highest operator in each syntax tree (i.e., opj and ops). If the op-
erators are the same, tInferer further extracts expressions and
identi�ers by spli�ing each string based on the matching operator,
whitespace, and semicolon, and by excluding structure-relevant
keywords from the substring set. In our research, we classify key-
words into two types: structure-relevant vs. structure-irrelevant,
and treat them di�erently. �e structure-relevant keywords (e.g.,
for) are inherent in program structures. �ey do not vary with
the content put into the structures, and thus should be included as
parts of the generated templates. �e structure-irrelevant keywords
(e.g., int) are not closely bound to any syntactic component, and
thus does not indicate the program structure. �ey are replaceable
by other identi�ers, and should be parameterized away instead of

included when generating templates.
For our exemplar statement int entryCount=mData.getEntryCount(),

the highest operator is =, which matches the highest operator in

the Swi� code. Based on this operator and whitespace, we can
split the Java code into three substrings: int, entryCount, and
mData.getEntryCount(). None of these substrings is a structure-
relevant keyword, so they are all included into the resulting sub-
string set strsj . Similarly, tInferer also splits the Swi� state-
ment let entryCount=data.entryCount into three substrings: let,
entryCount, and data.entryCount. However, as the keyword let is
structure-relevant, tInferer excludes it from the resulting sub-
string set strss .

Step 3: Substring Comparison. Between the two extracted
substring sets—strsi and strsj , tInferer exhaustively compares
strings pair-by-pair to �nd the best match for each string, and
to reveal the correspondence between di�erent parts of the code
pair. �e default similarity threshold is 0.5, meaning that if the
similarity between two strings is less than 0.5, they are consid-
ered dissimilar. In our example, entryCount exists in both versions
and matches, while mData.getEntryCount() and data.entryCount

are similar and matched. However, int does not match anything,
indicating that this identi�er is used only in the Java version, with-
out being translated to Swi�. �erefore, all matched substrings
are saved as argument mappings in a database, as shown in Ta-
ble 4. Step 4: Template Generation. For the given code pair,
tInferer creates templates by consistently replacing each pair of
matched substrings with the same parameter, and by replacing each
unmatched substring with a unique parameter. For our example,
tInferer infers the Java template $p30 $p31 = $p32; and the Swi�
template let $p31 = $p32.�is template pair and the Java syntax
node type are saved as a template mapping in the database, as
shown in Table 3.

Step 5: Mapping Inference for Substrings. �e template and
argument mappings generated so far only describe statement-level
mappings, without showing how expressions can be structured
di�erently between languages. Such coarse-grained mappings

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automatic Inference of Translation Rules for Cross-Platform Apps MOBILESo�’18, May 2018, Gothenburg, Sweden

only allow tInferer to restructure statements by moving Java
expressions around, but do not support further translations of
Java expressions to Swi� ones. To enable expression-level trans-
lations, tInferer continues comparing matched substrings, and
generates �ne-grained mappings by repeating Steps 1-4 iteratively.
For our example, the further iteration of Steps 1-4 on substrings
mData.getEntryCount() and data.entryCount produces an extra tem-
plate mapping—(expression, $p33.getEntryCount(), $p33.entryCount),
and an additional argument mapping ($p33, mData, data). With
the template mapping, we know how to translate a Java method API
invocation (i.e., $p33.getEntryCount()) to a Swi� �eld API access
(i.e., $p33.entryCount).

Although our algorithm is intuitively explained with a pair of
variable declaration statements, the algorithm also contains special
logic to e�ectively handle compound statements (e.g., for-loop)
and code pairs without matching operators (e.g., a+b vs. sum(a,

b)). In particular, as shown in Figure 6, the syntax tree of a com-
pound statement (e.g., for-loop) may correspond to the statement
itself together with those statements under the structure (e.g., state-
ments inside the for-loop body). In such scenarios, Step 1 initializes
subtree matching for the whole compound statement, while Steps
2-5 only focus on the header’s subtrees ignoring the statements
contained by the body. When semicolons are used in the header
of Java for-loop, tInferer implements a separate match method
specialMatch(...) to specially treat semicolons as delimiters used
in the resulting inferred template. Additionally, in Step 2, if two
syntax trees have no matching highest-level operator (e.g., a+b vs.
sum(a, b)), tInferer implements f latMatch(...) to simply split
each string based on all operators, markers, and whitespace.

3.3 Template Selection and Code Translation

If we consider the above rule inference process as iteratively re-
placing concrete substrings with abstract parameters to generate
mappings, then the rule application phase can be considered as the
reverse process. It iteratively selects mappings to generate code
by replacing abstract parameters with concrete substrings. �ere-
fore, some functions mentioned in Section 3.2 can be reused in this
phase.

Given a Java code line to translate (e.g., for(int j=1;j<c;j++){),
tInferer �rst locates the lowest subtree that matches the code
(дetST (...)), and then selects related template mappings based on
the subtree’s node type. Figure 6 presents the syntax tree found
for the above exemplar Java code. Based on the syntax node type
(statement), tInferer queries its database to get all relevant tem-
plate mappings. Among all the mappings shown in Table �, there
is only one relevant mapping as shown below, which is selected to
translate this code.

(statement,for($p50 $p51 = $p52; $p51 < $p53; $p51++) {...},

for $p51 in $p52 ..< $p53 {...})

Code translation involves two parts: string-template matching
and argument replacement. With template mappings selected based
on a syntax node type, tInferer tentatively matches the given Java
code with each Java template to check which template mapping is
applicable. If multiple mappings are applicable, tInferer picks the
one that occurs most in the rule inference phase. For our example,

the Java code matches the Java template in the above mapping
(3.3). �erefore, tInferer identi�es the following correspondence
between concrete substrings and abstract parameters accordingly:

(int, $p50), (j, $p51), (1, $p52), (c, $p53)

According to the template mapping (3.3), tInferer detects that
$p51, $p52, and $p53 are reused in the Swi� template. It then queries
the database for argument mappings related to any of these con-
crete substrings: j, 1, and c. If there is such an argument mapping,
tInferer simply uses the corresponding Swi� substring to gener-
ate code; otherwise, tInferer reuses the Java substring for code
generation. In our example, there is no argument mapping found,
so tInferer translates code by replacing parameters used in the
Swi� template with corresponding Java substrings, producing the
following Swi�-style string: for(j in 1 ..< c){.

Finally, tInferer checks whether each extracted Java substring
(i.e., int, j, 1, and c) corresponds to a leaf node or inner node
in the original syntax tree. If a substring corresponds to a leaf
node, the substring is an identi�er, and does not need any further
conversion. However, if a substring corresponds to an inner node,
tInferer leverages the inner node’s type to query the database, and
to iteratively convert Java expressions to Swi� ones. �e process
continues until every Java expression is converted, or until there
is no applicable template mapping for translation. In our example,
since all Java substrings are identi�ers, tInferer does not need
to convert any expressions a�er producing the Swi�-style string
mentioned above.

A naı̈ve non-iterative alternative rule inference and appli-
cation algorithm. To generate template and argument mappings
from the matching statements between Java and Swi�, a naı̈ve non-
iterative alternative would be to simply extract substrings based
on all operators, markers, whitespace, and keywords, and then
to establish mappings between the two substring sets. Although
this approach can generate some mappings, the applicability of
the inferred mappings is limited. For instance, given two similar
strings: c=a+b; vs. c=sum(a, b), only one template mapping can be
inferred in this way: (localVarDeclStat $p0=$p1+$p2; $p0=sum($p1,

$p2)). �is mapping does not enable tInferer to convert d=a+b+c
to d=sum(sum(a, b), c). However, with our syntax tree-based iter-
ative template inference algorithm, tInferer can correctly trans-
late the expression by iteratively applying two inferred template
mappings: (localVarDeclStat, $p0=$p1;, $p0=$p1), (expression,
$p1+$p2, sum($p1, $p2)).

4 EVALUATION

�is section presents our evaluation data set (Section 4.1), the accu-
racy metric (Section 4.2), and the three experiments we conducted
on the dataset (Section 4.3, 4.4, and 4.5).

4.1 Dataset

To evaluate how e�ectively tInferer can infer and apply rules to
translate Java code to Swi�, we collected four subject applications:
charts [6, 7], antlr4-runtime [2], cardboard [4, 5], and geometry-
api [8, 9], each of which has both Java and Swi� implementations. A
brief description of our subjects is as follows. charts is a chart/graph
view library that supports di�erent kinds of charts, including line
charts, bar charts, and pie charts. antlr4-runtime is a component

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

MOBILESo�’18, May 2018, Gothenburg, Sweden Kijin An, Na Meng, and Eli Tilevich

… …	

…	

Figure 6: In this Java syntax tree of for(int j=1; j<c; j++). . . , we use ellipses (“…”) to succinctly represent content in the

loop body.

of ANTLR, which is a parser generator for reading, processing,
executing, or translating structured text or binary �les. ANTLR
provides multiple versions of its runtime component in di�erent
languages. cardboard is the Google cardboard virtual reality (VR)
toolkit library, which simpli�es common VR development tasks,
such as lens distortion correction and head tracking. geometry-
api provides APIs for simple geometries, spatial operations, and
topological relationship tests.

By aligning the two versions of each application in the way
mentioned in Section 3.1, we identi�ed a subset of the code whose
implementation can be intuitively matched across languages. Ta-
ble 1 shows the lines of code (LOC) for both versions of each subject,
and the LOC with successful alignment. In total, there are 3,859
LOC aligned between the two versions of programs. We used these
3,859 aligned code pairs as the data set in our evaluation. �ese
code pairs cover syntax components that include class, �eld, and
method declarations, compound statements, and simple statements.

Table 1: Dataset of cross-platform applications

Project Java LOC Swi� LOC Aligned LOC

charts 29,861 22,428 2,507

antlr4-runtime 24,617 24,603 1,023

cardboard 7,006 3,279 176

geometry-api 105,887 993 153

According to Table 1, geometry-api has the largest Java codebase
but the smallest Swi� codebase, with only 153 LOC aligned between
the two versions. �is discrepancy is due to the Swi� version
only partially implementing the functionalities of the Java version.
charts has a relatively large code size in both Java and Swi� versions,
and contains the largest LOC value (i.e., 2,507) for the aligned code.

Table 2 demonstrates the top 10 most frequent template map-
pings inferred from the aligned code of charts. �e top-1 most
frequent template mapping corresponds to local variable declara-
tions. �e only di�erence between the two templates is that Swi�
code does not need a type identi�er when declaring a variable;
instead, it requires using the var keyword. �e 2nd and 7th most

frequent template mappings have identical Java parts but slightly
di�erent Swi� parts. �is peculiarity indicates that when trans-
lating some types of statements (e.g., if-statements), developers
actually followed more than one translation strategy, as guided
by their individual coding styles or preferences. However, manu-
ally de�ned rules describe at most one strategy for each kind of
translated statements. By precisely capturing the alternative im-
plicit translation rules that were actually applied in manual code
translation, tInferer can be �exibly con�gured to favor any of the
alternative template mappings for a translation task.

Template mappings ranked 3rd , 4th , 7th , and 8th have identical
Java and Swi� counterparts. One may deem mappings like these
unnecessary, but in fact they serve two purposes. First, when infer-
ring translation rules, these mappings work as anchors that align
heterogeneous syntax trees between Java and Swi�, and further
reveal lower-level structural and content mappings. For example,
given a=b=c in Java and a=(b=c) in Swi�, by leveraging the 4th
mapping when comparing two syntax trees, tInferer can correctly
align the �rst assignment operator in both versions, and infer the
following argument mappings: ($p0, a, a), ($p1, b=c, (b=c)).
Second, when translating code, these mappings help correctly split
Java code, enabling separate translation of each substring. For ex-
ample, based on the 7th and 8th mappings, tInferer can correctly
translate if (!m.aname()) to if (!m.sname()), when there is an
argument mapping ($p0, m.aname(), m.sname()) in its database.

4.2 Accuracy

To measure tInferer’s e�ectiveness, we de�ne accuracy as the
percentage of lines that tInferer has translated correctly. To decide
whether a line of code is translated correctly, we compare the tool-
generated code with the original Swi� version of applications. �e
translation is considered correct if one of the following criteria
applies:

• the translated version is identical to the human-translated
version (oracle);

• the translated version has no syntax error and is syntacti-
cally similar to the oracle, with the di�erences con�ned to
the usage of identi�ers; and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automatic Inference of Translation Rules for Cross-Platform Apps MOBILESo�’18, May 2018, Gothenburg, Sweden

Table 2: Top 10 most frequent template mappings inferred from charts

Rank Java syntax type Java template Swi� template Cnt

1 localVarDeclStmt $p2 $p0 = $p1; var $p0 = $p1 90
2 statement if ($p0) {…} if $p0 {…} 70
3 importDecl import $p0; import $p0 69
4 statement $p0 = $p1; $p0 = $p1 68
5 classBodyDecl public $p0 $p1 () {…} public var $p1 : $p0 {…} 65
6 statement return $p0; return $p0 63
7 statement if ($p0) {…} if ($p0) {…} 37
8 expression ! $p0 ! $p0 29
9 classBodyDeclStmt private $p2 $p0 = $p1; private var $p0 = $p1 24
10 classBodyDecl public $p0 $p1($p2 $p3) {…} public func $p1($p3: $p2) -> $p0 {…} 19

• the translated version is syntactically valid and semanti-
cally equivalent to the oracle, while adhering to a di�erent
syntax.

We conducted three experiments to measure tInferer’s accu-
racy. In the �rst experiment, each subject’s aligned code is par-
titioned into the inference and application subsets. We used the
inference subset to infer translation rules, and the application subset
to apply them, thereby evaluating the accuracy rate of tInferer’s
in-project translation (Section 4.3). In the second experiment, we
followed a similar process by inferring rules from three subjects,
and applying them to the remaining one, thereby assessing the
accuracy of tInferer’s cross-project translation (Section 4.4). Fi-
nally, in the third experiment, we compared the output produced
by tInferer to that produced by j2swi�, a state-of-the-art Java-to-
Swi� translation tool (Section 4.5), thereby assessing the respective
accuracy rates for both tools.

4.3 In-Project Translation

For each subject, we �rst identi�ed all source �les containing any
aligned code. �en we used the aligned code in 75% of these �les as
the inference set, and the aligned code in the other 25% �les as the
application set. Table 3 shows tInferer’s accuracy for the applica-
tion set in each subject. As both Java and Swi� have four common
syntactic components: type declaration (TypeDecl), method decla-
ration (MethodDecl), �eld declaration (FieldDecl), and statement,
Table 3 presents the accuracy rate for each component.

Table 3: In-project code translation results

Common

Type

charts antlr4 cardboard geometry-

api

TypeDecl 73%(27/37) 88%(7/8) 100%(3/3) 0%(0/1)
MethodDecl 80%(34/42) 78%(34/45) 70%(7/10) 36%(4/11)
FieldDecl 75%(24/32) 88%(42/48) - -
Statement 83%(196/235) 92%(146/159) 42%(5/12) 36%(4/11)
Average 81%(246/346) 88%(229/260) 60%(15/25) 35%(8/23)

�e overall accuracy is 76%(498/654) on average. cardboard
and geometry-api lack data for FieldDecl type mainly because de-
velopers did not intuitively translate the �eld declarations across
languages. Among the four common types, Statement has the high-
est average accuracy (84%), while MethodDecl obtains the lowest

one (73%). �is discrepancy is caused by the fact that there are more
template variants for method declaration headers than statements.
�e number and sequential order of parameters and modi�ers (e.g.,
final and static) can produce numerous formats of method decla-
ration headers, making it harder to match a given concrete header
with already inferred templates.

charts and antlr4-runtime show higher overall accuracy (81% and
88%) than cardboard and geometry-api (60% and 35%). We noticed
that the owners of the �rst two applications (charts and antlr4-
runtime) maintain both the Java and Swi� versions, while the other
two applications’ di�erent versions (cardboard and geometry-api)
are owned by di�erent people. �is observation may indicate that
when the same developer maintains both versions of an applica-
tion, she is likely to manually port one language implementation
to the other (i.e., Java to Swi�). With such manually translated
applications, tInferer can e�ectively infer and apply the intuitive
code translation rules with high accuracy. However, when the Java
and Swi� versions are maintained by di�erent developers, these
versions tend to be built independently instead of being manually
ported from one to another. �erefore, it is not surprising that
tInferer achieves lower accuracy when we compare its translation
with a separately built Swi� version.

4.4 Cross-Project Translation

In addition to inferring and applying translation rules within the
same project, we also inferred rules from three subjects, and then
applied the inferred rules to a fourth subject. Compared with the
in-project translation, such cross-project translation may be unable
to identify su�cient project-speci�c mappings for the target Java
project. However, this translation strategy can be�er �t the real
usage scenarios, in which developers create a brand new Swi�
project by using tInferer to automatically translate their Java
code.

Table 4 shows the cross-project translation results. �e overall
accuracy is 65%(644/994) on average, which is lower than the in-
project translation accuracy reported in Section 4.3. Speci�cally, we
obtained a much lower accuracy result for charts (51% vs. 81%). �is
signi�cant accuracy decrease occurs because charts’ training data
of cross-project translation is much smaller than that of in-project
translation, and insu�cient training data weakens the translation
capability. antlr-runtime’s accuracy rate of 69% is much lower

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

MOBILESo�’18, May 2018, Gothenburg, Sweden Kijin An, Na Meng, and Eli Tilevich

Table 4: Cross-project code translation results

Common

type

charts antlr4-

runtime

cardboard geometry-

api

TypeDecl 47%(10/21) 86%(36/42) 100%(8/8) 100%(2/2)
MethodDecl 60%(39/65) 66%(80/122) 56%(19/34) 62%(38/61)
FieldDecl 42%(34/81) 57%(98/174) - -
Statement 56%(73/122) 84%(128/152) 93%(39/42) 80%(40/50)
Average 51%(156/307) 69%(342/490) 78%(66/84) 71%(80/113)

than the 88% of the in-project translation, despite the substantially
enlarged training set for cross-project translation. �is is because
there are many mappings speci�c to antlr-runtime (e.g., project-
speci�c method calls), which are not inferable from other subjects’
data. Both cardboard and geometry-api achieve higher accuracy
for cross-project than in-project translations, because the training
data from other projects manifests a more comprehensive set of
translation rules.

4.5 Comparison with j2swi�

j2swi� [10] is a state-of-the-art Java-to-Swi� syntax converter.
It leverages ANTLR to create a parse tree for Java, and imple-
ments manually de�ned syntax conversion rules to generate Swi�
code while walking the parse tree. �e documentation claims
that j2swi� �nishes 80% translation tasks for simple Java code.
We used one half of the �les with aligned data for tInferer to
infer rules, and the other half of the �les to evaluate the code
translation accuracy of both tInferer and j2swi�. Table 5 shows
that tInferer outperforms j2swi� for each common type. �e
average accuracy of tInferer is 76%, which is much higher than
tInferer’s 57% accuracy rate. �is observation is unsurprising,
because tInferer �exibly infers both template and argument map-
pings, while j2swi� hard-codes only some template mappings.
When translating Java code, tInferer has more template map-
pings and argument mappings to apply than j2swi�. Consider
translating if(set.getEntryCount() >max.getEntryCount()) to if

set.entryCount>max.entryCount. Without encoding the domain
knowledge of mapping member APIs ($p.getEntryCount() vs.
$p.entryCount), j2swi� can only copy the original code to Swi�
code without translating it. In comparison, tInferer can translate
this code correctly due to its inferred rules.

Table 5: tInferer vs. j2swi�

Common type tInferer j2swi�

TypeDecl 65%(37/57) 40%(23/57)
MethodDecl 58%(71/122) 55%(67/122)
FieldDecl 70%(150/214) 38%(82/214)
Statement 83%(471/565) 66%(372/565)
Average 76%(729/958) 57%(544/958)

5 CONCLUSIONS AND FUTUREWORK

As native cross-platform mobile apps have become an industry
standard, their development remains challenging. We presented

tInferer that facilitates the porting of such apps between dif-
ferent platforms. �e data-driven nature of tInferer causes its
e�ectiveness to grow with the number of codebases available for
rule inferencing. In our evaluation, even with the limited training
data, tInferer clearly outperformed j2swi� in terms of transla-
tion accuracy. As a future work, we plan to enhance tInferer
to support translation involving code refactoring, to further im-
prove tInferer’s translation accuracy, and to extend it to handle
other inter-language translation tasks. As major mobile platforms
keep competing for market dominance, mobile developers will con-
tinue translating their apps across languages, and our approach can
streamline this non-trivial process.

AVAILABILITY

�e source code of tInferer described in the paper can be down-
loaded from this website: h�ps://git.cs.vt.edu/ankijin/tinferer.

ACKNOWLEDGEMENTS

�is research has been supported by the National Science Founda-
tion through the Grants #1649583, 1717065, 1650540 and 1565827.

REFERENCES

[1] ANTLR. h�p://www.antlr.org.
[2] antlr4-runtime. h�ps://github.com/antlr/antlr4/tree/master/runtime.
[3] Appcelerator. h�p://www.appcelerator.com/.
[4] cardboard for Java. h�ps://github.com/rsanchezsaez/cardboard-java.
[5] cardboard for Swi�. h�ps://github.com/nz�/cardboard-swi�.
[6] charts in Java. h�ps://github.com/PhilJay/MPAndroidChart.
[7] charts in Swi�. h�ps://github.com/danielgindi/Charts.
[8] geometry-api for Java. h�ps://github.com/esri/geometry-api-java.
[9] geometry-api for Swi�. h�ps://github.com/eito/geometry-api-swi�.

[10] j2swi�. h�ps://github.com/patniemeyer/j2swi�.
[11] PhoneGap. h�ps://build.phonegap.com.
[12] React Native. h�ps://facebook.github.io/react-native/.
[13] Sencha. h�ps://www.sencha.com.
[14] SimMetrics. h�ps://github.com/mpkorstanje/simmetrics.
[15] Antuan Byalik, Sanchit Chadha, and Eli Tilevich. Native-2-Native:

Automated cross-platform code synthesis from web-based program-
ming resources. In Proceedings of the 2015 ACM SIGPLAN Interna-

tional Conference on Generative Programming: Concepts and Experi-

ences, GPCE 2015, pages 99–108, New York, NY, USA, 2015. ACM.
doi:10.1145/2814204.2814210.

[16] M. El-Ramly, R. Eltayeb, and H. A. Alla. An experiment in automatic
conversion of legacy Java programs to C#. In Proceedings of the IEEE

International Conference on Computer Systems and Applications, 2006.
[17] Ahmed E. Hassan and Richard C. Holt. A lightweight approach for

migrating web frameworks. Inf. So�w. Technol., 2005.
[18] Java2CSharp. h�p://sourceforge.net/projects/j2cstranslator/.
[19] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of

code transforms for patch generation. In Proceedings of the 2017 11th

Joint Meeting on Foundations of So�ware Engineering, pages 727–739,
2017.

[20] Na Meng, Lisa Hua, Miryung Kim, and Kathryn S. McKinley. Does
automated refactoring obviate systematic editing? In ICSE, 2015.

[21] Na Meng, Miryung Kim, and Kathryn McKinley. Sydit: Creating and
applying a program transformation from an example. In ESEC/FSE’11,

joint meeting of the European So�ware Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of So�ware Engineering,
pages 440–443, 2011.

https://git.cs.vt.edu/ankijin/tinferer
http://www.antlr.org
https://github.com/antlr/antlr4/tree/master/runtime
http://www.appcelerator.com/
https://github.com/rsanchezsaez/cardboard-java
https://github.com/nzff/cardboard-swift
https://github.com/PhilJay/MPAndroidChart
https://github.com/danielgindi/Charts
https://github.com/esri/geometry-api-java
https://github.com/eito/geometry-api-swift
https://github.com/patniemeyer/j2swift
https://build.phonegap.com
https://facebook.github.io/react-native/
https://www.sencha.com
https://github.com/mpkorstanje/simmetrics
http://dx.doi.org/10.1145/2814204.2814210
http://sourceforge.net/projects/j2cstranslator/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automatic Inference of Translation Rules for Cross-Platform Apps MOBILESo�’18, May 2018, Gothenburg, Sweden

[22] Na Meng, Miryung Kim, and Kathryn McKinley. Lase: Locating and
applying systematic edits. In ICSE, pages 502–511, 2013.

[23] Na Meng, Miryung Kim, and Kathryn S. McKinley. Systematic editing:
Generating program transformations from an example. In PLDI, pages
329–342, 2011.

[24] M. Mossienko. Automated Cobol to Java recycling. In Seventh Eu-

ropean Conference onSo�ware Maintenance and Reengineering, 2003.

Proceedings., 2003.
[25] Steven S. Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers Inc., 1997.
[26] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-conquer

approach for multi-phase statistical migration for source code (t). In
2015 30th IEEE/ACM International Conference on Automated So�ware

Engineering (ASE), 2015.
[27] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung �anh Nguyen, and

Tien N Nguyen. Statistical learning approach for mining API usage
mappings for code migration. In Proceedings of the 29th ACM/IEEE

international conference on Automated so�ware engineering, pages 457–
468. ACM, 2014.

[28] Tung �anh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M.
Al-Kofahi, and Tien N. Nguyen. Graph-based mining of multiple
object usage pa�erns. In ESEC/FSE ’09: Proceedings of the the 7th

joint meeting of the European so�ware engineering conference and the

ACM SIGSOFT symposium on �e foundations of so�ware engineering,
pages 383–392, New York, NY, USA, 2009. ACM. doi:http://doi.
acm.org/10.1145/1595696.1595767.

[29] Terence Parr. �e StringTemplate library, 2017.
[30] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polo-

zov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann.
Learning syntactic program transformations from examples. In Pro-

ceedings of the 39th International Conference on So�ware Engineering,
pages 404–415. IEEE Press, 2017.

[31] Harry M. Sneed. Migrating from COBOL to Java. In Proceedings of

the 2010 IEEE International Conference on So�ware Maintenance, 2010.
[32] K. Yasumatsu and N. Doi. SPiCE: a system for translating Smalltalk

programs into a C environment. IEEE Transactions on So�ware Engi-

neering, 1995.
[33] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and

Abhik Roychoudhury. A feasibility study of using automated program
repair for introductory programming assignments. In Proceedings of

the 2017 11th Joint Meeting on Foundations of So�ware Engineering,
pages 740–751, 2017.

[34] Hao Zhong, Suresh �ummalapenta, Tao Xie, Lu Zhang, and Qing
Wang. Mining API mapping for language migration. In Proceedings of

the 32nd ACM/IEEE International Conference on So�ware Engineering-

Volume 1, pages 195–204. ACM, 2010.

http://dx.doi.org/http://doi.acm.org/10.1145/1595696.1595767
http://dx.doi.org/http://doi.acm.org/10.1145/1595696.1595767

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Novelty and Contributions

	2 Motivation and Approach Overview
	2.1 Motivating Scenario
	2.2 Approach Overview

	3 Design and Implementation
	3.1 Alignment and Matching of Code
	3.2 Syntax Tree Alignment and Mapping
	3.3 Template Selection and Code Translation

	4 Evaluation
	4.1 Dataset
	4.2 Accuracy
	4.3 In-Project Translation
	4.4 Cross-Project Translation
	4.5 Comparison with j2swift

	5 Conclusions and Future Work
	References

