
Automated Component Insourcing for Mobile Applications
Undoing Premature or Ill-Conceived Offloading Optimizations

Eli Tilevich
Virginia Tech

tilevich@cs.vt.edu

Abstract
To alleviate the resource constraints of mobile devices, develop-
ers of mobile applications commonly apply the cloud offloading
optimization—placing an application’s energy and performance in-
tensive functionality to execute at a remote cloud server. Because
of the high heterogeneity of mobile hardware and the variability
of mobile networks, a cloud offloading optimization may become
detrimental to energy consumption and performance efficiency. Re-
verting to the original, non-distributed version of the application
may be infeasible, as the client and server parts may since have
been maintained and enhanced independently. In that case, the
components executed at the server for optimization purposes need
to be moved to be executed on the mobile device; the moved com-
ponents must be integrated with the rest of the application’s func-
tionality. To assist software developers with this non-trivial pro-
gram restructuring, this paper introduces component insourcing, an
automated program transformation that moves a remotely accessed
component to be invoked locally, within a shared address space.
This position paper motivates the need for component insourcing
and demonstrates how this transformation can be implemented in
the Java realm. The paper also discusses the technical difficulties
of preserving the original component behavior and ensuring good
performance in the presence of component insourcing.

Categories and Subject Descriptors D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Restructuring, reverse engineering, and
reengineering

Keywords mobile applications, cloud offloading, program trans-
formation, optimization

1. Introduction
As mobile devices are rapidly overtaking stationary computers
as the primary means of accessing computing resources, battery
capacities remain a key physical constraint of mobile execution [6].
As a means of reducing the energy consumption of mobile devices,
developers of mobile applications commonly leverage distributed
execution, in which energy and execution intensive functionality is
placed to be executed at a cloud server and to be accessed remotely
across the network. Removing energy intensive functionality from

[Copyright notice will appear here once ’preprint’ option is removed.]

the code running on a mobile device reduces the execution demands
on the device’s battery, thus lengthening its life. Once software
developers carry out a cloud offloading optimization, the mobile
application is then executed in a distributed fashion. The client and
server parts are then free to be evolved independently, as long as
the communication protocol between them remains unaffected.

An offloading optimization may turn out premature or ill-
conceived for two reasons. First, the mobile hardware market is
highly heterogeneous: according to Facebook, the mobile version
of their application is accessed from 2,500 varieties of mobile de-
vices [3], with each device having different energy consumption
characteristics. A given cloud offloading optimization is likely to
exhibit different levels of effectiveness depending on the mobile
device in use. Second, the network conditions in place can have a
profound effect on how much energy a mobile device spends on
transferring the same workload to a remote server [5].

As a specific example, consider a mobile application being ex-
ecuted on a mobile device plugged to a power source and con-
nected to the server by means of a cellular network with a low
signal strength. This scenario could occur when a mobile device
is plugged to the charger of a car traveling through a rural area.
An offloading optimization applied to this application is likely to
deteriorate its performance if not render it unusable altogether. As
another example, running an application optimized for energy ef-
ficient execution on a smartphone is unlikely to yield comparable
energy savings when run on a tablet.

These scenarios motivate the need for moving some distributed
components from a remote server to the mobile device, thereby un-
doing cloud offloading optimizations that stopped being effective.
With different mobile hardware, the application’s non-distributed
version may turn to be sufficiently energy efficient or can be used
as a basis for an alternate offloading optimization. For example,
some parallel computations can be offloaded to a newly introduced
GPGPU with comparable energy savings. However, moving remote
functionality to the mobile device to be accessed locally entails
non-trivial program transformations, particularly if the resulting
“glued” application is to exhibit good performance.

To alleviate the burden of undoing cloud offloading optimiza-
tions, this paper introduces component insourcing, an automated
program transformation that adapts a remote component to be ac-
cessed locally within a shared address space. To preserve the orig-
inal behavior of remote components when executed locally, com-
ponent insourcing must properly reconcile the differences in pa-
rameter passing semantics, failure modes, and middleware depen-
dencies between the remote and local execution models. A crucial
requirement of component insourcing is ensuring the ability to ac-
cess the formerly remote functionality locally without suffering a
prohibitive performance overhead. Addressing this requirement re-
quires novel solutions to a set of technical problems that this posi-
tion paper defines in the subsequent discussion.

Accepted for presentation at MobileDeli 2013 1 2013/9/19



Mobile Application

Offload Server

Component

Insourcing

Mobile Application

Figure 1. The Component Insourcing Program Transformation

2. Component Insourcing
Figure 1 shows component insourcing, a program transformation
that moves a remote server component to the client’s address space
and replaces remote communication with local calls. By remote,
we mean executing in a separate address space, usually at a differ-
ent network node, such as at a cloud server. In essence, component
insourcing undoes distribution decisions made when either initially
designing a mobile application or optimizing its energy efficiency.
Obviously, not all distributed components can be successfully in-
sourced, as explained next.

2.1 Applicability
To understand the applicability of component insourcing, one must
ask why distributed execution is introduced in the first place.
To date, distributed processing is used for two primary reasons:
(1) functional distribution—accessing a remote functionality not
available locally, and (2) distribution to improve performance—
leveraging distributed computing resources to efficiently execute
computationally intensive tasks. Although it may seem that these
reasons behind distributed processing may not be mutually exclu-
sive, there is one characteristic that clearly sets them apart. While
functional distribution is inevitable, distribution to improve perfor-
mance can be replaced with equivalent, albeit less efficient local
computation.

As an example of functional distribution, consider a mobile ap-
plication for accessing the content of a newspaper. The application
uses distributed processing not because accessing the newspaper
from a remote server is faster. The distributed communication is
necessary to retrieve the newspaper’s articles from a remote server
(or a server farm). The issue of execution performance is secondary
when analyzing this application’s distributed architecture. Without
accessing the remote content, the application would be quite use-
less. The distributed execution and communication must take place
even if the remote server’s performance is suboptimal or the cellu-
lar network in place has a poor signal. Even if the mobile device
had unlimited processing resources, no amount of local execution
can generate the newspaper’s content locally.

As an example of distribution to improve performance, consider
using a remote optical character recognition (OCR) component.
OCR algorithms take a graphical image as input and decipher
the letters comprising the image. These algorithms are known to
be a highly execution intensive operation, and as such likely to
exhaust the battery power of a mobile device quickly. Therefore,
a mobile application designer may want to take advantage of a
remote server to execute the OCR functionality. The energy costs
of sending an image file to the remote components and getting

the textual output back is likely to be lower than executing the
OCR algorithm locally. However, this optimization is optional. For
example, if the application runs on a mobile device connected to
a power source, the issue of preserving the battery power is quite
irrelevant. Similarly, in the presence of a highly unreliable cellular
network, the costs of handling network disconnections are likely to
outstrip those afforded by offloading the OCR computation to the
remote server. All in all, the OCR functionality can be implemented
as either a remote or local component, depending on the energy
efficiency and QoS requirements in place.

3. Challenges of Component Insourcing
To demonstrate the technical issues underlying component insourc-
ing, we will use the following running example. For ease of pre-
sentation, this example assumes that both client-side and server-
side software is written in Java; it also assumes that the client
communicates with the server via Java Remote Method Invocation
(RMI). These are simplifying assumptions, but insourcing com-
ponents written in other languages and removing the harness of
additional middleware infrastructures are primarily engineering is-
sues that should not affect the conceptual technical issues discussed
next.

3.1 Running Example
Consider a server-side component, whose entry point is located in
class Component as shown in Figure 2. One of its remote methods
on line 3 takes as a parameter a Set of elements. The method
processes the Item objects contained in the parameter and returns
the calculated Result object back to the client.

1 class Component implements RemoteInterface {
2 Result calculate (Set <Item> items)
3 throws Remote Exception {
4 ...
5 items. set (1, new Item (...));
6 ...
7 // use the passed items
8 // to calculate and return the results
9 return results ;

10 }
11 }

Figure 2. A server component to be insourced

Figure 3 shows the client code that first looks up a remote
reference to a Component object from the registry service (line 5).
The reference is assigned to the interface type of RemoteInterface,

Accepted for presentation at MobileDeli 2013 2 2013/9/19



a common convention for invoking remote services in Java. This
interface is then used to invoke the remote method calculate . The
execution takes place at the server, and all the exceptions raised
during the remote invocations are caught and handled on line 9.

1 // create and populate the items object
2 Set <Item> items = ...
3 try {
4 // lookup a remote reference from the registry
5 RemoteInterface ri = Registry.lookup (...);
6 Result r = ri . calculate (items);
7 // use the Result object
8 } catch (RemoteException re) {
9 ... // handle remote service exceptions

10 }

Figure 3. A client code invoking the remote Component.

It may seem that insourcing this component to invoke it lo-
cally is as straightforward as the code that appears in Figure 4. In
essence, this code instantiates a Component object directly and then
proceeds to invoked its calculate method.

1 // Invoking the insourced Component locally
2 Component c = new Component();
3 Set <Item> items = ...
4 Result r = c. calculate (items);

Figure 4. Invoking the remote Component locally.

However, this transformation does not preserve the original ex-
ecution semantics of interacting with the Component object re-
motely. In other words, this transformation is not a refactoring. To
make this transformation semantics-preserving at least with respect
to the application logic, the transformation must account for the fol-
lowing differences between the remote and local execution.

3.2 Parameter Passing
While remote calls use the by-copy semantics for passing parame-
ters, local calls in managed languages use the by-reference-value
semantics. Consider line 5 in Figure 2. The methods’s parameter—
Set of items is modified. This change would not be visible to the
caller if method calculate is remote, as items is passed by-copy
to the server, with no changes propagated back to the client once
the call completes. When the method calculate is invoked locally,
all the modifications to the items parameter will be reflected on the
caller’s reference to the items object. Parameter modifications like
this can be subtle and hard to detect, but they change the applica-
tion’s semantics in major ways.

The same observation applies to non-primitive return values of
remote methods. The return results object is copied back to the
caller, which is free to modify its state. However, if the server has
aliased this object prior to returning it to the caller, the client-site
modification will not be reflected in the remote component’s state.
Once the component is insourced, the caller and callee will run in
the same shared address space, in which the changes to an object
are seen by all its aliases.

A naı̈ve approach to emulating the by-copy semantics in local
method calls is to deep copy the parameter before passing it to the
method. Deep copying emulates the process of marshaling/unmar-
shaling the parameters of remote methods. The object graph of a
parameter is traversed exhaustively and written to a memory buffer,
then the buffer is transformed into an object graph isomorphic to the
original parameter’s graph. As a result, deep copying object graphs
is a performance and energy intensive operation that should be used

sparingly in mobile applications. To avoid the performance and en-
ergy consumption penalty, a more efficient approach to emulating
the by-copy semantics is required.

3.3 Removing Middleware Harness
Remote components are typically managed by an Inversion of Con-
trol (Ioc) container. Container-based designs enable the separation
of concerns principle, in which the container is responsible for
concerns that include network communication, fault tolerance, and
load balancing, while the components managed by the container
only implement application (i.e., business) logic. To interact with
container services, managed components commonly include spe-
cial functionality. For example, RMI components have to imple-
ment a Remote interface, and each remotely invoked method must
declare as throwing a RemoteException. It must be noted that com-
pared to widely used middleware infrastructures for managing re-
mote components, RMI imposes quite a limited set of requirements
on the implementation conventions of its remote components. To
adhere to the requirements of Web services, Java Services, and
OSGi, remote components often need to provide additional meth-
ods and fields used exclusively by the container.

Accessing a component written to run within a container di-
rectly may not preserve the original semantics or may even cause
a crash. Instantiating a container-managed component may involve
protocols different than just invoking a constructor. For example, a
call to the default constructor may be followed by that to an initial-
ization method to allocate the component’s resources. A straight-
forward but inefficient approach for executing insourced container-
managed components is to continue running them within a con-
tainer. However, running a container, designed for resource-rich
server environments, on a mobile device will unnecessarily drain
the scarce energy resources. Thus, when insourcing a component,
its middleware functionality must be removed, so that the compo-
nent can be efficiently invoked locally.

3.4 Handling Failure
Local and remote executions have radically different failure modes.
Remote execution is subject to partial failure, in which each of the
execution’s constituent parts may fail separately. Handling partial
failure effectively is one of the foremost challenges of distributed
computing. In addition, by executing in a separate address space
on a different machine, distributed components raise faults that
do not affect their clients. Container-based distributed frameworks
are particularly adept at handling such failures. For example, if a
distributed component crashes during the execution, the container
can restart it, with the client experiencing only an increased remote
interaction latency.

When a remote component is insourced, its faults become visi-
ble to the client, as the isolation provided by executing in a separate
address space is no longer present. One can execute insourced com-
ponents in a separate address space, but modern languages provide
little support for efficient multi-process execution. For example, al-
though there were proposals to extend Java with Isolates, the JVM
does not support efficient multiprocessing. Thus, to reliably execute
the insourced components within a shared address space, the pro-
gram transformation must insert the required failure handling code
to guard the clients from the faults raised during the components’
execution.

4. Supporting Component Insourcing
In this section, we outline some possible solutions to the technical
challenges that must be addressed to realize the vision of compo-
nent insourcing.

Accepted for presentation at MobileDeli 2013 3 2013/9/19



4.1 Parameter Passing
To efficiently emulate the by-copy semantics in a shared address
space, only the modified subgraph of method parameters should be
deep copied. To that end, a program transformation can rewrite the
classes of the parameters passed to remote methods to keep track
of all the field writes and reads. Once a field is about to be written,
then only the object subgraph rooted in that field should be deep
copied, and the copy written to instead. Arrays would need to be
handled specially, with array stores treated as write operations. An
additional optimization of not deep copying until the modified field
is read is possible as well. Under some scenarios, a field can be
modified but never written. Then the deep copy operation can be
avoided altogether.

4.2 Removing Middleware Harness
The transformations required to remove the unnecessary middleware-
related functionality would be defined by the programming conven-
tions used by the middleware infrastructure in place. In addition,
certain functionalities provided by the IoC container may need to
be emulated when invoking the insourced components directly. For
example, if an insourced component has a method initialize used
to be invoked by the container, the calls to this method need to be
added to the component’s constructors. Similarly if a component
has an uninitialize method, it may need be invoked explicitly or
by means of Runtime.addShutdownHook.

4.3 Handling Failure
Maintaining the original failure handling semantics has to be ad-
dressed from the perspectives of remote communication and appli-
cation faults. Because no partial failure can occur when invoking
insourced components, one can safely remove all the code that han-
dles network-related exceptions. However, to emulate the fault iso-
lation provided by the execution in a separate address space can be
non-trivial. If a crashed remote component can be simply restarted
by its container, in a shared address space, the crash can bring down
the entire virtual machine. One solution is to analyze the compo-
nent’s code for possible application failures and insert the appropri-
ate fault handlers close to the potential causes of the fault to prevent
them from propagating and creating a destructive ripple effect.

4.4 Automated Tools for Component Insourcing
Because component insourcing is essentially a refactoring, it can
be supported by extending existing refactoring browsers. The pro-
posed transformations described above can be added to an exist-
ing refactoring browser by leveraging its existing transformations,
source code analyzers, and graphical interface. The removing mid-
dleware harness transformation can be particularly tricky because
of its domain-specific nature.

5. Related Work
In essence, component insourcing undoes program partitioning,
an automated program transformation that introduces distribution
to a centralized application [7]. Although the bulk of the origi-
nal research on program partitioning for managed languages took
place during the first decade of this century, recently this technique
reemerged under the guise of cloud offloading, a technique for in-
creasing the energy efficiency of mobile applications [1, 2, 4, 8, 9].
Our vision is that offloading and insourcing transformations should
be developed in concert with each other as complementary opera-
tions. Because the constituent parts of a distributed application can
be evolved separately (with the client and server parts being indi-
vidually maintained and enhanced), simply reverting back to the
original, centralized version of the application may be infeasible,
thus requiring a component insourcing transformation.

6. Conclusions
The realities of the modern mobile marketplace often require soft-
ware developers to design and implement applications that are to
be executed on a variety of mobile devices, some of which will be
introduced only in the future. Because optimizing mobile applica-
tions for energy and performance efficiency is hard, cloud offload-
ing optimizations may turn out premature or ill-conceived. As a re-
sult, mobile software engineers may find themselves undoing and
redoing cloud offloading optimizations multiple times as mobile
applications are maintained and evolved. Distributed components
may also need to be insourced for security or privace reasons. For
example, a mobile application mostly executed in untrustworthy
environments should have its remote communication minimized.

Because of the rapid evolution of mobile devices and the
tremendous growth in mobile applications, software engineers find
themselves spending an increasing amount of their time and efforts
on optimizing mobile execution for different devices and execution
environments. Distributed execution is known to provide multiple
benefits to mobile application, and various software development
techniques and tools have been introduced to ease the process of
transforming local components to be accessed remotely across the
network. No techniques or tools have been introduced to go in the
opposite direction: rendering remote components to be accessed
locally within a shared address space. To address this problem,
this paper introduces component insourcing and thus makes the
following two contributions. First, it motivates and defines compo-
nent insourcing, thus coining the term that describes this automated
program transformation. Second, it identifies the research agenda
for realizing the vision of component insourcing by describing its
technical challenges.

Acknowledgments
This research is supported by the National Science Foundation
through the Grant CCF-1116565.

References
[1] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud:

elastic execution between mobile device and cloud. In Proceedings of
the 6th ACM European Conference on Computer Systems, 2011.

[2] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: making smartphones last longer with
code offload. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, 2010.

[3] Facebook Mobile. Facebook for every phone, July 2011.
[4] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant dis-

tributed mobile execution. In Proceedings of the 32nd International
Conference on Distributed Computing Systems, 2012.

[5] Y.-W. Kwon and E. Tilevich. The impact of distributed programming
abstractions on application energy consumption. Information and Soft-
ware Technology, 2013.

[6] K. Pentikousis. In search of energy-efficient mobile networking. Com-
munications Magazine, IEEE, 48(1):95–103, 2010.

[7] E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing Java programs
with distribution capabilities. ACM Trans. Softw. Eng. Methodol.,
19(1):1–40, 2009.

[8] Y. Wen, W. Zhang, and H. Luo. Energy-optimal mobile application ex-
ecution: Taming resource-poor mobile devices with cloud clones. In
Proceedings of the 32nd IEEE Computer and Communications (INFO-
COM ’12), 2012.

[9] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang. Refac-
toring Android Java code for on-demand computation offloading. In
Proceedings of the ACM international conference on object oriented
programming systems languages and applications, OOPSLA ’12, 2012.

Accepted for presentation at MobileDeli 2013 4 2013/9/19


