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Abstract

A fundamental building block of a mobile application is the ability to persist program data between

different invocations. Referred to as persistence, this functionality is commonly implemented by means

of persistence frameworks. Without a clear understanding of the energy consumption, execution time,

and programming effort of popular Android persistence frameworks, mobile developers lack guidelines

for selecting frameworks for their applications. To bridge this knowledge gap, we report on the results

of a systematic study of the performance and programming effort trade-offs of eight Android persistence

frameworks, and provide practical recommendations for mobile application developers.

Index terms— Persistence Framework, Mobile Application, Performance, Programming Effort

I. INTRODUCTION

Any non-trivial application includes a functionality that preserves and retrieves user data, both

during the application session and across sessions; this functionality is commonly referred to

as persistence. In persistent applications, relational or non-relational database engines preserve

user data, which is operated by programmers either by writing raw database operations, or via

data persistence frameworks. By providing abstractions on top of raw database operations, data

persistence frameworks help streamline the development process.

As mobile devices continue to replace desktops as the primary computing platform, Android is

poised to win the mobile platform contest, taking the 82.8% share of the mobile market in 2015

[1] with more than 1.6 million applications developed thus far [2]. Energy efficiency remains
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one of the key considerations when developing mobile applications [3], [4], [5], as the energy

demands of applications continue to exceed the devices’ battery capacity. Consequently, in recent

years researchers have focused their efforts on providing Android developers with insights that

can be used to improve the energy efficiency of mobile applications. The research literature on

the subject includes approaches ranging from general program analysis and modeling [6], [7],

[8], [9] to application-level analysis [10], [11], [12], [13].

Despite all the progress made in understanding the energy impact of programming patterns and

constructs, a notable omission in the research literature on the topic is the energy consumption of

persistence frameworks. Although an indispensable building block of mobile applications, these

frameworks have never been systematically studied in this context, which can help programmers

gain a comprehensive insight on the overall energy efficiency of modern mobile applications.

Furthermore, to be able to make informed decisions when selecting a persistence framework for

a mobile application, developers have to be mindful of the energy consumption, execution time,

and programming effort trade-offs of major persistence frameworks.

To that end, this paper reports on the results of a comprehensive study we have conducted

to measure and analyze the energy consumption, execution time, and programming effort trade-

offs of popular Android persistence frameworks. For Android applications, persistence frame-

works expose their APIs to the application developers as either object-relational mappings

(ORM), object-oriented (OO) interfaces, or key-value interfaces, according to the underlying

database engine. In this article, we consider the persistence libraries most widely used in

Android applications [14]. In particular, we study six widely used ORM persistence frameworks

(ActiveAndroid [15], greenDAO [16], OrmLite [17], Sugar ORM [18], Android SQLite [19],

DBFlow [20]), one OO persistence framework (Java Realm [21]), and one key-value database

operation framework (Paper [22]) as our experimental targets. These frameworks operate on top

of the popular SQLite, Realm, or NoSQL database engines.

In our experiments, we apply these eight persistence frameworks to different benchmarks,

and then compare and contrast the resulting energy consumption, execution time, and program-

ming effort (measured as lines of programmer-written code). Our experiments include a set

of micro-benchmarks designed to measure the performance of individual database operations

as well as the well-known DaCapo H2 database benchmark [23]. To better understand the

noticeable performance and programming effort disparities between persistence frameworks, we

also introduce a numerical model that juxtaposes the performance and programming efforts
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of different persistence frameworks. By applying this model to the benchmarks, we generate

several guidelines that can help developers choose the right persistence framework for a given

application.

In other words, one key contribution of our study is informing Android developers about

how they can choose a persistence framework that achieves the desired energy/execution time/-

programming effort balance. Depending on the amount of persistence functionality in an ap-

plication, the choice of a persistence framework may dramatically impact the levels of energy

consumption, execution time, and programming effort. By precisely measuring and thoroughly

analyzing these characteristics of alternative Android persistence frameworks, this study aims at

gaining a deeper understanding of the persistence’s impact on the mobile software development

ecosystem. The specific questions we want to answer are:

RQ1. How do popular Android persistence frameworks differ in terms of their respective features

and capabilities?

RQ2. as it is realize What is the relationship between the persistence framework’s features and

capabilities and the resulting execution time, energy efficiency, and programming effort?

RQ3. How do the characteristics of an application’s database functionality affect the performance

of persistence frameworks?

RQ4. Which metrics should be measured to meaningfully assess the appropriateness of a per-

sistence framework for a given mobile application scenario?

To answer RQ1, we analyze the documentation and implementation of the persistence frame-

works under study to compare and contrast their features and capabilities. To answer RQ2

and RQ3, we measure each of the energy, execution time, and programming effort metrics

separately, compute their correlations, as well as analyze and interpret the results. To answer

RQ4, we introduce a numerical model, apply it to the benchmarks used for the measurements,

and generate several recommendation guidelines.

Based on our experimental results, the main contributions of this article are as follows:

1 To the best of our knowledge, this is the first study that empirically evaluates the energy,

execution time, and programming effort trade-offs of popular Android persistence frameworks.

2 Our experiments consider multifaceted combinations of factors which may impact the energy

consumption and execution time of persistence functionality in real-world applications, which
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include persistence operations involved, the volume of persisted data, and the number of

transactions.

3 Based on our experimental results, we offer a series of guidelines for Android mobile devel-

opers to select the most appropriate persistence framework for their mobile applications. For

example, ActiveAndroid or OrmLite fit well for applications processing relatively large data

volumes in a read-write fashion. These guidelines can also help the framework developers to

optimize their products for the mobile market.

4 We introduce a numerical model that can be applied to evaluate the fitness of a persistence

framework for a given application scenario. Our model considers programming effort in

addition to execution time and energy efficiency to provide insights relevant to software

developers.

The rest of this paper is organized as follows. Section II summarizes the related prior work.

Section III provides the background information for this research. Section IV describes the design

of our experimental study. Section V presents the study results and interprets our findings. Section

VI presents our numerical model and offers practical guidelines for Android developers. Section

VII discusses the threats to internal and external validity of our experimental results. Section

VIII concludes this article.

This work extends our previous study of Android persistence frameworks, published in IEEE

MASCOTS 2016 [24]. This article is a revised and extended version of that paper. In particular,

we describe the additional research we conducted, which now includes: 1) a comprehensive

analysis of the studied frameworks’ features, 2) the measurements and analysis for two additional

persistence frameworks, 3) a study of the relationship between database-operations, execution

time, and energy consumption, based on our measurements, and 4) a novel empirical model for

selecting frameworks for a given set of development requirements.

II. RELATED WORK

This section discusses some prior approaches that have focused on understanding the execution

time, energy efficiency, and programming effort factors as well as their interaction in mobile

computing. Multiple prior studies have focused on understanding the energy consumption of

different mobile apps and system calls, including approaches ranging from system level mod-

eling of general systems [7] and mobile systems [8], to application level analysis [25] and

optimization [12]. For example, Chowdhury et al. study the energy consumed by logging in
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Android apps [26], as well as the energy consumed by HTTP/2 in mobile apps [27]. Liu et al.

[28] study the energy consumed by wake locks in popular Android apps. Many of these works

make use of the Green Miner testbed [29] to accurately measure the amount of consumed energy.

As an alternative, the Monsoon power meter [30] is also used to measure the energy consumed

by various Android APIs [5], [31]. In our work, we have decided to use the Monsoon power

meter, due to the tool’s ease of deployment and operation.

Many studies also focus on the impact of software engineering practices on energy consump-

tion. For example, Sahin et al. [10] study the relationship between design patterns and software

energy consumption. Hindle et al. [29] provide a methodology for measuring the impact of

software changes on energy consumption. Hasan et al. [32] provide a detailed profile of the energy

consumed by common operations performed on the Java List, Map, and Set data structures

to guide programmers in selecting the correct library classes for different application scenarios.

Pinto et al. [13] study how programmers treat the issue of energy consumption throughout the

software engineering process.

The knowledge inferred from the aforementioned studies of energy consumption can be applied

to optimize the energy usage of mobile apps, either by guiding the developer [9], [33] or via

automated optimization [34]. As discovered in [35], mobile app developers tend to be better tuned

to the issues of energy consumption than developers in other domains, with a large portion of

interviewed developers taking the issue of reducing energy consumptions into account during

the development process.

Local databases are widely used for persisting data in Android apps [36], and the corresponding

database operation APIs are known to be as “energy-greedy”[31]. Several persistence frameworks

have been developed with the goal of alleviating the burden of writing SQL queries by hand.

However, how these frameworks affect the energy consumption of Android apps has not been

yet studied systematically. To bridge this knowledge gap, in this work, we study not only the

performance of such frameworks, but also the programming effort they require, with the resulting

knowledge base providing practical guidelines for mobile app developers, who need to decide

which persistence framework should be used in a given application scenario.

III. BACKGROUND

To set the context for our work, this section describes the persistence functionality, as it is

commonly implemented by means of database engines and persistence frameworks.
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The designers of the Android platform have recognized the importance of persistence by

including the SQLite database module with the standard Android image as early as the release

1.5. Ever since this module has been used widely in Android applications. According to our

analysis of the most popular 550 applications hosted on GooglePlay (25 most popular apps for

each category, and 22 categories in all), over 400 of them (73%) involve interactions with the

SQLite module.

The ORM (object-relational mapping) frameworks have been introduced and refined to fa-

cilitate the creation of database-oriented applications [37], [38]. The prior studies of the ORM

frameworks have focused mainly on their execution efficiency and energy efficiency. Meanwhile,

Vetro et al. [39] show how various software development factors (e.g., design patterns, soft-

ware architecture, information hiding, implementation of persistence layers, code obfuscation,

refactoring, and data structure usage) can significantly influence the performance of a software

system. In this article, we compare the performance of different persistence frameworks in a

mobile execution environment with the goal of understanding the results from the perspective

of mobile app developers.

Android persistence frameworks A persistence framework serves as a middleware layer

that bridges the application logic with the database engine’s operations. The database engine

maintains a schema in memory or on disk, and the framework provides a programming interface

for the application to interact with the database engine.

As SQLite (the native database of Android) is a relational database engine, most Android

persistence frameworks developed for SQLite are ORM/OO frameworks. One major function

of such object-relational mapping (ORM) and object-oriented frameworks is to solve the the

object-relational impedance mismatch [40] between the object-oriented programming model and

the relational database operation model.
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We evaluate 8 frameworks: Android SQLite, ActiveAndroid, greenDAO, OrmLite, Sugar

ORM, DBFlow, Java Realm, and Paper, backed up by the SQLite, Realm, and NoSQL database

engines, which are customized for mobile devices, with limited resources, including battery

power, memory, and processor.

Persistence Framework Feature Comparison Persistence frameworks differ in a variety of

ways, including database engines, programming support (e.g., object and schema auto gener-

ation), programming abstractions (e.g., data access object (DAO) support, relationships, raw

query interfaces, batch operations, complex updates, and aggregation operations), relational

features support (e.g., key/index Structure, SQL join operations, etc.), and execution modes (e.g.,

transactions and caching). We focus on these features, as they may impact energy consumption,

execution time, and programming effort. Table I compares these similarities and differences of

the persistence frameworks used in our study.

1 Database Engine Six of the studied persistence frameworks use SQLite [41], an ACID

(Atomic, Consistent, Isolated, and Durable) and SQL standard-compliant relational database

engine. Java Realm framework uses Realm [21], an object-oriented database engine, whose

design goal is to provide functionality equivalent to relational engines. Paper uses NoSQL[42],

a non-relational, schema-free, key-value data storage database. Therefore, as we here mainly

compare features of relational database, Paper as a non-relational database engine, lacks many

of these features.

2 Object Code Generation Some frameworks feature code generators, which relieve the devel-

oper from having to write by hand the classes that represent the relational schema in place.

3 Schema Generation At the initialization stage, persistence frameworks employ different

strategies to generate the database schema. Android SQLite requires raw SQL statements

to create database tables, while OrmLite provides a special API call. greenDAO generates

a special DAO class that includes the schema. The remaining frameworks (excluding Paper)

automatically extract the table schema from the programmer defined entity classes.

4 Data Access Method DAO (Data Access Object) is a well-known abstraction strategy for

database access that provides a unified object-oriented, entity-based persistence operation

set (insert, update, delete, query, etc.). greenDAO, Sugar ORM, and OrmLite provide the

DAO layer, while Android SQLite adopts a relational rather than DAO database manipulating

interface. ActiveAndroid, DBFlow, and Java Realm provide a hybrid strategy—both DAO and

SQL builder APIs.
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5 Relationship Support The three relationships between entities are one-to-one, one-to-many,

and many-to-many. greenDAO and Java Realm support all three relationships. ActiveAndroid

lacks support for Many-to-Many, while Sugar ORM and DBFlow only support One-To-Many.

Android SQLite and OrmLite lack support for relationships, requiring the programmer to write

explicit SQL join operations.

6 Raw Query Interface Support Raw queries use naive SQL statements, thus deviating from

pure object-orientation to execute complex database operations on multiple tables, nesting

queries and aggregation functions. Android SQLite, greenDAO, OrmLite, and DBFlow—all

provide this functionality.

7 Batch Operations Batch operations commit several same-type database changes at once,

thus improving performance. greenDAO, OrmLite, Sugar ORM, and DBFLow provide batch

mechanisms for insert, update and delete. Java Realm provides batch inserts only, and the

remaining two frameworks lack this functionality.

8 Complex Update Support Typically there are two kinds of database update operations:

update columns to given values, or update columns based on arithmetic expressions. Android

SQLite and ActiveAndroid can only use raw SQL manipulation interface to support expression

updates. greenDAO, Sugar ORM, Java Realm, and DBFlow support complex updates via entity

field modification. OrmLite is the only framework that provides both the value update and

expression update abstractions.

9 Aggregation Support Aggregating data in a relational database enables the statistical analysis

over a set of records. Different frameworks selectively implement aggregation functionality.

Android SQLite, OrmLite, and DBFlow support all of the aggregation functions via a raw

SQL interface. Java Realm and Sugar ORM provide an aggregation subset in the entity layer.

ActiveAndroid and greenDAO support only the COUNT aggregation.

10 Key/Index Structure Key/Index structure identifies individual records, indicates table cor-

relations, and increases the execution speed. Android SQLite and DBFlow fully support the

database constraints—single or multiple primary keys (PK), index and foreign key (FK).

ActiveAndroid supports integer single PK, unique, index, and FK. greenDAO supports integer

single PK, unique, index. OrmLite supports single PK, index, and FK. Sugar ORM supports

integer single PK and unique. Java Realm supports string or integer single PK, and index.

11 SQL JOIN Support SQL JOIN clause combines data from two or more relational tables.

Android SQLite and DBFlow only support raw JOIN SQL. ActiveAndroid incorporates JOIN
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in its object query interface. DAOs of greenDAO and OrmLite provide the JOIN operation.

Sugar ORM and Java Realm lack this support.

12 Transaction Support Transactions perform a sequence of operations as a single logical

execution unit. All the studied engines with the exception of greenDAO, Sugar ORM, and

Paper provide full transactional support.

13 Cache Support OrmLite, ActiveAndroid, greenDAO, DBFlow and Paper support caching.

They provide this advanced feature to maintain persisted entities in memory to speed-up

future accesses, at the cost of extra processing required to initialize the cache pool.

IV. EXPERIMENT DESIGN

In this section, we explain the main decisions we have made to design our experiments.

In particular, we discuss the benchmarks, the measurement variables, and the experimental

parameters.

A. Benchmark Selection

DaCapo H2 [23] is a well-known Java database benchmark that interacts with the H2 Database

Engine via JDBC. This benchmark manipulates a considerable volume of data to emulate bank

transactions. The benchmark includes 1) a complex schema and non-trivial functionality, obtained

from a real-world production environment. The database structure is complex (12 tables, with

120 table columns and 11 relationship between tables), while the database operations simulate

the running of heavy-workload database-oriented applications; 2) complex database operations

that require: batching, aggregations, and transactions.

Since DaCapo relies heavily on relational data structures and operations, we replace H2 with

two relational database engines, SQLite or Realm, to adapt this benchmark for Android. In other

words, we evaluate the performance of all persistence frameworks under the DaCapo benchmark

except for Paper, which is a non-relational database engine.

However, using the DaCapo benchmark alone cannot provide performance evaluation of

persistence frameworks under the low data volumes with simple schema conditions. To es-

tablish a baseline for our evaluation, we thus designed a set of micro benchmarks, referred

to as the Android ORM Benchmark, which features a simple database schema with few data

records. Specifically, this benchmark’s database structure includes 2 tables comprising 11 table

columns, and a varying small number of data records. Besides, this micro-benchmark comprises
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the fundamental database operation invocations “create table”, “insert”, “delete”, “select”, and

“update”. As the database operations in many mobile applications tend to be rather simple, the

micro-benchmark’s results present valuable insights for application developers.

Note that database operations differ from database operation invocations. The invocations

refer to calling the interfaces provided by the persistence framework (e.g., “insert”, “select”,

“update” and “delete”). However, each invocation can result in multiple database operations

(e.g., android...SQLiteStatement.executeInsert()).

B. Test Suite Implementation

Our experimental setup comprises a mobile app that uses the selected benchmarked frameworks

to execute both DaCapo and the Android ORM Benchmark1. Through this app, experimenters

can select benchmarks, parameterize the operation and data volume, as well as select ORM

frameworks. The implementation of the test suite was directed by two graduate students, each

of whom has more than three years of experience in developing commercial database-driven

projects.

As stated above, the DaCapo database benchmark is designed for relational databases, so

it would be non-trivial to reimplement it using Paper, which is based on a non-relational

database engine (NoSQL). Therefore, the DaCapo benchmark is only applied to seven persistence

frameworks, while the Android ORM Benchmark is applied to all eight persistence frameworks.

For each benchmark, the transaction logic (e.g., creating bank accounts for DaCapo) is imple-

mented using various ORM frameworks, following the design guidelines of these frameworks.

For example, greenDAO, Sugar ORM, and OrmLite provide object-oriented data access methods,

so their benchmarks’ data operations are implemented by using DAO. On the contrary, Android

SQLite adopts a relational rather than DAO database manipulating interface, so its benchmark’s

data operations are implemented by using SQL builders. ActiveAndroid, DBFlow, and Java

Realm provide a hybrid strategy—both DAO and SQL builder APIs. For these frameworks, if

the benchmark’s operation is impossible or non-trivial to express using DAO, the SQL builder

API is used instead.

1All the code used in our experiments can be downloaded from https://github.com/AmberPoo1/PEPBench.
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C. Parameters and Variables

Next, we explain the variables used to evaluate the execution time, energy consumption, and

programming effort of the studied persistence frameworks. We also describe how these variables

are obtained.

• Overall Execution Time The overall execution time is the time elapsed from the point

when a database transaction is triggered to the point when it completes.

• Read/Write Database Operation Number We focus on comparing the Read/Write num-

bers only for SQLite-based frameworks (ActiveAndroid, greenDAO, OrmLite, Sugar ORM,

and DBFlow), as such frameworks use SQLite operation interfaces provided by the Android

framework to operate on SQLite database. The write operations include executing SQL

statements that are used to “insert”, “delete”, and “update”, while the read operations include

only “select”. When performing the same combination of transactions, the differences in

Read/Write number is the output of how different persistence frameworks interpret database

operation invocations. The read/write ratio can also impact the energy consumption. The

operation numbers are obtained by hooking into the SQLite operation interfaces provided

by the Android System Library. For those interfaces provided for a certain type of database

operation, we mark them as “Read” or “Write”; for those interfaces provided for general

SQL execution, we search for certain keywords (e.g., insert, update, select, and delete), in

the SQL strings, and further mark them as “Read” or “Write”.

• Energy Consumption The energy consumption can be calculated using the real-time current

of the Android device’s battery. We use the Monsoon Power Monitor [30] to monitor the

current and voltage of the device’s battery, as shown in Fig. 1. As the output voltage of a

smartphone’s battery remains stable, only the current and time are required to calculate the

energy consumed. Equation 1 is used to calculate the overall energy consumption, where Ī

is the average current (mA), and t is the time window (ms). Micro-ampere-hour is a unit

of electric charge, commonly used to measure the capacity of electric batteries.

E =
Ī ∗ t

3600s/hour
(1)

The equation shows that the energy consumption is proportional to the execution time, as

well as to the current required by the device’s hardware (e.g., CPU, memory, network, and

hard disk). For the persistence frameworks, the differences of energy consumption reflect
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Fig. 1: Monsoon Mobile Device Power Monitor’s main channel measurement connection

not only the execution time differences, but also the different CPU workload and hard disk

R/W operations required to process database operations.

• Uncommented Line of Codes (ULOC) ULOC reflects the required effort, defined as the

amount of code a programmer has to write to use a persistence framework. For its simplicity,

ULOC was used to express programming effort in earlier studies (e.g., [43]). As all the test

suites are implemented only in Java and SQL, the ULOC metric is reflective of the relative

programming effort incurred by using a framework.

Next, we introduce the input parameters for different benchmarks. For the DaCapo benchmark,

we want to explore the performance boundary of different persistence frameworks under a heavy

workload. Therefore, we vary the amount of total transactions to a large scale, and record the

overall time taken and energy consumed.

For the micro benchmark, we study the “initialize”, “insert”, “select”, “update”, and “delete”

invocations in turn. We change the number of transactions for the last four invocations, so for the

“select”, “update” and “delete” invocations, the amount of data records also changes. Therefore,

the input parameters for the micro benchmark is a set of two parameters:

{NUMBER OF TRANSACTIONS, AMOUNT OF DATA RECORDS}.

D. Experimental Hardware and Tools

To measure the energy consumed by a device, its battery must be removed to connect to the

power meter’s hardware. Unfortunately, a common trend in the design of Android smartphones

makes removable batteries a rare exception. The most recently made device we have available

for our experiments is an LG LS740 smartphone, with 1GB of RAM, 8GB of ROM and
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1.2GHz quad-core Qualcomm Snapdragon 400 processor [44], running Android 4.4.2 KitKat

operating system. Although the device was released in 2014 and runs at a lower CPU frequency

than the devices in common use today, the Android hardware design, at least with respect to

the performance parameters measured, has not experienced a major transformation, thus not

compromising the relevance of our findings.

We execute all experiments as the only load on the device’s OS. To minimize the interference

from other major sources of energy consumption, we set the screen brightness to the minimal level

and turn off the WiFi/GPS/Data modules. As the CPU frequency takes time to normalize once the

device exits the sleep mode, we run each benchmark 5 times within the same environment, with

the first two runs to warm up the system and wait until the background energy consumption rate

stabilizes. The reported data is calculated as the average of the last 3 runs, with the differences

of the three runs of the same benchmark being not larger than 5%.

To understand the Dalvik VM method invocations, we use Traceview, an Android profiler that

makes it possible to explore the impact of programming abstractions on the overall performance.

Unfortunately, only the Android ORM benchmark is suitable for this exploration, due to the

Traceview scalability limitations.
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(b)Execution Time of Insert

(f)Execution Time of Select

(h)Execution Time of Delete

(a)Energy Consumption of Insert

(e)Energy Consumption of Select

(g)Energy Consumption of Delete

(d)Execution Time of Update(c)Energy Consumption of Update

Fig. 2: Energy/Execution time for Android ORM Benchmark

with Alternative Persistence Frameworks
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(a)R/W operations of Insert (b)R/W operations of Select

(c)R/W operations of Update (d)R/W operations of Delete

Fig. 3: Read/Write Operations for Android ORM Benchmarks

with Alternative Persistence Frameworks

V. STUDY RESULTS

In this section, we report and analyze our experimental results.

Compared Item SQLite DBFlow greenDAO ORMLite Realm Paper Sugar ActiveAndroid

ULOC 306 181 241 326 313 190 226 253

Initialization Ranking 6 1 5 7 3 4 2 8

Insert Ranking 2 8 1 4 3 5 6 7

Update Ranking 1 2 5 3 8 7 6 4

Select Ranking 1 2 3 4 5 6 8 7

Delete Ranking 4 2 1 3 7 6 8 5

Summed up Ranking 14 15 15 21 26 28 30 31

TABLE II: Comparison of Persistence Frameworks in the Android ORM experiment
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A. Experiments with the Android ORM benchmark

In this group of experiments, we study how the types of operation (insert, update, select,

and delete) and the variations on the number of transactions impact energy consumption and

execution time with different frameworks using the micro benchmark2. The experimental results

for each type of persistence operation are presented in Fig.2 and Fig.3. The first row of Fig.2(a)-

(b) shows the energy consumption and execution time of the “insert” database invocation,

and Fig.2(c)(d), (e)(f), and (g)(h) show that of the “update”, “select”, and “delete” database

invocations, respectively. Fig.3 (a)-(d) show the database read and write operations of these four

invocations, respectively.

The results show that the persistence frameworks differ in terms of their respective energy

consumption, execution time, read, and write measurements. Next, we compare the results by

operation:

Insert We observe that DBFlow takes the longest time to perform the insert operation, while

ActiveAndroid takes the second longest, with the remaining frameworks showing comparable

performance levels. DBFlow performs the highest number of database operations, a measurement

that explains its long execution time. Different from other frameworks, DBFlow requires that a

database read operation be performed before a database write operation to ensure that the-record-

to-insert has not been already inserted into the database. Besides, the runtime trace reveals that

interactions with the cache triggered by inserts in ActiveAndroid are expensive, costing 62% of

the overall execution time. By contrast, greenDAO exhibits the shortest execution time, due to

its simple but efficient batch insert encapsulation, as shown in Table I.

Update We observe that the cost of the Java Realm update is several orders of magnitude

larger than that of other frameworks, especially as the number of transactions grows. Several

reasons can explain the high performance costs of the update operation in Java Realm. As one

can see in Table I, Java Realm lacks support for batch updates. Besides, the update procedure

invokes the underlying library method, TableView.size(), which operates on a memory-

hosted list of entities and costs more than 98% of the overall execution time. The execution time

of Sugar ORM is also high, due to it having the highest number of read and write operations.

Sugar ORM needs to search for the target object before updating it. This search procedure is

2We use the terms the micro benchmark and the Android ORM benchmark interchangeably in the rest of the presentation.
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designed as the recursive SugarRecord.find() method, which costs 96% of the overall

execution time.

Select and Delete For the select and delete operations, we observe that Sugar ORM 1) exhibits

the worst performance in terms of execution time and energy consumption; 2) performs the

highest number of database operations, as it executes an extra query for each atomic operation.

The inefficiency of the select and delete operations in Sugar ORM stems from the presence of

these extra underlying operations. However, as discussed above, the bulk of the execution time is

spent in the recursive find method. OrmLite, greenDAO, DBFlow, Paper, and Android SQLite

show comparable performance levels when executing these two operations.

Table II sums up the rankings of each persistence framework w.r.t. different database operation

invocations. We also measure the Uncommented Lines of Code (ULOC) for implementing all

the basic database operation invocations for each persistence framework and include this metric

in the table. From Table II and our analysis above, we can draw the following conclusions:

1 By adding up the rankings of different operations, we can rank these frameworks in terms of

their overall performance: Android SQLite > greenDAO = DBFlow > OrmLite > Java Realm

> Paper > Sugar ORM > ActiveAndroid , where “>” means “having better performance

than”, and “=” means “having similar performance with”.

2 Considering the programming effort of implementing all database operations using different

frameworks, DBFlow and Paper require less programming effort than the other frameworks.

3 When considering the balance of programming effort and performance, DBFlow can be

generally recommended for developing database-oriented mobile application with a standard

database operation/schema complexity.

4 Sugar ORM would not be an optimal choice when the dominating operations in a mobile app

are select or delete, DBFlow would not be optimal when the dominating operation is insert,

while Java Realm would not be optimal when the dominating operation is update.

B. Experiments with the DaCapo benchmark

In this group of experiments, we use the DaCapo benchmark to study how the energy con-

sumption and execution time of each framework changes in relation to the number of executed

bank transactions. The benchmark comes with a total of 41,971 records, so in our experiments

we differ the number of bank transactions. In our measurements, we vary the number of bank

transactions over the following values: 40, 120, 200, 280, 360, 440, 520, 600, 800, 1000, 1500.
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(a) Energy Consumption/Execution Time of
DaCapo Initialization

(b) R/W Operations of DaCapo Initialization

(c) Energy Consumption of DaCapo Transactions (d) Execution Time of DaCapo Transactions

(e) Write Operations of DaCapo Transactions (f) Read Operations of DaCapo Transactions

Fig. 4: Energy/Execution time/Read and Write for DaCapo Benchmark with Alternative

Persistence Frameworks

The total number of transactions is the sum of basic bank transactions, as listed in Table III.

Each transaction comprises a complex set of database operations. The key transactions in each
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Transaction Type Operation Amount

New order rollback 8

Order status by ID 26

Order status by name 42

Stock level 59

Delivery schedule 62

Payment by ID 245

Payment by name 391

New order 667

TABLE III: Number of operations for each transaction type with 1500 overall transactions

run are “New Order”, “Payment by Name”, and “Payment by ID”, which mainly execute the

“query” and “update” operations. In our experiments, “New Order” itself takes 42.5% of the

entire number of transactions.

In Fig.4, (a) and (b) show the energy/execution time and read/write operations of the DaCapo

Initialization, respectively. Fig.4 (c) shows the energy consumption for each transaction number,

and Fig.4 (d) shows the execution time for each transaction number. Fig.4 (e) and (f) show

the read/write operation number, respectively. As the write operation number of ActiveDroid,

greenDao, OrmLite, Sugar ORM and SQLite are very close (e.g, when the transaction amount

is 1500, the number of write operations are 18209, 18200, 18205, 18211, and 18212 respec-

tively), we only present the average operation number of these five frameworks in Fig.4 (e).

Similarly, we use the line in pink to present Sugar ORM/greenDao, and the line in green for

SQLite/ActiveDroid in Fig.4 (f). Table III shows the number of operations performed by each

transaction.

The dominant database operation in the initialization phase is insert, and (a) shows the perfor-

mance levels consistent with those seen in the Android ORM benchmark for the same operation:

DBFlow, Sugar ORM and ActiveAndroid have the longest runtime. greenDAO performs better

than Android SQLite, possibly due to greenDAO supporting batch insert (see Table I for details).

From Fig.4, we observe that Java Realm and Sugar ORM have the longest execution time when

executing the transactions whose major database operation is update (e.g., “New order”, “New

order rollback”, “Payment by name”, and “Payment by ID”). This conclusion is consistent with

that derived from the Android ORM update experiments shown in Section V-A. Android SQLite

takes rather long to execute, as it involves database aggregation (e.g., sum, and the table queried
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had 30,060 records) and arithmetic operations (e.g. field− 1) in the select clause. Meanwhile,

as ActiveAndroid only uses the raw SQL manipulation interface for complex update operations

(Table I), it exhibits the best performance, albeit at the cost of additional programming effort.

From Fig.4 (c-f) and Table IV we conclude that:

1 ActiveAndroid offers the overall best performance for all DaCapo transactions. It shows the

best performance for the most common transactions, at the cost of additional programming

effort. Besides, its execution invokes the smallest number of database operations, due to its

caching mechanism.

2 Sugar ORM and Java Realm have the longest execution time, in line with the Android ORM

benchmark’s results discussed in Section V-A.

3 greenDAO’s performance is in the middle, while requiring the lowest programming effort,

taking 24.5% fewer uncommented lines of code to implement than the other frameworks.

4 DBFlow takes more time and energy to execute that does ActiveAndroid; it also requires

a higher programming effort than greenDAO does. Nevertheless, it strikes a good balance

between the required programming effort and the resulting execution efficiency.

C. Relationship of Energy Consumption, Execution Time and DB Operations

(a)Relationship between Execution time 
and Read+Write Amount

(b)Relationship between Execution time 
and Energy Consumption

Fig. 5: Energy/Execution Time/RW Amount Relationships
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We also discuss the relationship between energy consumption, execution time, and database

operations. We combine all the previous collected read/write, execution time and energy con-

sumption data from all the benchmarks. As shown in Fig.5 (a), the number of total database

operations (Read and Write) has a dominating impact on both the execution time and energy

consumption results: 1) as the number of data operations increases so usually do the execution

time and energy consumption; 2) the execution time and energy consumption are also impacted

by other factors (e.g., the complexity of data operations, the framework’s implementation design

choices, etc.).

Meanwhile, as shown in Fig 5 (b), there is a significant positive relationship between the time

consumption and the energy consumption, with r(142) = 0.99, p<0.001. Hence, the longer a

database task executes, the more energy it ends up consuming.

DaCapo ULOC

greenDAO 2200

DBFlow 2407

Sugar ORM 2911

ActiveAndroid 2923

Android SQLite 3068

Java Realm 3071

OrmLite 3310

TABLE IV: LOC for DaCapo Benchmark

VI. NUMERICAL MODEL

The experiments above show that for the same application scenario different frameworks

exhibit different execution time, energy consumption, and programming effort. However, to derive

practical benefits from these insights, mobile app developers need a way to quantify these trade-

offs for any combination of an application scenario and a persistence framework. To that end, we

propose a numerical model PEP (Performance, Energy consumption, and Programming Effort)

for mobile app developers to systematically evaluate the suitability of persistence frameworks.

A. Design of the PEP Model

Our numerical model follows a commonly used technique for evaluating software products

called a utility index [45]. Products with equivalent functionality possess multidimensional
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feature-sets, and a utility index is a score that quantifies the overall performance of each product,

allowing the products to be compared with each other.

As our experiments show, the utility of persistence frameworks is closely related to application

features (e.g., data schema complexity, operations involved, data records manipulated, database

operations executed). Therefore, it is only meaningful to compare the persistence frameworks

within the context of a certain application scenario. Here, we use p to denote an application with

a set of features.

Let O = {o = 1, 2, 3...} be a set of frameworks. Let Eo(p),∀o ∈ O denote the energy

consumption of different implementations of p using various frameworks o, while To(p),∀o ∈ O

denotes the execution time. As the energy consumption and the execution time of database

operations correlate linearly in our experimental results, we use the Euclidean distance of a

two dimensional vector to calculate the overall performance, which can be denoted as Pop =√
To(p)2 + Eo(p)2,∀o ∈ O.

The programming effort is represented by the ULOC, and here we use Lo(p),∀o ∈ O to denote

the programming effort of different implementations of the project p using different persistence

frameworks.

We consider both the framework’s performance and programming effort to compute the utility

index Io(p):

Io(p) =
min(Po(p),∀o ∈ O)

Po(p)
/

Lo(p)

min(Lo(p),∀o ∈ O)
,∀o ∈ O (2)

The equation’s first part, min(Po(p),∀o∈O)
Po(p)

, compares the performance of a mobile app imple-

mented by means of the persistence framework o, and the implementation that has the best per-

formance. The equation’s second part, Lo(p)
min(Lo(p),∀o∈O) , compares the programming effort between

an implementation o(p) and the implementation that requires the minimal programming effort.

When the utility index of a framework o-based implementation is close to 1, the implementation

is likely to offer acceptable performance, with low programming effort.

Consider the following example that demonstrates how to calculate the utility index. If for

an app p, Android SQLite might provide the best performance, while the greenDAO-based

implementation consumes twice the energy and takes twice the execution time. Therefore, the

performance index of PgreenDAO(p) is 0.5. On the other hand, the greenDAO-based implementa-

tion might require the lowest programming effort, as measured by the ULOC metric. Therefore,
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the implementation complexity index of LgreenDAOp is 1. Thus, the overall utility index is 0.5/1

= 0.5.

Application developers apply dissimilar standards to judge the trade-offs between performance

and programming effort. Some developers focus solely on performance, while others may prefer

the shortest time-to-market. We introduce τ to express these preferences.

Io(p) =
min(Po(p),∀o ∈ O)

Po(p)
/(

Lo(p)

min(Lo(p),∀o ∈ O)
)τ (3)

,where τ > 0. When τ > 1, the larger τ is, the more weight is assigned to the programming

effort target. Otherwise, when τ < 1, the lower τ is, the more weight is assigned to the

performance target.

B. Evaluating the Benchmarks

To provide an insight into how the persistence frameworks evaluated in this article fit different

application scenarios, we apply the PEP model to the Android ORM and DaCapo benchmarks.

We consider typical low and high transaction volumes, respectively, for each benchmark. Specif-

ically, for the Android ORM benchmark, we evaluate two sets of input, 1,025 transactions and

20,025 transactions. For the DaCapo benchmark, we evaluate two sets of input, 40 transactions

and 1,500 transactions. For each input set, we assign τ to 0.5, 1, and 1.5, in turn, to show

whether the developers are willing to invest extra effort to improve performance. Specifically,

when τ = 0.5, the developer’s main concern is performance; when τ = 1, the balance of

performance and programming effort is desired; when τ = 1.5, the developer wishes to minimize

programming effort. Table V shows the calculated index values of the persistence frameworks

for all cases.

From the results presented in Table V, we can draw several conclusions: 1) For the DaCapo

benchmark or similar mobile apps with heavy data processing functionality and complicated

data structures, DBFlow represents the best performance/programming effort trade-off. When

the number of data operations is very high, ActiveAndroid should also be considered, as it

provides the best execution performance, especially when the programmer is not as concerned

about minimizing the programming effort; 2) For the Android ORM benchmark or similar mobile

apps with less complicated data structures, when the number of data operations is small, the

top choice is Paper, as this framework reduces the programming effort while providing high
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execution efficiency. However, when the number of data operations surpasses a certain threshold

(over 10K simple data operations), the execution performance of Paper experiences a sudden

drop due to scalability issues. In such cases, greenDAO and Android SQLite would be the

recommended options.

In the following discussion, we use hypothetical use cases to demonstrate how the generated

guidelines can help mobile app developers pick the best framework for the application scenario

in hand. Consider four cases: 1) a developer wants to persist the user’s application-specific color

scheme preferences; 2) a team of developers wants to develop a production-level contact book

application; 3) an off-line map navigation application needs to store hundreds of MBs of data,

comprising map fragments, points of interests, and navigation routines; 4) an MP3 player app

needs to retrieve the artist’s information based on some features of the MP3 being played. For

use case 1, the main focus during the development procedure is to lower the programming effort,

while the data structures and the number of data operations are simple and small. Therefore, for

this use case, we would recommend using Paper. For use case 2, the main focus is to improve

the responsiveness and efficiency, as the potential data volume can get quite large. Given that

minimizing the programming effort is deprioritized, we would recommend using greenDAO or

Android SQLite. For use case 3, complex data structures are required to be able to handle the

potentially large data volumes, while maintaining quick responsiveness and high efficiency is

expected of navigation apps. Therefore, we would recommend using ActiveAndroid. For use

case 4, the main application’s feature is playing MP3s, and the ability to retrieve the artist’s

data instantaneously is non-essential. To save the programming effort of this somewhat auxiliary

feature, we would recommend using DBFlow.

VII. THREATS TO VALIDITY

Next, we discuss the threats to the validity of our experimental results. Although in designing

our experimental evaluation, we tried to perform as an objective assessment as possible, our

design choices could have certainly affected the validity and applicability of our conclusions.

The key external threat to validity is our choice of the hardware devices, Android version, and

profiling equipment. Specifically, we conduct our experiments with an LG mobile phone, with

1.2GHz quad-core Qualcomm Snapdragon 400 processor, running Android 4.4.2 KitKat, profiled

with the Monsoon Power Monitor. Even though these experimental parameters are representative
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Benchmark Parameters & Index ActiveAndroid greenDAO OrmLite Sugar SQLite Realm DBFlow Paper

DaCapo trans=40,τ=0.5 0.328 0.184 0.135 0.166 0.109 0.098 0.956 N.A.

DaCapo trans=40,τ=1 0.284 0.184 0.135 0.094 0.140 0.083 0.914 N.A.

DaCapo trans=40,τ=1.5 0.247 0.184 0110 0.082 0.118 0.070 0.878 N.A.

DaCapo trans=1500,τ=0.5 0.867 0.726 0.726 0.412 0.671 0.368 0.924 N.A.

DaCapo trans=1500,τ=1 0.752 0.726 0.592 0.358 0.568 0.312 0.884 N.A.

DaCapo trans=1500,τ=1.5 0.652 0.726 0.483 0.133 0.481 0.264 0.845 N.A

Android ORM trans=1025,τ=0.5 0.050 0.166 0.124 0.044 0.180 0.055 0.255 0.976

Android ORM trans=1025,τ=1 0.051 0.144 0.092 0.039 0.139 0.042 0.255 0.952

Android ORM trans=1025,τ=1.5 0.043 0.125 0.069 0.035 0.107 0.031 0.255 0.929

Android ORM trans=20025,τ=0.5 0.159 0.740 0.633 0.289 0.769 0.007 0.591 0.635

Android ORM trans=20025,τ=1 0.165 0.641 0.472 0.080 0.591 0.005 0.591 0.621

Android ORM trans=20025,τ=1.5 0.114 0.555 0.352 0.071 0.454 0.004 0.591 0.606

TABLE V: Applying Numerical Model on DaCapo and Android ORM Benchmark

of the Android computing ecosystem, changing any of these parameters could have affected some

outcomes of our experiments.

The key internal threat to validity are our design choices for structuring the database and

the persistence application functionality. Specifically, while our Android ORM benchmark set

explores the object features of Android persistence frameworks, the original DaCapo [23] H2

benchmark manipulates relational database structures directly, without stress-testing the object-

oriented persistence frameworks around it. To retarget DaCapo to focus on persistence frame-

works rather than the JVM alone, we adapted the benchmark to make use of transparent

persistence as a means of accessing its database-related functionality. Nevertheless, the relatively

large scale of data volume, with the select and update operations bank transactions dominating

the execution, this benchmark is representative of a large class of database application systems,

but not all of them. Besides, we have not tested our PEP model on real-world applications.

Hence, it is not confirmed yet how accurate the model would be for such applications.

VIII. CONCLUSIONS

In this paper, we present a systematic study of popular Android ORM/OO persistence frame-

works. We first compare and contrast the frameworks to present an overview of their features

and capabilities. Then we present our experimental design of two sets of benchmarks, used to

explore the execution time, energy consumption, and programming effort of these frameworks

in different application scenarios. We analyze our experimental results in the context of the
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analyzed frameworks’ features and capabilities. Finally, we propose a numerical model to help

guide mobile developers in their decision making process when choosing a persistence framework

for a given application scenario. To the best of our knowledge, this research is the first step to

better understand the trade-offs between the execution time, energy efficiency, and programming

effort of Android persistence frameworks. As a future work direction, we plan to apply the PEP

model presented above to real-world applications, in order to assess its accuracy and applicability.
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