
Submitted for consideration to GPCE 2015

Native-2-Native
Automated Cross-Platform Code Synthesis from Web-Based Programming Resources

Antuan Byalik, Sanchit Chadha, and Eli Tilevich
Department of Computer Science

Virginia Tech, Blacksburg, VA 24061, USA
{antuanb,schadha,tilevich}@cs.vt.edu

Abstract
For maximal market penetration, popular mobile applications are
typically supported on all major platforms, including Android and
iOS. Despite the vast differences in the look-and-feel of major mo-
bile platforms, applications running on these platforms in essence
provide the same core functionality. As an application is maintained
and evolved, the resulting changes must be replicated on all the
supported platforms, a tedious and error-prone programming pro-
cess. Existing automated source-to-source translation tools prove
inadequate due to the structural and idiomatic differences in how
functionalities are expressed across major platforms.

In this paper, we present a new approach—Native-2-Native—
that automatically synthesizes code for a mobile application to
make use of native resources on one platform, based on the equiva-
lent program transformations performed on another platform. First,
the programmer modifies a mobile application’s Android version
to make use of some native resource, with a plugin capturing
code changes. Based on the changes, the system then parameter-
izes a web search query over popular programming resources (e.g.,
Google Code, StackOverflow, etc.), to discover equivalent iOS code
blocks with the closest similarity to the programmer-written An-
droid code. The discovered iOS code block is then presented to the
programmer as an automatically synthesized Swift source file to
further fine-tune and subsequently integrate in the mobile applica-
tion’s iOS version. Our evaluation, enhancing mobile applications
to make use of common native resources, shows that the presented
approach can correctly synthesize more than 86% of Swift code for
the subject applications’ iOS versions.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.2.7 [Software Engineering]:
Portability

General Terms Algorithms, Experimentation

Keywords Recommendation Systems, Code Synthesis, Mobile
Computing, Android, iOS, Java, Swift

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
The mobile application market remains fragmented, with several
major platforms, including Android, iOS, and Windows Phone,
competing to dominate market share. Nevertheless, shrewd mobile
software vendors commonly support their popular applications on
all major platforms to maximize their customer base. On each sup-
ported platform, an application replica essentially delivers an iden-
tical set of functionality, albeit within the conventions and formats
of the platform at hand. For example, a mobile application with a
map component would use Google Maps on Android and Apple
Maps on iOS Devices. Even though from the end-user’s perspec-
tive, the provided map feature provides identical functionality on
both platforms, from the software engineering perspective, imple-
menting the same feature on different platforms requires the use of
vastly dissimilar languages, APIs, and software architectures. For
instance, Android applications are written in Java using the An-
droid standard library, in which UI events are expressed by means
of callbacks; meanwhile, iOS applications are written in Swift us-
ing the iOS standard library, in which UI events are expressed by
means of delegates.

As a mobile application evolves with new features and function-
alities, the mobile developers must replicate the changes on all sup-
ported platforms. Having overcome the challenges of ascertaining
the correct program logic and implementation details on one plat-
form, the developer has no choice but to repeat the same tedious
and error-prone process on all the remaining supported platforms.
In other words, the developer is unable to leverage the expertise
gained by undertaking a programming task on one platform to fa-
cilitate the performance of that same task on other platforms. What
if it were possible to automatically glean the knowledge acquired
by adding a feature to an application on a source platform to semi-
automatically synthesize the code required to add the same feature
on target platforms?

In this paper, we present native-2-native—a novel approach
that applies a code synthesis algorithm to discover publicly avail-
able Swift code blocks whose semantics are equivalent to a Java
code block written for the Android platform. The approach starts
with the programmer adding a feature to an application’s Android
version. The approach then logs the manually written Java/Android
code and uses it to search the web for the available Swift/iOS code
that implements the same functionality. A ranking algorithm ap-
plies a high-dimensional feature vector to select the code block
whose functionality is the closest to the original Java/Android code.
The selected code then parameterizes a code generator that synthe-
sizes a semantically correct Swift source file that can be included
into the the application’s iOS version, requiring minimal manual
fine-tuning in most cases. Our approach focuses on mobile appli-
cations’ native resources, such as sensors and services. Because the
majority of mobile applications nowadays need to make use of such

Native-2-Native 1 2015/6/22

native resources, our approach aims at facilitating one of the most
common programming tasks undertaken by the modern mobile ap-
plication developer. It is the ability to automatically discover a code
block that natively implements a feature in Swift/iOS for an equiv-
alent code block implemented natively in Java/Android that gives
our approach the name of native-2-native.

Our reference implementation of native-2-native makes use
of the Eclipse IDE to provide a plugin for the Android development
environment. The plugin captures and analyzes the token frequency
in the Java code block that accesses a resource by means of some
native API. Based on the captured code, the plugin forms a meta-
data query to search popular Web-based programming resources
for Swift code blocks accessing equivalent native APIs on the iOS
platform. The highest ranked discovered Swift code blocks are
provided to the developer who can further refine them with extra
functionality, such as fault tolerance capabilities or strengthened
security. Our evaluation shows that the automatically discovered
Swift code for accessing subject native APIs ends up fit as is for the
task at hand in more than 86% of test cases. These results indicate
that the presented approach can become a pragmatic and powerful
tool in the toolset of developers charged with the challenges of
supporting mobile applications on multiple platforms.

The rest of this paper is organized as follows. Section 2 presents
a running example. Section 3 describes the approach Section 4
details our evaluation and discusses the strengths and limitations
of our approach. Section 5 compares the presented approach with
the related state of the art. Section 6 presents future work directions
and conclusions.

2. Running Example
Next we provide a concrete example that motivates the need for
native-2-native. Consider a mobile application that determines
if any of the user’s friends are in the vicinity. Hence, the appli-
cation is in essence a person proximity locator that continuously
retrieves and processes GPS location information from the request-
ing device. Let us assume that the application is supported on both
Android and iOS.

2.1 Obtaining GPS Location Information
The left part of Figure 1 shows the code block that retrieves GPS
location in Android; the right part shows equivalent functionality
in iOS. Even though both code blocks accomplish the same task,
they are structured quite dissimilarly. In particular, the Android
version creates a locationManager object from the passed context
object, so that the initialized object can be queried for the GPS
information. The iOS version creates a CLLocationManager object,
whose initialized state contains the latitude and longitude variables.
The code blocks on both platforms are relatively short, following
similar coding idioms (i.e., creating an object to query its state)
to retrieve the GPS information. Nevertheless, having written the
code block in Android would not equip the programmer with the
required knowledge to replicate this basic functionality in Swift.

Despite the popularity of source-to-source translators, they
would be inapplicable if one wanted to automatically derive the iOS
version of the code. The reason for the ineffectiveness of source-
to-source translation in this instance is that native API access is
always domain-specific, a complication that cannot be tamed with
syntax-directed translation. By contrast, native-2-native ex-
tracts domain-specific semantics from the Android code block to
be able to search for equivalent Swift code. By automating the pro-
cesses of extracting a code block’s semantics and of discovering
existing Swift examples with the closest equivalent functionality,
the presented approach can alleviate some of the most tedious and
error-prone programming tasks in modern mobile development.

2.2 Enabling Insights
Heretofore, the discussion in this paper has focused on the what
component of our approach—our end goal of automatically syn-
thesizing native code for a target platform from equivalent code on
a source platform, thereby enabling a cross-platform translation of
natively implemented features. Before explicating the how compo-
nent, which will provide our approach’s algorithmic and implemen-
tation details, next we will focus on the why component, which will
identify our approach’s enabling insights.

The presented approach is enabled by a confluence of the fol-
lowing insights, derived from observing the realities of modern mo-
bile software development: the peculiarities of the mobile software
market, the working preferences of the modern mobile program-
mer, and the nature of platform-specific mobile APIs. We next de-
scribe each of these insights in turn.

Major mobile platforms have been competing with each other
for market domination. Mobile hardware vendors have embraced
the competitive mindset, which results in a so-called “arms race”
when it comes to the devices’ features and capabilities. As soon
as one platform introduces a new hardware enhancement, the com-
petitors feel compelled to introduce the equivalent or improved en-
hancement on their platform, lest they were to lose a major market-
ing advantage. Consider the GPS sensor, which provides the foun-
dation for our running example. If this sensor and its corresponding
capabilities were to be introduced to the Android platform first, the
iOS platform would have no choice not only to mimic this feature,
but also to add extra enhancements in the closest release feasible.
Subsequently, Android would be compelled to match the latest iOS
progress in this area without delay. This continuous competitive cy-
cle, although driven exclusively by market forces, unveils the first
enabling insight of our approach: major mobile platforms necessar-
ily share an excessive amount of core native features.

Although their implementation languages and the correspond-
ing native API’s may differ vastly, their underlying feature sets
from the end user’s perspective enjoy a remarkable degree of sim-
ilarity, which in turn leads to a high level of correlation in the vo-
cabulary used to express the native APIs for these corresponding
features. Assuming that API designers aim at creating intuitive-
sounding and easy-to-understand names, reading in GPS informa-
tion can be expressed in a finite, reasonably sized number of ways.
It is also highly likely that the ways the GPS APIs are expressed on
different mobile platforms will overlap in non-insignificant ways.
Going back to the code blocks for this feature in Figure 1, one can
see that the tokens location and location manager are both heavily
used in both Java/Android and Swift/iOS. It is these shared tokens
that make it possible to design a cross-platform translation mecha-
nism for native APIs for shared features. Furthermore, the number
of analogous features and their corresponding API shared tokens
will continue increasing unless some platform definitively wins the
competition for market share.

Based on the growing number of online programming re-
sources, the modern programmer increasingly relies on the Web to
answer questions that come up during their day-to-day operations
ranging from simple bug fixes to complex refactoring. For exam-
ple, StackOverflow [17] receives 2.65 new questions per minute
and 4.41 new answers per minute on average, reaching close to
6,000 questions a day in peak sessions [18]. Indeed, StackOver-
flow and similar online question/answer discussion forums have
become the modern programmer’s primary medium of information
exchange. One can attribute this strong shift toward online pro-
gramming documentation to sheer demographics—StackOverflow
reports that the average age of their user is 28.9 year old, based on
surveying over 26K developers across 157 countries [19], which
places them strongly within Generation Y, also known as the first
digital generation, used to rely on the Web for all kinds of infor-

Native-2-Native 2 2015/6/22

public static LocationModel getLocation(Context context) {
locationManager = (LocationManager)context.
getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();
String bestLocation = locationManager
.getBestProvider(criteria, false);

Location location = locationManager.
getLastKnownLocation(bestLocation);

LocationListener loc_listener = new LocationListener()
{

public void onLocationChanged(Location l) {}
public void onProviderEnabled(String p) {}
public void onProviderDisabled(String p) {}
public void onStatusChanged(String p, int status,
Bundle extras) {}

};
locationManager.requestLocationUpdates
(bestLocation,0,0,loc_listener);

location = locationManager.
getLastKnownLocation(bestLocation);

LocationModel loc = new LocationModel
(location.getLatitude(),location.getLongitude());

return loc;
}

func startLocationUpdate() {
locManager.requestWhenInUseAuthorization()
locManager.startUpdatingLocation()

}

func locationManager(manager: CLLocationManager!,
didUpdateLocations locations: [AnyObject]!) {

var location = locations.last as! CLLocation
var lat:Double = location.coordinate.latitude as
Double

var long:Double = location.coordinate.longitude
as Double

var result = NSString(format: "%.5f, %.5f",
location.coordinate.latitude,
location.coordinate.longitude)

self.location = result as String;
}

func locationManager(manager: CLLocationManager!,
didFailWithError error: NSError!) {

DLog("Location Error: " + error.description);
}

Figure 1. Android (left) and iOS (right) get Location basic functionality

mation. At any rate, it is indisputable that the Web has become
an invaluable information sharing and acquisition platform for mo-
bile developers. An additional draw of programming resources web
sites is serving as reputation builders. Users of these websites com-
monly have the ability to rank the quality of provided information,
with top providers earning high degrees of prestige and notoriety.
These digital rankings can also be leveraged to automatically assess
the quality of the available programming information.

Finally, we argue that figuring out how to express a native API
on some platform, having just expressed an equivalent API on an-
other platform, constitutes accidental complexity, and as such is
a promising candidate for automated treatment via software engi-
neering innovation [4]. Consider the process by which some native
API becomes used in a typical mobile program. A developer de-
cides that some feature needs to be added to a program, and that
feature will make use of some native resource. Designing the fea-
ture is essentially complex, while discovering which API one must
invoke is accidentally complex. Furthermore, this discovery pro-
cess remains accidentally complex, irrespective of the implemen-
tation platform. Removing accidental complexity is a key driving
force behind reducing the programmer workload. There is another
peculiarity that arises when translating native APIs between Java
and Swift. While Java remains the most commonly used program-
ming language [19, 22], Swift according to StackOverflow is now
regarded as “most loved” language. Hence, one can expect an abun-
dance of web-based programming resources for both languages.

By leveraging these three main insights, we were able to cre-
ate a simple but powerful approach to automatically translating na-
tive APIs between Java/Android and Swift/iOS. In the next section,
we provide the algorithmic and implementation details of our ap-
proach. In Section 4, we report on the results of applying our ap-
proach to real-world examples of using native APIs.

3. The Native-2-Native Approach
Figure 2 shows a high-level overview of our approach. A mobile
application developer first implements a new feature using some
native API of the Android platform in Java. Once the developer
deems the feature’s implementation completed, the feature’s code

S

Web Programming Resources

Plugin

Mobile Developer

Java/

Android

Code

Swift/

iOS

Code

Query

Input

Output

Figure 2. Native-2-Native: High-level Approach Overview

block is passed as input into the Native-2-Native IDE plugin.
The plugin performs the following tasks in sequence: generalize the
Java code block to form a search query, execute the query against
popular web-based programming resources, summarize and rank
the results, and finally present a synthesized Swift code block for
the iOS platform back to the developer. The presented code block
is typically partially complete, and implements the same feature as
the input Java code, but by means of the equivalent native Swift/iOS
API.

In the following sections, we detail the constituent parts of the
native-2-native approach. Section 3.2 describes the process of ex-
tracting core functionality from the input Android/Java code block.
This process includes multiple techniques in tokenization, filtra-

Native-2-Native 3 2015/6/22

Source Java File

Raw

Android

Java Code

Selected

Tokenize

Generate

Query Meta-

Data Object

Generate

Permuted Set of

Queries

Search

Web

Resources

Tokenize

Generate

Search

Meta-Data

ObjectsVector Space

Model

Linear Scoring

Model

Synthesize Swift

Code

Closest

Matching

Meta-Data

Object

Target Swift File

Figure 3. Full approach program flow

tion, and frequency analysis to generate an important set of query
keywords. Next, section 3.3 explains how the approach ascertains
a similarity index between the initial Java code block and all mined
Swift code blocks. The meta-data objects serve as the central rep-
resentation of platform and language-independent semantics for all
mined documents as well as the input Java source code. Finally,
section 3.4 delves into the underlying process by which the ap-
proach is able to produce an equivalent Swift code block. This pro-
cess makes use of two algorithms: (1) a searching algorithm that
discovers the relevant resulting set of documents, and (2) a ranking
algorithm that operates on a set of mined documents to produce a
platform- and language-independent semantic ranking, which syn-
thesizes the output Swift code block.

3.1 Terminology
For the rest of the presentation, the term source document will refer
to the input Android Java code block, while target document will
refer to the output Swift code block. Query keywords will refer to
the extracted core functionality from the input Android code block,
used to search for the target document’s constituent components.
Finally, token will refer to any single document element at the level
of individual strings.

3.2 Extracting Core Functionality from Java/Android Code
This section describes the process of translating input Android
Java code blocks into web queries. This process extracts the core
functionality of the code block by means of tokenization, filtering,
and frequency analysis, described in turn next.

3.2.1 Tokenizing and Filtering
The flowchart in Figure 3 details the process. The Java source input
is tokenized, with the superfluous tokens filtered out. The tokeniz-
ing makes use of the canonical bag-of-words model [8]. This model
also separates camel case variables, title case variables, method

declarations/invocations, and also removes non-alphanumeric char-
acters attached to strings.

The resulting tokens are then first filtered by applying stemming
in the form of suffix stripping to eliminate any verb-tense discrep-
ancies that could arise while searching web resources for the target
document’s constituent components. Then tokens that happen to be
substrings of other tokens are filtered as well. For example, tokens
‘location’ and ‘loc’ are assumed to possess related semantic intent.
Tokens that would weaken the precision of the frequency analysis
are filtered out as well (e.g., comment designators, stop words, etc.)

3.2.2 Frequency Analysis to Generate Web Queries
The next step calculates the document frequency for each extracted
token that has not been filtered. The frequency analysis produces
a sorted list of the most used tokens in the input. The k most used
tokens become the query keywords for the search routine in Figure
4. The default value of k is 3 but can be customized at will.

3.3 Meta-Data Objects
Meta-data, data that describes other data, has been used to facili-
tate the search and discovery of related data objects [3, 16]. The
presented approach uses meta-data to describe source and target
documents as a means of streamlining similarity comparison. The
source document’s meta-date object is composed upon the comple-
tion of the tokenizing and filtering steps as described next.

3.3.1 Meta-Data Fields
Meta-data fields serve as the abstraction that captures all perti-
nent information from web-based programming resources and the
source document in an easily search-able and comparable format.
The meta-data objects use their fields to store features mined from
all the searched web resources as well as those extracted from the
source document. A generate routine processes every search re-
sult to populate the fields defined by a given meta-data object. Rep-

Native-2-Native 4 2015/6/22

resenting the search results via meta-data objects makes them easily
amenable to similarity evaluation with various ranking models.

Some features are deliberately supplemented to indicate the
functionality to search for. For example, a preferred StackOverflow
response would be a so-called “accepted answer,” a code snippet
check-marked by its originator as having solved the posed ques-
tion.1 In contrast, the source document lacks this property, as it
simply represents the input Android code block. To prevent supple-
mented features from unduly skewing the final ranking, the source
document’s missing features are defaulted in the meta-data object
as their ideal functionality. Similarly, web search results returned
from random programming resources will also contain missing fea-
tures, as well their own supplemental features, to be steered toward
the searched for functionality. The meta-data objects’ fields are the
union of all features across all mined web resources and the source
document.

3.4 Searching and Ranking
In this section, we first present a searching algorithm that queries
web-based programming resources for relevant data pertaining to
the query keywords. Then, we present a ranking algorithm that in-
corporates two different models for determining similarity between
the source document and all mined potential target documents.

It is worth pointing out that both the searching and ranking al-
gorithms disregard the control flow constructs present in the source
document, operating solely on the extracted keywords described
in the previous section. This design decision renders our approach
largely independent of the specifics of the business logic of the na-
tive code blocks at hand, focusing exclusively on the native API
used. Nevertheless, the disregarded control flow constructs are fully
restored during the final code synthesis phase.

3.4.1 Searching Algorithm
Figure 4 shows the searching algorithm for mining the relevant
data. The algorithm’s input is the generated query keywords dis-
cussed above and the output is a full list of the resulting searches
stored in a custom-made, answer-wrapper object. Before the core
of the searching algorithm is executed, the initKeywords subrou-
tine first initializes the full query keyword set. Although the input is
just the set of query keywords, various permutations and subsets of
the original query keywords must be searched to locate all relevant
results. The initKeywords subroutine in Figure 4 explains how the
full set of keywords involves three components: 1) transcribe the
original keywords as individual queries, 2) identify the first and
second (by frequency-based importance) keywords, in both orders,
as subset queries, and 3) permute the complete set of the original
keywords. Although some flexibility in the number of query key-
words is allowed for user fine-tuning, the hard limit of 5 separate
keywords for the permutation component ensures that the input is
computable in practical space and time boundaries.

Although the algorithm can be configured to search any web-
based programming resources, we next describe it by means of
three representative categories: (1) a live API call to StackOver-
flow with the given query keywords, (2) a Google search on the
current query keywords that specifically limits to StackOverflow
websites only to catch discrepancies in a StackOverflow search in-
ternally as well as an external Google search on the same keywords;
the Google search results are funneled to StackOverflow to directly
data-dump that post.2 (3) a Google search that excludes StackOver-
flow posts to include less popular but potentially also relevant on-

1 The StackOverflow website uses green check-marks to denote accepted
answers.
2 Searching through Google and StackOverflow frequently yields dissimilar
complementary results in differing orders.

/* INPUT: query keywords to search */
/* OUTPUT: full list of resulting searches */
DEF Search(keywords)

resultList← ∅
keywordSet← initKeywords(keywords)
FOREACH keyword ∈ ∀keywordSet DO

queryResultsSOF = execStackOverflow(keyword)
FOREACH result ∈ ∀queryResultsSOF DO

Ans← result, rank
resultList← resultList∪ {Ans}

END FOREACH

queryResultsGoogle = execGoogle(keyword)
FOREACH result ∈ ∀queryResultsGoogle DO

temp← execStackOverflow(result)
Ans← temp, rank
resultList← resultList∪ {Ans}

END FOREACH

queryResultsElse = execElse(keyword)
FOREACH result ∈ ∀queryResultsElse DO

Ans← result, rank
resultList← resultList∪ {Ans}

END FOREACH
END FOREACH
RETURN resultList

END Search

DEF initKeywords(keywords)
fullSet ← keywords
fullSet ← fullSet ∪ {key[0] + key[1]}
fullSet ← fullSet ∪ {key[1] + key[0]}
fullSet ← fullSet ∪ perm(keywords)
RETURN fullSet

END initKeywords

Figure 4. Search Algorithm Pseudo code

line blogs and other web resources to the list of relevant search
results. All three methods’ results are standardized into the answer-
wrapper object and stored for later ranking and analysis. This entire
process is conducted for each of the permuted list of query key-
words to generate the final list of web-based search results.

3.4.2 Ranking Algorithm
The ranking algorithm determines the degree of similarity between
the source document and all potential target documents to present
the most relevant Swift code blocks to the user. Figure 5 details the
algorithm. The input is the list of search results generated by the
searching algorithm, as well as the original source document (also
in the answer-wrapper format), and a k value for the number of re-
sults to be returned. The output is the k-top results of the ranking.
The algorithm’s main components produce the vector space model
and linear model with their respective feature sets. The standardiza-
tion into answer-wrapper objects described above facilitates the re-
trieval of this information for each document in the results list. The
standard format for the answer-wrapper objects is used to generate
the target set of meta-data objects that produce their respective vec-
tor space and linear model scores. Next, the models are combined,
sorted, and the top k of those are returned.

Figure 5 also includes the subroutine for calculating the cosine
of the angle between the current potential target document and
the source document, as required by the central logic of the vec-
tor space model [1]. The cosine determines similarity from a con-
structed n-dimensional sphere, containing all the n-dimensional
feature vectors. Each vector’s dimension is calculated using a term-
frequency inverse-document-frequency (tf-idf) weighting func-
tion, which accounts for a term’s frequency without over fitting by
accounting for common terms across the document corpus, where

Native-2-Native 5 2015/6/22

/* INPUT: source/targets MetaData, k top results */
/* OUTPUT: k closest ranked MetaDatas */
DEF Rank(Source, TargetMDs, k)

ranking, topK ← ∅
FOREACH target ∈ ∀TargetMDs DO

C ← getCos(target, sourcelate)
L← getLin(target)
temp← bag(C,L)
ranking ← ranking∪ (temp, target)

END FOREACH
sort(ranking)
FOR i IN k DO

topK ← topK ∪ ranking(i)
END FOR
RETURN topK

END Search

DEF getSimilarityUsingCos(t, s)
Nt, Ns, cos← ∅
FOREACH d ∈ ∀t DO

Nt ← Nt, d
2

END FOREACH
FOREACH d ∈ ∀s DO

Ns ← Ns, d
2

END FOREACH
Nt ← sqrt(Nt)
Ns ← sqrt(Ns)

cos←
t · s

Nt ·Ns

RETURN cos
END getCos

Figure 5. Rank Algorithm Pseudo code

n is the total number of unique tokens available in the current doc-
ument corpus. Each value in the vector is represented by the modi-
fied indicator function seen in equation 1 that incorporates the tf-idf
weights. Here d ∈ D represents some document in the full k set
of documents, including all potential targets and the source, with
weight w.

vdk (i) =

{
0 if token i 6∈ dk
wi if token i ∈ dk

(1)

The cosine value is calculated using the underlying vector space
model shown in Equation 2 [16]. The norm of each vector is the
square root of the summation of each dimension’s squared value.
Given that the dot product of two vectors is a scalar and this
quantity is divided by the product of two norms, the resulting value
is also a scalar. The variables s and t are used to denote the source
and target documents, respectively.

coss(t) =
s · t

||s||2 ||t||2
(2)

Note that the linear model subroutine is not shown in figure 5,
as it is simply the linear combination of all relevant features in each
meta-data object of the results documents shown in equation 3. The
model’s weights are derived from a combination of tf-idf values
and normalization by average feature quantities available from the
StackOverflow API.

lin(t) =

n∑
i=1

(wi ∗ ti) (3)

3.4.3 Complexity Analysis
In this section, we briefly comment on the computational complex-
ity incurred by the more exhaustive procedures of the native-2-native
approach. The ranking algorithm and following model combination

process is the most computationally intensive component, on which
we hence concentrate our analysis. Recall Equations 1 and 2, pre-
sented in the previous section, that outline the vector space model
approach, as well as Equation 3 that explains the linear model
used. Equation 4 shows the complete model combination, along
with the weight calculation, as a function on all potential target
documents. Note the parameters α and β that are constrained such
that α + β = 1, α ≥ 0, β ≥ 0 and represent the respective
magnitude of the two models to each other.

max
t∈T

{
α(s · tj)√∑n

i=1 s
2
i ·
∑n

i=1 t
2
i,j

+
β
∑k

i=1 wi,jfi,j

max
a∈A

(∑k
i=1 wi,afi,a)

)} (4)

This equation is derived by combining the vector space model
with a normalized linear model and using the weighting function
shown in Equation 5. In Equation 5, note the I(t) indicator func-
tion that is 0 if the current term is not present in the current doc-
ument and 1 otherwise. Also of importance to this equation is T
which represents the total number of target documents mined by
the searching algorithm.

s, ∀tj ∈ T : tf · log

(
|T |+ 1

I(t)

)
(5)

Given that ni is the total number of tokens in some document i,
we bound the maximum number of tokens on the overall approach
as dim = {

∑|T |+1
i=1 {ni}}. This bound being placed in set notation

to represent the elimination of duplicate tokens across not just a
single document but all documents, and accounting for the full set
T of target documents in addition to the single source document.
Lastly, d is the upper bound on the feature vector used for the vec-
tor space model as we take all unique tokens. In essence, we have
|<d1,i, d2,i, ..., dn,i>| ≤ dim, where the vector represents some
document di’s n features; that will be equal across all targets and
the single source document. Hence, the Big O of the approach’s pri-
mary component in terms of documents isO(T +1), which runs in
linear time, O(n). However, accounting only for documents fails
to accurately reflect the true computational complexity, as for cer-
tain operations one must measure their more-numerous token oper-
ations to evaluate their complexity. Thus, the complexity measured
in tokens is O(dim2 + dim ∗ di + dim ∗ f + f), where f is the
number of linear features, a number strictly smaller than dim, and
where di is the current document’s token count, also strictly smaller
than dim as shown above. If di ≤ dim, then di ∗ dim ≤ dim2.
Finally, we can simplify the overall complexity in terms of tokens
as O(dim2 + dim2 + dim2 + f) = O(3dim2) = O(n2).

3.5 Programming Interface and Code Synthesis
The approach is concretely realized as an Eclipse IDE plugin pub-
licly available and open-sourced for future improvements and en-
hancements at https://github.com/antuanb/Native-2-Native.
Figure 6 (left half) displays the initial plugin view from the end mo-
bile developer’s perspective. The developer first highlights a code
block to be rendered in Swift and then clicks the generate button.
Figure 6 (right half) highlights how the developer selects which of
the top two presented results they desire to be presented as a Swift
source file. Note the URL of the corresponding result is copied
to the clipboard, so that the developer can refer to the originating
web-resource for further information. The generated Swift source
file is saved in the current working directory of the Android/Java
project.

The left side of Figure 7 shows a sample generated Swift file
in our running example of GPS location. The control flow of the
Android/Java file is replicated to create a skeleton Swift source file

Native-2-Native 6 2015/6/22

Figure 6. Plugin showing user selecting GPS Location code and subsequent results returned

first. Then, the developer-selected result is incorporated into the
Swift file to finalize the synthesized code block. In this example, the
synthesized Swift file has the correct iOS/Swift protocol for instan-
tiating and utilizing the CLLocationManager native API to access a
user’s GPS location along with a logic flow outline. The remaining
fine-tuning left for the developer is to format and return the con-
tained location information in the style desired. The next section
focuses on the evaluation of the presented approach, detailing the
native APIs used, the evaluation process, and the precision levels
obtained.

4. Evaluation
In this section, we present the results of evaluating our approach.
To that end, we applied our approach to various Android/Java
native APIs to automatically synthesize analogous functionality
in iOS/Swift, and then examined the synthesized code blocks for
their fitness in expressing the functionality at hand. We evaluated
the Native APIs, including sensors (e.g., GPS, accelerometer, etc.),
network interfaces (e.g., WiFi, Bluetooth Low Energy (BTLE),
etc.), and canonical library classes/data structures (e.g., String,
ArrayList, HashMap, etc.).

We evaluated all the synthesized functionality by hand, which
included compiling the code with the Swift compiler and testing
its runtime behavior. Future work will investigate whether this te-
dious evaluation process can be automated. The evaluation placed
each automatically synthesized code block into one of the follow-
ing four categories: (1) the synthesized code block appears to be
correct both in form and functionality (i.e., it can be used carry out
equivalent native API functionality when integrated with an iOS
application); (2) the synthesized code block is incorrect, either in
form or in functionality (i.e., the code cannot be compiled without
major modification or its runtime functionality fails to deliver the
expected equivalent native API functionality); (3) the synthesized
code was partially correct, requiring a reasonable amount of pro-
gramming effort to carry out the expected functionality. We define

“reasonable programming effort” if the synthesized code block can
be used as a helpful reference point that would speed up the search
for the right functionality rather than hinder progress. Notice that
our definition is necessarily subjective, thus creating an internal
threat to validity. (Fortunately, our evaluation did not yield many
results as belonging to this category.); (4) the result is not a code
block, thus providing negligible utility to the programmer.

Table 1 displays the results of the aforementioned evaluation.
The four evaluation categories for the synthesized code blocks are
designated as YES, NO, 1/2, and NaCB (not a code block), respec-
tively. The TOTAL column reports on the total number of test cases
for each native API type. Recall that our implementation furnishes
the top two-ranked code block suggestions to the programmer.
Then it is up to the programmer’s purview to select the suggestion
to be integrated in a given iOS application. The table lists the re-
sults that our approach produced as both Rank 1 and Rank 2. The
column Rank 1 or 2 presents the YES results, which appeared in
Rank 2 while missing in Rank 1; the relatively high number of cases
in this column supports our design choice of the plugin furnishing
the two top-ranked suggestions to the programmer.

The total evaluation results are summarized in the last two rows.
Specifically, they report the total percentage of the YES outcomes
obtained from Rank 1 only and from either Rank 1 or 2, respec-
tively. While the first result is around 75%, the second one stands
at more than 10 percentage points higher at almost 87%. One may
wonder why we decided to limit our number of reported top sug-
gestions only to two. This limitation is dictated by primarily prac-
tical considerations—for the majority of our test cases, considering
more than two suggestions quickly proved impractical, taking ad-
ditional time without a match in increased accuracy.

The native-2-native approach is not universally applicable
and may fall short of the programmer’s expectations in the presence
of the impedance mismatch between the Java and Swift language
vocabularies. The right side of Figure 7 shows one such exam-
ple. The example makes use of the Java standard library’s HashMap
class, parameterized with String types as its key and value. Un-

Native-2-Native 7 2015/6/22

Figure 7. Synthesized Swift code snippet for GPS Location (left) and HashMap (right)

Rank 1 Rank 2 Rank 1 or 2
Native APIs TOTAL YES NO 1/2 NaCB YES NO 1/2 NaCB

String 25 19 4 2 0 12 4 8 1 22

ArrayList 22 13 5 3 1 6 5 1 10 18

HashMap/Dictionary 13 10 3 0 0 3 2 3 5 11

GPS Location 5 4 0 1 0 3 1 1 0 4

Accelerometer 2 2 0 0 0 1 0 1 0 2

BTLE 5 4 1 0 0 3 1 1 0 4

Wifi 5 4 1 0 0 4 1 0 0 4

Overall 75 56 14 6 1 32 14 15 16 65

Overall Yes (Rank 1 Only) 74.7% 78.9%(Normalized)
Overall Yes (Rank 1 or 2) 86.7% 84.9%(Normalized)

Table 1. Evaluation results for target native API code block synthesis as {yes, no, 1/2 suitable, NaCB (not a code block).}

fortunately, HashMap is a Java-specific concept that has very differ-
ent names in other languages. In Swift, this programming idiom
is supported by the Dictionary class. Without special provisions,
native-2-native would return the code block depicted on the
right side of Figure 7. This code block contains a use case of the
MD5 hashing algorithm in Objective-C embedded into the control
flow of the source document’s Java code. This outcome would be a
direct consequence of the extracted keywords (mapping, hash, and
put) steering the search toward a hashing algorithm instead of a
dictionary data structure. Because such vocabulary dissimilari-
ties are inevitable, native-2-native special-cases several highly
common instances of these dissimilarities by consulting a static
mapping of vocabulary keywords between Java and Swift.

As a presentation choice, the final two rows of Table 1 treat
every subject case first as equally important without normalizing
across them, and then display the normalized counterparts. We
argue that our presentation choice is well-founded. When it comes
to needing assistance when supporting a piece of functionality on
several platforms, the average mobile developer would likely care

more about sensor APIs, such as GPS and BTLE, than fundamental
data structures APIs, such as String, ArrayList, and HashMap.

Based on the results of our evaluation, one can conclude that the
approach is effective enough to serve as a practical tool for mobile
programmers supporting cross-platform applications. Because the
automatically suggested code does not need to be perfect to provide
a high degree of utility to the programmer, our algorithms proved
surprisingly fit for the purposes intended. However, it is not only
the fitness of our algorithms that explains the effectiveness of our
approach. These algorithms work hand-in-hand with the realities
of the mobile market, the availability of web-based programming
resources, and the process of suggesting equivalent native APIs
being manageable via tool automation.

Despite its practical utility, our approach has several limitations.
The model underlying the searching and ranking algorithms of our
approach is bound by the dimensions of the feature vector. In other
words, the accuracy of the algorithms is reversely proportional to
the size of the total number of unique tokens comprising a given
code block. As a result, mobile developers are likely to find our ap-
proach most effective in those cases when they need to find equiv-

Native-2-Native 8 2015/6/22

alent iOS code for small to medium (10-30 lines of code) Android
native code blocks. The second limitation stems from the original
closed development model for the iOS platform. Closed models
traditionally result in reduced sharing of programming solutions.
Exacerbating the conditions for evaluating the applicability of our
reference implementation is a relative newness of the Swift lan-
guage. In fact, we were surprised that our reference implementation
was able to synthesize correct suggestions from a relatively limited
set of web-based Swift programming resources. Nevertheless, sev-
eral major technological trends are likely to address this limitation.
For one, Swift will be open-sourced in coming releases, while the
amount of available Swift code examples on the web seems to grow
by leaps and bounds.

Finally, synthesizing Swift from given Java input is a neces-
sarily difficult case of cross-language translation. Because Swift is
much more declarative (i.e., concise) than Java, the translation must
produce more declarative output from more loquacious input. As
software engineering is becoming more declarative in terms of lan-
guages, specifications, and invariants, our approach holds a lot of
promise for automatically transitioning current mainstream meth-
ods of expressing programming information into their declarative
counterparts. For example, our approach can be used to get rid of
the wordiness of anonymous inner classes in the pre-Java8 world,
replacing this with code lambda expressions.

5. Related Work
Native-2-native is representative of a broad class of software
engineering applications known as recommendation systems [14,
15]. Several examples of recommendation systems synthesize code
snippets from web-based programming resources [10–12, 23] or
build an intelligent code search engine [9]. We will discuss how
our approach differs from or improves over these examples.

Prompter [12] is an Eclipse plug-in that given the current work-
ing code context automatically identifies relevant StackOverflow
discussions. Its uniqueness is in providing a user-controlled confi-
dence threshold to suggest only discussions that surpass this thresh-
old. Compared to native-2-native, Prompter also makes use of
the StackOverflow API, albeit as the only source for relevant dis-
cussion and code snippets. Our approach’s larger search space [21],
which includes Google Search, Google Code, and third-party re-
sources in native-2-native), can achieve the level of precision
required for cross-language and platform translation, a feature not
supported by Prompter [12] or [23].

Some related approaches make use of statically cached pro-
gramming resources to accelerate data retrieval. For example, the
approaches presented in [11, 12] rank output code blocks by nor-
malizing a sigmoid function of the average StackOverflow vote
count from a June 2013 static data dump. Selene [20] recommends
equivalent code blocks by searching a repository of 2 million ex-
ample programs to provide usage examples for a given input code
block. Sourcerer [2] is another code search engine for a large-scale
code repository (SourceForge). Strathcona [6], similarly to the sys-
tems above, also uses a repository based search corpus and provides
the user with a structural overview of relevant code rather than ac-
tual code examples and discussions. A recommendation system de-
veloped by Bacchelli et al. [1] utilizes a vector space model with
tf-idf as its frequency weighting model along with a singular query
corpus source of StackOverflow. Similarly to other systems, Sea-
hawk [10] also uses a static and publicly available dump of Stack-
Overflow questions and lacks support for Swift.

As mentioned above, StackOverflow receives close to 6000 new
questions a day. A static data snapshot from 2 years ago may
be sufficient to mine for information about established language
ecosystems and environments. However, the focus of native-2-native
is mobile computing with rapidly evolving programming environ-

ments and language ecosystems. By combining vector space and
linear models on live StackOverflow data, native-2-native re-
turns suggestions that are more relevant, up-to-date, and better
geared toward newer languages, such as Swift. Seahawk motivates
the necessity of using the static dump to be able to search by means
of the Apache Solr search system to achieve high performance
efficiency. Although it would be unrealistic trying to match the
performance efficiency of searching against a static local snapshot,
we discovered that carefully calibrating weights and feature sets
for the tf-idf analysis and vector space model not only provides
complete and relevant results for both StackOverflow posts and
other code sources, but also yields performance levels sufficient for
practical use. Lastly, [9] focuses on providing useful documenta-
tion that supersedes standard API usage documentation. While an
important aspect of the developer’s ability to create mobile applica-
tions can at times include understanding necessary documentation,
native-2-native focuses instead on the code synthesis and not
just on supplemental documentation for the developer.

The recentness of the Swift language’s entry into the mobile
computing space renders mainstream native transpilation (i.e.,
source-to-source compilation) systems inapplicable. For example,
Google’s J2ObjC [7] converts pure Java source code into Objective-
C source code. Although a powerful and practical tool used by
Google internally, J2ObjC lacks support for Android APIs and the
controller component of the MVC design pattern, as well as con-
verting to Objective-C rather than the new standard of Swift. By
contrast, Native-2-native embraces the native mobile APIs such
as Android and iOS. While it remains unclear whether rule-based
compiler translation is even capable of bridging the differences be-
tween the platforms as architecturally dissimilar as Android and
iOS, in the meantime Native-2-native provides a practical so-
lution for deriving working Swift code analogous to its Android
counterpart.

Native-2-native utilizes common themes and features across
various prior recommendation systems, but it applies them to a
problem that arises from the realities of modern mobile development—
the necessity of supporting popular mobile applications on all ma-
jor platforms, despite the inherent dissimilarities in the platforms’
languages, APIs, and architectures. Potentially, this problem may
be addressed by state-of-the-art cross-platform source-to-source
translation, with some inroads already in place [13]. Nevertheless,
precise source-to-source compilation capable of translating Java
Android to Swift iOS functionality for native APIs remains a futur-
istic vision.

By using sources other than user-driven StackOverflow posts,
Native-2-native mines a wider feature net without being re-
stricted to API mappings [24]. This feature enables our approach to
provide potentially more valuable and relevant search results based
on the developer’s code context. Given that the overriding goal of
native-2-native is to aid the developer by suggesting and syn-
thesizing the iOS/Swift equivalent of Android/Java code, any new
suggested Swift code, as long as it correctly implements some iOS
API, is likely to prove useful to the mobile developer.

6. Future Work and Concluding Remarks
One potential direction for improving this work entails reusing the
search data in an intelligent manner. Our current approach relies on
generating a document corpus upon each query, but these results are
discarded for all future queries, not just locally for a particular user
but across all users. If instead, these meta-data objects were saved
globally to become accessible for all users, then our approach can
be further optimized in the following two major ways. First, the
potential use of a preference server would facilitate an ability to
predict the semantics of future queries made by a particular user
based on previous inquiries they made. This predicted potential

Native-2-Native 9 2015/6/22

query could be weighted along with the newly generated meta-data
object and form the user’s next query. Secondly, we could store
all meta-data objects across all users in a set of online clusters.
The clusters would be defined by some similarity measure related
to the original ranking model. This optimization would facilitate a
speedup when a user’s query is within the cluster and within some
threshold of similarity specified by the user, as one then would not
need to continue a full web search for potential Swift code blocks.

Another potential avenue of improvement is to incorporate the
translation of the “Model” component of an application’s Model-
View-Controller pattern. This enhancement could be easily accom-
plished by integrating with native-2-native the previously dis-
cussed [7] or another source-to-source translator of non-Android
Java code. Similarly, we can further improve the translation and
ranking by allowing users to rate our approach’s returned Swift
code blocks. These ratings would then be incorporated into future
queries not just for this user but for all users making similar queries.

Yet another future work direction would expand the number
of target platforms to Windows Phone and platform-independent
JavaScript frameworks such as PhoneGap [5]. The developer would
implement a new feature on one platform and then will get sugges-
tions for all the other supported platforms. Comparing the software
metrics of the equivalent code blocks on different platforms can
shed insights on various software engineering properties of differ-
ent languages and architectures.

This paper has presented a novel approach for automatic code
synthesis from Android/Java to iOS/Swift by utilizing popular
web-based programming resources. To enable our approach, we
first gleaned several insights underlying the realities of modern
mobile software development and the mobile computing market.
Our approach is concretely realized as native-2-native, which
includes, primarily extracting core functionality from input Java
source code, searching, ranking, and code synthesis. The refer-
ence implementation of native-2-native is an Eclipse plugin
that allows the developer to select input Java source code and
chose from the top two returned search results before using this
selection to synthesize the output Swift source file. The evalua-
tion of our approach and its reference implementation show that
native-2-native produces useful and intended functionality in
as many as 86% of subject native APIs. These results indicate that
the presented approach can become a pragmatic and valuable pro-
gramming tool in the arsenal of mobile software developers.

Availability native-2-native is available from https://
github.com/antuanb/Native-2-Native. The site includes the
full source code for the approach, including the integration with
Eclipse, open-source license, detailed results, and additional eval-
uation use cases.

Acknowledgments
This research is supported in part by the National Science Foun-
dation through Grant CCF-1116565. We would like to thank Bren-
dan Avent, Young-Woo Kwon, Alla Rozovskaya, and Myoungkyu
Song for their insightful comments and suggestions for improving
the manuscript.

References
[1] A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing stack overflow

for the IDE. In Proceedings of the Third International Workshop on
Recommendation Systems for Software Engineering, RSSE ’12, pages
26–30. IEEE Press, 2012.

[2] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An internet-scale
software repository. In Proceedings of the 2009 ICSE Workshop on

Search-Driven Development-Users, Infrastructure, Tools and Evalua-
tion, SUITE ’09, pages 1–4. IEEE Computer Society, 2009. .

[3] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996. ISSN 0885-6125. .

[4] F. P. Brooks. No silver bullet: Essence and accidents of software
engineering. Computer, 20(4):10–19, apr 1987.

[5] R. Ghatol and Y. Patel. Beginning PhoneGap: Mobile Web Framework
for JavaScript and HTML5. 2012.

[6] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In Proceedings of the 27th International Con-
ference on Software Engineering, ICSE ’05, pages 117–125. ACM,
2005. .

[7] J2ObjC.org. J2objc, 2015.
[8] P. Jackson and I. Moulinier. Natural language processing for online

applications. Text retrieval, extraction and categorization, volume 5
of Natural Language Processing. Benjamins, 2002.

[9] J. Kim, S. Lee, S.-w. Hwang, and S. Kim. Towards an intelligent code
search engine. 2010.

[10] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack Overflow
in the IDE. In Proceedings of the 2013 International Conference on
Software Engineering, pages 1295–1298. IEEE, 2013.

[11] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza. Min-
ing stackoverflow to turn the ide into a self-confident programming
prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 102–111. ACM, 2014. .

[12] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza.
Prompter: A self-confident recommender system. In Proceedings of
the 2014 IEEE International Conference on Software Maintenance
and Evolution, ICSME ’14, pages 577–580. IEEE Computer Society,
2014. .

[13] A. Puder and O. Antebi. Cross-compiling android applications to ios
and windows phone 7. Mob. Netw. Appl., 18(1):3–21, Feb. 2013. ISSN
1383-469X. .

[14] M. Robillard, R. Walker, and T. Zimmermann. Recommendation
systems for software engineering. Software, IEEE, 27(4):80–86, July
2010. .

[15] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, editors.
Recommendation Systems in Software Engineering. Springer, 2014. .

[16] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620, Nov. 1975.
ISSN 0001-0782. .

[17] StackOverflow.com. Stack overflow, 2015.
[18] StackOverflow.com. Usage of /info - stack exchange api, 2015.
[19] StackOverflow.com. Stack overflow developer survey 2015, 2015.
[20] W. Takuya and H. Masuhara. A spontaneous code recommendation

tool based on associative search. In Proceedings of the 3rd Interna-
tional Workshop on Search-Driven Development: Users, Infrastruc-
ture, Tools, and Evaluation, SUITE ’11, pages 17–20, 2011. .

[21] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow and
github: Associations between software development and crowd-
sourced knowledge. In Social Computing (SocialCom), 2013 Inter-
national Conference on, pages 188–195, Sept 2013. .

[22] www.tiobe.com. Usage of tiobe language use statistics, 2015.
[23] A. Zagalsky, O. Barzilay, and A. Yehudai. Example overflow: Using

social media for code recommendation. In Recommendation Systems
for Software Engineering (RSSE), 2012 Third International Workshop
on, pages 38–42, June 2012. .

[24] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Min-
ing api mapping for language migration. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Vol-
ume 1, ICSE ’10, pages 195–204. ACM, 2010. .

Native-2-Native 10 2015/6/22

