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Abstract

Since annotations were added to the Java language, many

frameworks have moved to using annotated Plain Old Java

Objects (POJOs) in their newest releases. Legacy applica-

tions are thus forced to undergo extensive restructuring in

order to migrate from old framework versions to new ver-

sions based on annotations (Version Lock-in). Additionally,

because annotations are embedded in the application code,

changing between framework vendors may also entail large-

scale manual changes (Vendor Lock-in).

This paper presents a novel refactoring approach that ef-

fectively solves these two problems. Our approach infers

a concise set of semantics-preserving transformation rules

from two versions of a single class. Unlike prior approaches

that detect only simple structural refactorings, our algorithm

can infer general composite refactorings and is more than

97% accurate on average. We demonstrate the effectiveness

of our approach by automatically upgrading more than 80K

lines of the unit testing code of four open-source Java appli-

cations to use the latest version of the popular JUnit testing

framework.

Categories and Subject Descriptors D.2.3 [Coding Tools and

Techniques]: Object-Oriented programming; D.2.6 [Program-

ming Environments]: Integrated environments; D.2.7 [Distribu-

tion, Maintenance, and Enhancement]; D.3.3 [Language Con-

structs and Features]: Frameworks, Patterns

General Terms Languages, Experimentation

Keywords Refactoring, Upgrading, Frameworks, Meta-

data, Java, Annotations, Eclipse, JUnit
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1. Introduction

By providing reusable designs and a predefined architec-

ture, frameworks enable developers to streamline the soft-

ware construction process and have consequently become a

mainstay of object-oriented software development. One de-

sign decision that has to be made when creating a frame-

work is how application and framework objects will in-

teract with each other. Traditionally, frameworks have em-

ployed type and naming conventions to which the program-

mer must adhere. However, since metadata support has been

added to modern object-oriented languages (e.g., Java Anno-

tations and .NET Attributes), frameworks have increasingly

moved to using language-supported metadata facilities. Be-

ing embedded within the source code next to the program

elements they describe, annotations provide declarative in-

formation more robustly and concisely. As a result, many ex-

isting frameworks have switched from using type and nam-

ing conventions to using annotated Plain Old Java Objects

(POJOs) in their latest releases.

Despite the benefits of annotation-based frameworks,

several major drawbacks hinder their adoption and use.

Legacy applications that were developed using older frame-

work versions based on type and naming requirements must

be upgraded to the annotation-based versions. This up-

grade often requires hundreds or even thousands of tedious

changes to source files scattered throughout the codebase.

These changes are in fact refactorings, as they preserve the

semantics of the application in the presence of a new frame-

work.

While these refactorings are intuitively obvious to the

programmer, automating them is not trivial. A text-based

find-and-replace approach is not sufficient, as the required

changes cannot be correctly detected with a regular expres-

sion search. Furthermore, existing inference algorithms can-

not detect them automatically, and writing an automated

refactoring tool by hand can be time-consuming and error-

prone. These complications often force a manual refactor-

ing in order to upgrade an application. The benefits of up-

grading to the latest annotation-based version of a frame-

work may therefore not be worth the programming effort re-
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quired to apply these refactorings manually, resulting in an

anti-pattern that we call Version Lock-in.

As noted in a recent article [31] describing metadata-

based enterprise frameworks, annotations present an addi-

tional challenge. Due to the tight coupling between annota-

tions and source code, switching between different frame-

work vendors can be prohibitively expensive for large soft-

ware projects. Such a high re-engineering cost results in the

phenomenon known as the Vendor Lock-In anti-pattern [6].

This paper presents a novel refactoring approach that

solves both the Version and Vendor Lock-In problems out-

lined above. Our approach has three phases: first, the frame-

work developer creates representative examples of a class

before and after transitioning; second, our algorithm infers

generalized transformation rules from the given examples;

finally, application developers use the inferred rules to pa-

rameterize our program transformation engine, which auto-

matically refactors their legacy applications.

We validate our approach by inferring refactorings for

transitioning between three different unit testing frameworks

(JUnit 3 [3], JUnit 4, and TestNG [4]), as well as three dif-

ferent persistence frameworks (Java Serialization, Java Data

Objects (JDO) [34], and Java Persistence API (JPA) [15]).

With only five minor refinements to the inferred unit testing

transformation rules, we automatically upgraded more than

80K lines of testing code in JHotDraw, JFreeChart, JBoss

Drools, and Apache Ant from JUnit 3 to JUnit 4.

This paper makes the following novel contributions:

• Annotation Refactoring– a new class of refactorings that

replaces the type and naming requirements of an old

framework version or annotation requirements of a dif-

ferent framework with the annotation requirements of a

target framework.

• An approach to removing the Version and Vendor Lock-

in anti-patterns for annotation-based frameworks.

• A differencing algorithm that accurately infers general

transformation rules from two versions of a single exam-

ple.

The rest of this paper is structured as follows. Section

2 motivates our work by presenting a real-world example.

Section 3 gives an overview of our approach. Section 4 de-

scribes our inference algorithm formally. Section 5 presents

the results of the case studies we have conducted. Section 6

explains why existing approaches are insufficient. Section 7

outlines future work directions, and Section 8 summarizes

our contributions.

2. Motivating Example

Whenever a widely-used framework undergoes a major ver-

sion upgrade (i.e., changing the structural requirements for

application classes), framework developers or other domain

experts commonly release an upgrade guide. A typical pre-

sentation strategy followed by such guides is to show an ex-

ample legacy class and its corresponding upgraded version.

With respect to annotation refactorings, recent framework

upgrades that have led to the creation of such guides include

Enterprise JavaBeans (EJB) version 2 to 3 [27], Hibernate

annotations to the Java Persistence API (JPA) [40], and JU-

nit version 3 to 4 [36].

import junit.framework.*;

public class ATest extends TestCase

{

  //called before every test

  protected void setUp() {}

  //called after every test

  protected void tearDown() {}

  //tests Foo

  public void testFoo() {}

  //tests Bar

  public void testBar() {}

}

import org.junit.*;

public class Atest

{

  //called before every test

  @Before

  public void setUp() {}

  //called after every test

  @After

  public void tearDown() {}

  //tests Foo

  @Test

  public void testFoo() {}

  //tests Bar

  @Test

  public void testBar() {}

}

JUnit 3 JUnit 4

Figure 1. Comparisons of a JUnit test case in version 3 and

4.

To illustrate the challenges associated with annotation

refactorings, consider upgrading a JUnit application from

version 3 to 4. Figures 1 and 2 show two example legacy

classes and their corresponding upgraded versions, derived

from the upgrade guide [36]. Application classes that use

JUnit fall into two categories: test cases and test suites. A test

case class contains a set of methods for testing a piece of ap-

plication functionality. A test suite class groups related test

cases, so that the framework can invoke them as a single unit.

Applications using JUnit 3 must adhere to type and nam-

ing requirements to designate test cases and suites. How-

ever, JUnit 4 switched to using an annotated POJO paradigm

to express the same functionality. Table 1 summarizes the

differences between the application requirements of the two

versions.

While the refactorings required to upgrade a JUnit appli-

cation may be straightforward to the programmer, no exist-

ing refactoring tool can make these changes automatically.

//gets a collection of two

//test cases to run

public class AllTests

{

public static Test suite() {

    TestSuite suite = 

      new TestSuite(ATest.class);

    suite.addTestSuite(BTest.class);

    return suite;

  }

}

@RunWith(Suite.class)

@SuiteClasses({ATest.class,

   BTest.class})

public class AllTests

{

  //no suite method required

}

JUnit 3 JUnit 4

Figure 2. Comparison of a JUnit test suite in version 3 and

4.
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Application
JUnit 3 JUnit 4

Element

Test case Extend None

class TestCase (POJO)

Initialization Override
@Before

method setUp

Destruction Override
@After

method tearDown

Test Name starts
@Test

method with “test”

Test suite Provides @RunWith

class suite method @SuiteClasses

Table 1. A summary of the requirements for application

elements using JUnit versions 3 and 4.

Therefore, if the framework developer wishes to provide au-

tomated upgrade support, she often has no choice but to cre-

ate a refactoring tool by hand. Such a task may require a sig-

nificant investment by the framework developer, as she must

first gain proficiency in a refactoring library API (e.g., the

Java Development Toolkit (JDT) [20]) or a domain-specific

language (e.g., Spoon [28]). After becoming familiar with

a library or a DSL, she must then use it to write the refac-

toring tool from scratch. As a result, framework develop-

ers typically opt to provide backwards compatibility sup-

port rather than automated upgrade tools. Although provid-

ing backwards compatibility allows legacy applications to

use a newer version of a framework, it does not allow them

to take advantage of newly-introduced framework features.

Thus, an approach to automatically generating refactor-

ing tools capable of upgrading legacy applications has great

potential benefit. Next we provide an overview of our ap-

proach and show how it can be used to automatically gener-

ate a refactoring tool for upgrading JUnit applications.

3. Approach Overview

Our approach is based on the wide availability of upgrade

guides containing examples of legacy classes and their up-

graded versions. If the human developer is expected to infer

general rules for upgrading their legacy applications using

these guides, then the examples are likely to contain a level

of detail that one could leverage to automate the process.

Our approach automatically extracts this knowledge, cre-

ating specialized refactoring tools that can upgrade legacy

applications. Our Eclipse Plug-in called Rosemari (Rule-

Oriented Software Enhancement and Maintenance through

Automated Refactoring and Inferencing) concretely imple-

ments our approach.

Creating an annotation refactoring tool involves three

steps. First, the framework developer selects two versions

of a class, one before and one after upgrading, that we call

representative examples. The developer then picks a pre-

defined specialization of our inference algorithm, called an

upgrade pattern. Finally, the generated rules can be down-

loaded by application developers and subsequently used to

parameterize our transformation engine, which will then au-

tomatically refactor their legacy applications. Next we detail

the main steps of our approach, using the previously pre-

sented JUnit example for demonstration.

3.1 Representative Examples

A representative example is a class or interface, such as those

commonly included in framework tutorials, that uses frame-

work features that differ between versions or vendors (e.g.,

Figures 1 and 2 can serve as representative examples for

upgrading JUnit). A representative example using an older

framework is called a prior example. A representative ex-

ample using a newer framework is called a posterior exam-

ple. The framework developer provides a prior example and

its corresponding posterior example, which may differ in the

following ways:

1. Super type changes

2. Method signature changes

3. Field type changes

4. Annotations added or removed

5. Annotation argument added or removed

6. Imports added or removed

7. Statement added or removed

The prior and posterior examples are compared at dif-

ferent levels of granularity in the encapsulation hierarchy,

which we call levels for short. Specifically, examples are

compared at class, method, and statement levels. Differences

between levels are used to detect the restructurings required

to upgrade the prior example into the posterior example.

However, detecting restructurings is only one facet of creat-

ing a refactoring. The issue of when to apply a restructuring

to a level is not clear without additional knowledge about

how the application is being upgraded.

public class D extends C

{

public void foo() {

System.out.println();

}

}

public class D extends C

{

@Ann

public void foo() {

System.out.println();

}

}

Figure 5. An example showing the ambiguity inherent in

inferring refactorings between two arbitrary representative

examples.

For instance, consider the simple pair of prior and pos-

terior examples in Figure 5. While it is obvious that there

is a method-level difference that requires adding the @Ann

annotation to foo, the refactoring rule to be inferred is un-

clear. One possible rule may be that a method named “foo”

in any subclass of C should be annotated with @Ann. How-

ever, another rule could be that any method which calls
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Figure 3. The Rosemari context menu. The top set of menu items are available refactorings; the bottom set of menu items are

available inference patterns.

System.out.println should be annotated with @Ann. To

disambiguate when a restructuring should be applied in a

refactoring, we follow a pattern-based approach described

next.

3.2 Upgrade Patterns

When upgrading from a type and naming convention-based

framework version to a newer annotation-based version, or

when switching between different annotation-based frame-

works, refactoring rules typically follow common patterns,

which we call upgrade patterns. One reason why these pat-

terns occur is that evolving a framework to use annotations

is normally driven by the desire to improve the software en-

gineering quality of the framework (e.g., looser coupling be-

tween application and framework classes). Another reason

is that switching between different annotation-based frame-

works often requires using a different vocabulary to describe

essentially the same functionality.

Therefore, inferring the refactorings between two repre-

sentative examples depends on the upgrade pattern followed.

Next we describe three such common patterns we have iden-

tified from our experiences. While we have found that these

patterns successfully capture the refactorings for many up-

grade scenarios, other patterns can be plugged into our sys-

tem as needed.

3.2.1 Bottom-Up

This upgrade pattern applies restructurings on the basis of

the level itself and its enclosing levels. For example, refac-

toring the methods in a JUnit 3 test case follows a bottom-

up pattern. Specifically, the test, setUp and tearDown

method restructurings are only relevant if their enclosing

class is a TestCase.

3.2.2 Top-Down

In contrast to the bottom-up pattern, a top-down pattern

applies restructurings on the basis of the level itself and its

contained levels. For example, refactoring test suite classes

in JUnit 3 follows a top-down pattern. Specifically, the class

is annotated with the @RunWith(Suite.class) annotation

on the basis of containing a suite method.

3.2.3 Identity

This upgrade pattern applies restructurings only on the ba-

sis of the level itself, assuming that all annotations in the

first representative example have a one-to-one mapping in

the second representative example. For instance, the TestNG

framework uses @BeforeMethod, which is identical in its

functionality to the @Before annotation in JUnit 4.

The developer can choose an appropriate upgrade pattern

by observing the purpose of a given annotation. If adding

an annotation removes tight coupling between the enclosing

elements of a level (e.g., a class enclosing a method) and the

framework, then it is likely a bottom-up pattern. If, however,

the annotation describes the contained elements of a level

(e.g., a method contained in a class), then it is likely a top-

down pattern. If the annotation simply changes how the level

is expressed, then it is likely an identity pattern.

3.3 Transformation Rules

Inferred refactorings are represented as a collection of first-

order when-then transformation rules,1 expressed using a

Domain Specific Language (DSL) we developed. A trans-

formation rule is composed of restructurings and constraints

on their application. The when portion of a rule defines the

constraints under which to apply the restructurings defined

in the then portion of the rule.

While the generated rules possess a high degree of preci-

sion, some rules may require manual refinement. Since the

developer is not expected to write the transformation rules

from scratch but rather fine-tune the generated rules, we

1 We use the JBoss Drools engine [30].
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rule "#1) Transform classes matching ATest"

  no-loop

  salience 10

    when

      $class : Application Class

- Visibility is public

- Superclass is "junit.framework.TestCase"

    then

Remove superclass from $class

Update $class

end

rule "#2) Transform all methods matching setUp"

  no-loop

salience 20

  when

    $class : Application Class

- Visibility is public

- Superclass is "junit.framework.TestCase"

    $method : Application Method

- Name matches "setUp"

- Declaring class is $class

- Not annotated with "Before"

- Visibility is protected

- Scope level is member

- Return type is "void"

- Has 0 parameters

  then

    Add annotation "Before" to $method

    Set access level of $method to public

    Update $class

    Update $method

end

rule "#3) Transform all methods matching tearDown"

  no-loop

  salience 20

  when

    $class : Application Class

- Visibility is public

- Superclass is "junit.framework.TestCase"

    $method : Application Method

- Name matches "tearDown"

- Declaring class is $class

- Not annotated with "After"

- Visibility is protected

- Scope level is member

- Return type is "void"

- Has 0 parameters

  then

    Add annotation "After" to $method

    Set access level of $method to public

    Update $class

    Update $method

end

rule "#4) Transform all methods matching test.*"

  no-loop

salience 20

  when

    $class : Application Class

- Visibility is public

- Superclass is "junit.framework.TestCase"

    $method : Application Method

- Name matches "test.*"

- Declaring class is $class

- Not annotated with "Test"

- Visibility is public

- Scope level is member

- Return type is "void"

- Has 0 parameters

  then

    Add annotation "Test" to $method

    Update $class

    Update $method

end

rule "#5) Manage imports"

  no-loop

salience 0

  when

    $file : Application File

- Does not import "org.junit.After"

- Does not import "org.junit.Before"

- Does not import "org.junit.Test"

- Does not import "org.junit.Assert.*"

- Does import "junit.framework.TestCase"

  then

    Add import "org.junit.After" to $file

    Add import "org.junit.Before" to $file

    Add import "org.junit.Test" to $file

    Add static import "org.junit.Assert.*" to $file

    Remove import "junit.framework.TestCase" from $file

    Update $file

end

Figure 4. The generated transformation rules to refactor a JUnit 3 test case class to use JUnit 4.

chose to trade conciseness for readability and ease of un-

derstanding in designing our DSL. Having a collection of

generic natural-language statements that can be parameter-

ized with concrete values, the developer can easily refine

complex rules to better express the desired refactorings.

Given the JUnit test case representative examples in Fig-

ure 1 and the Bottom-Up upgrade pattern, Rosemari gen-

erates five transformation rules, shown in Figure 4. Rules

2-4 originally require that the target class directly extends

TestCase. However, these transformations are valid for any

class that extends TestCase, directly or indirectly. There-

fore, the developer can change this constraint in each of the

three rules by refining it to its more general version: Super-

class is a “junit.framework.TestCase”. Additionally, the Vis-

ibility is protected constraint in rules 2 and 3 can easily be

generalized by changing the constraint to Visibility is at least

protected.

The Rosemari plug-in provides a searchable collection of

supported natural language statements that the developer can

reference when refining transformation rules. Once refined

and named appropriately (e.g., JUnit v3 to v4), the refactor-

ing can be applied by selecting a JUnit 3 test case source

file and choosing the refactoring from the context menu, as

shown in Figure 3. The source file will then be automatically

upgraded to JUnit 4.

Next we present our algorithm for inferring annotation

refactoring rules.

4. Inference Algorithm

Our algorithm accepts two representative examples and

infers a generalized set of transformation rules that com-
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public class HelloWorldBean 

implements SessionBean

{

  public void ejbActivate() {}

  public void ejbRemove() {}

}

@Stateful

public class HelloWorldBean

{

@PostActivate

  public void ejbActivate() {}

  @Remove

  public void ejbRemove() {}

}

EJB 2 EJB 3

Figure 6. A simple Enterprise Java Bean example in EJB 2

and 3.

pose a refactoring. We present our algorithm as a collection

of seven smaller set manipulation algorithms configurable

through a user-defined partial order on the levels of a rep-

resentative example. To further illustrate how our algorithm

works, we show how each component algorithm contributes

to learning the transformation rules for a simple Enterprise

JavaBeans (EJB) upgrade scenario. Figure 6 shows the two

EJB representative examples, derived from the Oracle guide

[27] on migrating applications from EJB 2 to 3.2

4.1 Decomposing Representative Examples

In order for our algorithm to calculate transformation rules,

each representative example must first be decomposed into

a set of levels, P = {L1, L2, . . . , Ln}. A level is a set,

L = {e1, e2, . . . , em}, of signature elements (i.e., tokens

in a program element’s signature) at a particular point in

the encapsulation hierarchy. For example, the method level

contains a set of annotations, a visibility identifier, a scope

identifier, a return type, a set of parameters, and a set of

exceptions. Figure 7 shows a full list of the supported levels

and their definitions.

As discussed in Section 3.2, inferring the correct trans-

formation rules given a pair of representative examples is

not possible without additional information about the refac-

toring. The Rosemari plug-in implementing our algorithm

uses the concept of upgrade patterns to simplify this process.

However, upgrade patterns are merely wrappers for specify-

ing a partial order over the set of levels in a representative

example. Figure 8 shows the partial orders corresponding

to each of the three previously discussed upgrade patterns.

Figure 9 shows the level sets for the EJB example, which

matches to a Bottom-Up pattern.

4.2 Component Inference Algorithms

The foundation of our algorithm is to construct sets of in-

dependent components and then merge them hierarchically.

This section presents the five algorithms that compose these

independent components.

2 Fully upgrading EJB applications requires static analysis of both Java

source code and XML metadata files and is thus outside the scope of this

paper. The rules learned in this example are therefore only a subset of the

total required to refactor an entire EJB application.

4.2.1 LevelRestructurings

Our algorithm starts by first calculating the restructurings

for each level. A restructuring is a simple program transfor-

mation function that adds, replaces, or removes a signature

element in a level. We call a restructuring a positive restruc-

turing if it adds or replaces an element. A restructuring is

a negative restructuring if it removes an element. Figure 10

presents the LevelRestructurings algorithm for discovering a

level’s restructurings.

The Prune method (line 6) removes unnecessary elements

from NEGELS. This is an implementation addition to re-

duce the number of negative restructurings generated, mak-

ing the final transformation rules more concise and readable.

For instance, changing the visibility of a level is done by re-

placing the current visibility with the new visibility (a posi-

tive restructuring) rather than first removing the current visi-

bility (a negative restructuring) and then adding the new vis-

ibility (a positive restructuring).

For the EJB example, LevelRestructurings is called three

times (i.e., once for each level). For the HelloWorldBean

level, POSELSHelloWorldBean = {AStateful}, and thus

a positive restructuring of Add annotation “Stateful” is gen-

erated. Similar positive restructurings are generated for the

ejbActivate and ejbRemove levels. However, only the Hel-

loWorldBean level produces a non-null value for removed

elements, as NEGELSHelloWorldBean = {ISessionBean},
resulting in a negative restructuring of Remove interface

“SessionBean.”

Lemma 1. Let L = {e1, e2, ..., em} be a prior level, and

let L′ = {e1, e2, ..., en} be a posterior level, such that L′ is

the restructured version of L. LevelRestructurings(L, L′)
returns a set of restructurings, R = {r1, r2, ..., rk} repre-

senting exactly every required positive and negative restruc-

turing to transform L to L′.

Proof. If there is an element, eu ∈ L′ such that eu /∈ L,

then a positive restructuring r+

i = PositiveRestructuring
(eu) is required to transform L to L′. Thus, POSELS =
L′ − L (line 2) will contain eu, and adding a positive re-

structuring to R for every element in POSELS (lines 3-4)

guarantees that r+

i will be in R. If a positive restructuring,

r+

j = PositiveRestructuring(ev) is not required to trans-

form L to L′, then either ev ∈ L or ev /∈ L′. If ev ∈ L, then

L′−L will remove ev and it will not be added to POSELS;

likewise, if ev /∈ L′ then L′−L and consequently POSELS
will not contain it. If POSELS does not contain ev , then r+

j

will not be created in line 4 and r+

j /∈ R. Therefore, R con-

tains every positive restructuring and no more. An analogous

and opposite argument applies to negative restructurings.

4.2.2 LevelConstraints

Our algorithm next computes a set of constraints defining

when the discovered restructurings should be applied to a

level. We call a constraint a positive constraint when it re-
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LClass = {Annotations, V isibility, SuperClass, SuperInterfaces}
LIface = {Annotations, V isibility, SuperInterfaces}
LField = {Annotations, V isibility, Scope, Type}
LMeth = {Annotations, V isibility, Scope,

ReturnType, Parameters,Exceptions}
LCons = {Annotations, V isibility, Scope, Parameters,Exceptions}
LMethInvoke = {Name,Arguments}
LConsInvoke = {Type, Arguments}
LArg = {Expression}

Figure 7. Levels of a representative example.

Bottom-Up

LArg <L {LConsInvoke, LMethInvoke} <L {LCons, LMeth, LField} <L {LIface, LClass}

Top-Down

LArg <L {LConsInvoke, LMethInvoke} <L {LIface, LClass} <L {LCons, LMeth, LField}

Identity

{LIface, LClass, LCons, LMeth, LField, LConsInvoke, LMethInvoke, LArg}

Figure 8. Upgrade patterns as partial orders on P.

EJB2HelloWorldBean = {V public, ISessionBean}
EJB3HelloWorldBean = {AStateful, V public}

EJB2ejbActivate = {V public, Smember, Rvoid}
EJB3ejbActivate = {APostActivate, V public, Smember, Rvoid}

EJB2ejbRemove = {V public, Smember, Rvoid}
EJB3ejbRemove = {ARemove, V public, Smember, Rvoid}

Figure 9. The level decomposition of the EJB example.

quires that an element be present. A constraint is a negative

constraint when it requires that an element not be present.

Negative constraints are necessary to ensure the generated

transformation rules are not applied unnecessarily (e.g., to

levels that have already been transformed by hand or a pre-

vious upgrading session). Figure 11 presents the LevelCon-

straints algorithm for discovering a level’s constraints.

For the HelloWorldBean level, lines 2-3 create two posi-

tive constraints, Visibility is public and Directly implements

SessionBean; lines 5-6 then add one negative constraint, Not

annotated with “Stateful”. For both method levels, positive

constraints requiring public visibility, member scope (i.e.,

non-static scope), and a return type of void are added along

with negative constraints requiring ejbActivate and ejbRe-

move to not be annotated with “PostActivate” and “Re-

move”, respectively. Our implementation also handles spe-

cial cases such as when a method does not contain any pa-

rameters, as with both EJB method levels which receive a

negative constraint requiring that there are no parameters in

the method signature.

Lemma 2. Let L = {e1, e2, ..., em} be a prior level, and let

L′ = {e1, e2, ..., en} be a posterior level, such that L′ is the

restructured version of L. LevelConstraints(L,L′) returns

a set of constraints, S = {s1, s2, ..., sk} representing exactly

every required positive and negative constraint to match L.

Proof. If there is an element, eu ∈ L, it must have an asso-

ciated positive constraint, s+

i = PositiveConstraint(eu) ∈
S. All elements in L are iterated over and their corre-

sponding positive constraints are added to S in lines 2-3.

If a positive constraint s+

j = PositiveConstraint(ev) is

not required to match L, then ev /∈ L and s+

j is never

added to S. Thus, S contains exactly every positive con-

straint. If and only if there is an element ew ∈ L′ such

that ew /∈ L, it must have an associated negative con-
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ALGORITHM: Level Restructurings

INPUT: Two levels L = {e1, e2, . . . , em}, L
′ = {e1, e2, . . . , en} where L′ is the restructured

version of L.

OUTPUT: A set R = {r1, r2, . . . , rp} of restructurings.

1. R← ∅

2. POSELS ← L′ − L

3. For i← 1 to |POSELS|

4. R← R
⋃

PositiveRestructuring(POSELS[i])

5. NEGELS ← L− L′

6. Prune(NEGELS) // remove unnecessary elements

7. For j ← 1 to |NEGELS|

8. R← R
⋃

NegativeRestructuring(NEGELS[j])

9. return R

Figure 10. The LevelRestructurings algorithm for calculating the required set of restructurings to transform between two

levels.

ALGORITHM: Level Constraints

INPUT: Two sets L = {e1, e2, . . . , em}, L
′ =

{e1, e2, . . . , en} of signature elements where L′ is

the restructured version of L.

OUTPUT: A set S = {s1, s2, . . . , sq} of context-free

constraints.

1. S ← ∅

2. For i← 1 to |L|

3. S ← S
⋃

PositiveConstraint(L[i])

4. NEGELS ← L′ − L

5. For j ← 1 to |NEGELS|

6. S ← S
⋃

NegativeConstraint(NEGELS[j])

7. return S

Figure 11. The LevelConstraints algorithm for calculat-

ing the context-free set of constraints for a level.

straint, s+

k = PositiveConstraint(ew) ∈ S, since ac-

cording to lemma 1 it will generate a positive restructuring

in LevelRestructurings. NEGELS will therefore con-

tain ew (line 4) and add a negative constraint, s+

k , for exactly

all elements satisfying the aforementioned constraint (lines

5-6).

4.2.3 NamingConvention

For method and field levels, our algorithm adds a name

matching constraint intended to capture naming conventions.

Figure 12 shows the NamingConvention algorithm which

takes a set, N = {n1, n2, . . . , nm}, of fields or methods with

identical signatures in both the prior and posterior examples

and returns a generalized regular expression matching all the

names in N . The algorithm first tokenizes a name based on

the Java naming convention of uppercase delimiters, then

calculates the tokens which match identically. If no naming

convention is found, a literal expression matching only N is

returned. As this is the case for both EJB method levels, each

has an exact naming constraint added.

ALGORITHM: Naming Convention

INPUT: A set N = {n1, n2, . . . , nm} of member names

OUTPUT: A regular expression naming convention

1. TOKENS ←Tokenize(n1)

2. For i← 2 to m

3. TOKENS ← TOKENS
⋂

Tokenize(ni)

4. If TOKENS = ∅

5. return LiteralRegex(N)

6. return GeneralizedRegex(TOKENS)

Figure 12. The NamingConvention algorithm for gener-

alizing a set of names to a naming convention.
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4.2.4 ContextConstraints

Although a level is context-free, program transformations

are often not context-free operations but are rather based

on some framework-dependent notion of context. To accom-

modate these scenarios, we introduce the notion of context

constraints. A context constraint, q for level L1 is a level

constraint, s ∈ L2, such that L1 <L L2 where <L is a user-

defined partial order on the set of levels, P . Figure 13 shows

the ContextConstraints algorithm for discovering all context

constraints for a set of prior levels. It should be noted that the

algorithm present is only a semantically-equivalent version

of the implementation, as in practice caching data structures

can be used to eliminate the internal loop (lines 4-6).

Since our EJB example follows a Bottom-Up pattern, all

method levels are defined as dependent on their enclosing

class level. Thus, ContextConstraints adds the additional

requirements that annotating a method named ejbActivate or

ejbRemove with @PostActivate or @Remove, respectively,

is only correct if the enclosing class has public visibility and

implements SessionBean.

ALGORITHM: Context Constraints

INPUT: A set P = {L1, L2, . . . , Ln} of levels.

A set Sall = {S1, S2, . . . , Sn} of sets of constraints such

that ∀Si ∈ Sall,∀Li ∈ P , Si is the set of level constraints

for Li.

A partial order <L on P .

OUTPUT: A set Qall = {Q1, Q2, . . . , Qn} of context

constraints such that ∀Qi ∈ Qall, Qi is the set of con-

straints defining the context of Li.

1. Qall ← ∅

2. For i← 1 to n

3. Qi ← ∅

4. For j ← 1 to n

5. If P [i] <L P [j]

6. Qi ← Qi
⋃

Sall[j]

7. Qall ← Qall

⋃
{Qi}

8. return Qall

Figure 13. The ContextConstraints algorithm for calcu-

lating the additional constraints for every level.

Lemma 3. Let P = {L1, L2, ..., Ln} be a set of prior

levels, let <L be a partial order on P , and let Sall =
{S1, S2, ..., Sn} be a set of sets of constraints, such that

∀Si ∈ Sall,∀Li ∈ P , Si is the set of context-free constraints

for Li. ContextConstraints(P, Sall, <L) returns an or-

dered set of sets of context constraints, Qall = {Q1, Q2,
..., Qn} such that ∀Qi ∈ Qall, Qi is exactly the set of con-

texts constraints for Li.

Proof. It is necessary to first show that ∀Qi ∈ Qall, Qi

is a set of context constraints for Li, then we show that

Qi is the exact set of context constraints as specified by

<L. ContextConstraints creates a new set of context con-

straints for every level in P (line 3) and adds the set to Qall

(line 7); thus, |Qall| = |P |, and this completes the first half

of the proof. For every Qi, ContextConstraints iterates

over all elements in P and adds a set of level constraints to

Qi if and only if their corresponding level satisfies <L; thus,

Qi is exactly the set of context constraints for Li, and this

completes the second half of the proof.

4.2.5 SalienceValues

Context-dependent transformations hinge on the assumption

that the context of the level they are transforming will not

be invalidated before the level has been transformed. This

assumption could not be guaranteed if the rules were exe-

cuted arbitrarily. For instance, the method-level transforma-

tions for the EJB example require that the target method

is defined in a class implementing SessionBean. If the

class-level transformations are arbitrarily executed before

the method-level transformations, the interface will be re-

moved and the method-level transformations will fail. To

overcome this limitation, our algorithm calculates an exe-

cution order for each level, called a salience value. Rules

with higher salience values will be executed prior to rules

with lower salience values (ties are broken arbitrarily). Fig-

ure 14 shows the SalienceV alues algorithm for calculat-

ing salience values for a set of prior levels. The algorithm is

analogous to a sorting algorithm parameterized by the partial

order on L.

ALGORITHM: Salience Values

INPUT: A set P = {L1, L2, . . . , Ln} of levels

A partial order <L on L.

OUTPUT: A set Yall = {y1, y2, . . . , yn} of salience

values, ∀ yi ∈ Yall, yi is the salience of Li.

1. Yall ← ∅

2. For u← 1 to n

3. yu ← 0

4. For v ← 1 to n

5. If P [v] <L P [u]

6. yu ← yu + 10

7. Yall ← Yall

⋃
{yu}

8. return Yall

Figure 14. The SalienceV alues algorithm for calculating

the order of execution for every level.
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4.3 Merging Algorithms

Once the necessary independent components have been

inferred, two merging algorithms are invoked. The first

merging algorithm, LevelTransformations, combines

the independent components for a level into a set of trans-

formations for that level. The second merging algorithm,

ProgramTransformations, combines the level transfor-

mations into a complete set of program transformations.

4.3.1 LevelTransformations

The LevelTransformations algorithm takes the results of

the algorithms described in the previous section for a single

level, and combines them into a set of generalized transfor-

mation rules. Figure 15 shows the LevelTransformations
algorithm. Until now, we have focused on structural in-

ference at or above the level of method headers. We have

deliberately not detailed how we infer annotation attribute

values, which can be any valid Java expression and as

such require a deeper level of inference than that of head-

ers. Thus, inference of attribute values is delayed until

the LevelTransformations algorithm (lines 4-10), when

more complete program information is known. For every

argument to the attribute, LevelTransformations checks

if a matching expression exists in the prior representative

example (Lines 6-7). If it does not, the algorithm gener-

ates a literal transformation which adds the expression to

the attribute (line 8). If the expression does exist, however,

it generates a generalized transformation based on the con-

text of the expression. In both cases, the salience of attribute

transformations must be slightly lower than that of the rest

of the level transformations, since the annotation itself must

be added first before an attribute can be added.

4.3.2 ProgramTransformations

The final algorithm, ProgramTransformations, takes

two decomposed representative examples, P and P ′, as well

as a set of expressions, X, in the prior representative exam-

ple, and returns the set, Tall, of inferred program transfor-

mations. First, ProgramTransformations builds the sets

of fundamental components, Sall, Rall, Qall, and Yall, for

every level (lines 1-11). Then, it builds the set of context

constraints (if any) for every expression (lines 14-16). Fi-

nally, ProgramTransformations iterates over all levels

and adds each set of level transformations to Tall (lines 17-

19). Figure 17 shows the rules output by the algorithm to

transform the EJB example used through this section.

5. Evaluation

We evaluated our approach on two criteria. First, we mea-

sured the accuracy of our inference algorithm by applying it

to seven different refactoring scenarios. Second, we demon-

strated the effectiveness of the automatically inferred refac-

torings by upgrading the testing portion of four well-known,

open-source projects. The results of our evaluation show that

ALGORITHM: Program Transformations

INPUT: A set P = {L1, L2, . . . , Ln} of prior levels.

A set P ′ = {L′
1, L

′
2, . . . , L

′
n}) of posterior levels.

A set X = {x1, x2, . . . , xm} of expression nodes in an

AST.

A partial order <L on L.

OUTPUT: A set Tall = {T1, T2, . . . , Tq} of transforma-

tions for this program.

1. Sall ← ∅

2. Rall ← ∅

3. For i← 1 to n

4. L1 ← P [i]

5. L′
1 ← P ′[i]

6. Si ← LevelConstraints(Li, L
′
i)

7. Ri ← LevelRestructurings(Li, L
′
i)

8. Sall ← Sall

⋃
{Si}

9. Rall ← Rall

⋃
{Ri}

10. Qall ← ContextConstraints(Sall, <L)

11. Yall ← SalienceValues(P [0])

12. Tall ← ∅

13. QX ← ∅

14. For i← 1 to m

15. v ← V [i]

16. QX ← QX

⋃
{Qall.v}

17. For i← 1 to n

18. Ti ←
LevelTransformations(Sall[i], Qall[i], Rall[i], X,QX)

19. Tall ← Tall

⋃
Ti

20. return Tall

Figure 16. The ProgramTransformations algorithm

for inferring a set of transformation rules from two repre-

sentative examples.

our approach produces highly-accurate refactorings which,

with few minor refinements, can be automatically-applied

to large-scale applications, effectively solving the Vendor

and Version Lock-in anti-patterns for applications that use

annotation-based frameworks.

5.1 Inferred Refactorings

For our approach to be viable in a realistic setting, it has

to infer refactorings with a high degree of accuracy. To as-

sess the accuracy of our inferencing algorithm, we manu-

304



ALGORITHM: Level Transformations

INPUT: A set S = {s1, s2, . . . , sk} of context-free constraints.

A set Q = {q1, q2, . . . , qm} of context constraints.

A set R = {r1, r2, . . . , rn} of restructurings.

A set X = {x1, x2, . . . , xu} of expression nodes.

A set QX = {Q1, Q2, . . . , Qu} of sets of context constraints for the expression nodes.

A salience score Y for this level.

OUTPUT: A set Tlevel = {t1, t2, . . . , tp} of transformations for this level.

1. Tlevel ← ∅

2. For i← 1 to n

3. ri ← R[i]

4. If TypeOf(r1) = AttributeAddition and |ri.args| > 0

5. For j ← 1 to |ri.args|

6. Xa ← X
⋂

ri.args[j]

7. If Xa = ∅

8. Tlevel ← Tlevel

⋃
{LiteralTransformation(ri.args[j], Y − 1)}

9. Else

10. Tlevel ← Tlevel

⋃
{GeneralTransformation(ri.args[j], Qa, Y − 1)}

11. Tlevel ← Tlevel

⋃
{GeneralTransformation(ri, S

⋃
Q, Y )}

12. return Tlevel

Figure 15. The LevelTransformations algorithm for generating a set of transformation rules for a level.

ally evaluated each inferred refactoring in four categories:

constraints, restructurings, rule execution order, and manual

refinements required. The metrics used to evaluate each cat-

egory are defined below. To help explain the metrics, we give

examples from the transformation rules listed in Figure 4.

5.1.1 Constraint Metrics

For constraints, we measured the number of correct, exces-

sive, erroneous, and missing constraints, defined as follows:

• Correct. A correct constraint accurately captures a single

requirement of a transformation rule. For example, Name

matches “test.*” correctly requires the name of any test

method to start with the test prefix.

• Excessive. An excessive constraint unnecessarily limits

the scope of a transformation rule. For example, Visibility

is protected limits the applicability of rules 2 and 3 to

only protected methods, even though public methods

should be captured as well.

• Erroneous. An erroneous constraint captures require-

ments that are incorrect for a specific transformation rule.

For example, Has 1 parameter would be erroneous for

identifying a setUp method in rule 2.

• Missing. A missing constraint is a necessary requirement

not present in a transformation rule. For example, if Re-

turn type is “void” were not present in rule 2, it would be

a missing constraint.

5.1.2 Restructuring Metrics

For restructurings, we measured the number of correct, erro-

neous, and missing restructurings as follows:

• Correct. A correct restructuring performs a required

atomic transformation in a transformation rule. For ex-

ample, Set access level of $method to public in rule

2 correctly changes the visibility of a protected setUp

method.

• Erroneous. An erroneous restructuring performs an atomic

transformation that invalidates a transformation rule. For

example, Set scope level of $method to static would be

erroneous for rule 2 because the method should maintain

its member scope.

• Missing. A missing restructuring is an atomic transfor-

mation not present in a transformation rule. For example,

if Add annotation “Before” to $method were not present

in rule 2, the composite refactoring would be incomplete.
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rule "#1) Transform classes matching HelloWorldBean"

  no-loop

  salience 0

    when

      $class : Application Class

- Visibility is public

- Implements "javax.ejb.SessionBean"

    then

Remove interface from $class

Update $class

end

rule "#2) Transform all methods matching ejbActivate"

  no-loop

salience 10

  when

    $class : Application Class

- Visibility is public

- Implements "javax.ejb.SessionBean"

    $method : Application Method

- Name matches "ejbActivate"

- Declaring class is $class

- Not annotated with "javax.ejb.PostActivate"

- Visibility is public

- Scope level is member

- Return type is "void"

- Has 0 parameters

  then

    Add annotation "javax.ejb.PostActivate" to $method

    Update $class

    Update $method

end
rule "#3) Transform all methods matching ejbRemove"

  no-loop

salience 10

  when

    $class : Application Class

- Visibility is public

- Implements "javax.ejb.SessionBean"

    $method : Application Method

- Name matches "ejbRemove"

- Declaring class is $class

- Not annotated with "javax.ejb.Remove"

- Visibility is public

- Scope level is member

- Return type is "void"

- Has 0 parameters

  then

    Add annotation "javax.ejb.Remove" to $method

    Update $class

    Update $method

end

Figure 17. The rules learned to transform the EJB example

from version 2 to version 3.

5.1.3 Rule Order Metrics

For transformation rules, we measured the number of correct

and erroneous rule execution orders (i.e., salience values) as

follows:

• Correct. A correctly ordered transformation rule does

not invalidate other rules when executed. For example,

executing rule 2 before rule 1 will not preclude rule 1

from executing.

• Erroneous. An erroneously ordered transformation rule

invalidates another rule when executed. For example, ex-

ecuting rule 1 before rule 2 would invalidate rule 2 by

prematurely removing the super class from the target test

case.

5.1.4 Manual Refinement Metrics

To measure the manual effort required by a developer, we

counted the number of minor and major refinements needed

for each refactoring as follows:

• Minor. A minor or small refinement is a required change

to a single constraint, restructuring, or rule execution or-

der. For example, changing Visibility is protected to Visi-

bility is at least protected in rule 2 is a minor refinement.

• Major. A major or large refinement is a required addition

or removal of an entire rule. For example, if rule 1 were

not inferred, a major refinement would be needed to add

it by hand.

Scenario Upgrade Pattern

JUnit 3 test cases to JUnit 4 Bottom-Up

JUnit 3 test suites to JUnit 4 Top-Down

JUnit 3 test cases to TestNG Bottom-Up

JUnit 4 test cases to TestNG Identity

Serializable classes to JDO Bottom-Up

Serializable classes to JPA Bottom-Up

JDO classes to JPA Identity

Table 2. The seven different upgrading scenarios and their

corresponding upgrade patterns.

The above criteria were used to measure the accuracy of

the inferred refactorings for seven scenarios, shown in Table

2 with their corresponding upgrade patterns. The first two

refactoring scenarios focus on upgrading from JUnit 3 to JU-

nit 4, as has been discussed throughout the paper. The third

and fourth scenarios focus on switching unit testing frame-

work vendors from JUnit to TestNG [4]. The TestNG frame-

work was developed as a next generation testing framework

extending beyond unit testing to support regression, integra-

tion, and functional testing. Recognizing that many exist-

ing applications have implemented their testing functionality

using JUnit, TestNG provides a hand-written automatic up-

grade utility in their Eclipse plug-in. However, as of the lat-

est version of TestNG, this upgrade utility has several soft-

ware defects when upgrading JUnit 4 test cases, such as not

properly removing JUnit annotations, inserting deprecated

TestNG annotations, and incorrectly matching test method

names. For this scenario, we used a representative exam-

ple of a TestNG test case that was identical to the JUnit 4

test case example in Figure 1, but with the corresponding

TestNG annotations.

The remaining three scenarios focus on upgrading ap-

plications to use different enterprise orthogonal persis-

tence frameworks. In the first of these three scenarios, a

Serializable class must be upgraded to use Apache’s

Java Data Objects (JDO) [34] annotations. In the second

scenario, the same Serializable class must be upgraded

to use the standardized J2EE Java Persistence API (JPA) [15]
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Scenario Constraints Restructurings Rules Refinements

Target Upgrade C M X E C M E C E S L

Test Cases

JUnit 3 to 4 29 0 5 0 11 0 0 5 0 5 0

JUnit 3 to TestNG 28 0 5 0 10 0 0 5 0 5 0

JUnit 4 to TestNG 25 0 0 0 11 0 0 5 0 0 0

Test Suites JUnit 3 to 4 52 0 0 0 11 0 0 6 0 0 0

Persistence

Serializable to JDO 78 0 0 0 14 0 0 8 1 1 0

Serializable to JPA 78 0 0 0 14 0 0 8 1 1 0

JDO to JPA 67 0 0 0 24 0 0 8 1 1 0

Total 357 0 10 0 95 0 0 43 3 13 0

Table 3. The accuracy of the inferred rules for the seven different upgrading scenarios. C=Correct; M=Missing; X=Excessive;

E=Erroneous; S=Small(Minor); L=Large(Major).

annotations. In the third scenario, a class marked with JDO

annotations must be transitioned to use JPA annotations.3

Table 3 shows the accuracy of the inferred refactorings.

As proved in Lemmas 1-3, our algorithm does not miss any

required constraints or restructurings, nor does it infer any

erroneous ones. Similarly, no major refactoring refinements

are required by the developer in any of the seven scenarios.

The inference algorithm generated the same five exces-

sive constraints in both of the JUnit 3 test case upgrading

scenarios. Two of these excessive constraints unnecessar-

ily limit the applicability of the transformation rules for the

setUp and tearDown methods to only protected visibility,

even though such methods can be public. The remaining

three excessive constraints unnecessarily require the declar-

ing class of setUp, tearDown, and test methods to directly

extend TestCase, even though an indirect extension is valid.

These two situations arise due to the small sample size used

by our approach (i.e., only two representative examples).

Thus, while the inferred JUnit 3 test case refactorings are

correct for the given examples in both scenarios, five minor

refinements are necessary to make the refactorings general

enough to fully capture all valid test cases.

For the persistence scenarios, each generated refactor-

ing requires one transformation rule reordering. The inferred

rules find a naming convention for both the primary database

key and persisted elements in a class, however the latter is a

more general version of the former (i.e., both conventions

will match the primary database key). Thus, to ensure that

the primary database key is annotated before regularly per-

sisted elements, it must be given a slightly higher precedence

in the execution order, resulting in one required minor refine-

ment for each of the persistence refactorings.

The accuracy metrics presented above show that the rules

automatically inferred by our algorithm have a high degree

of accuracy. On average, 97% of the total constraints, re-

3 For the three orthogonal persistence scenarios, we have selected a

commonly-used subset of functionality of JDO and JPA specifications. The

technical report version of this paper [38] contains representative examples

for these persistence frameworks.

structurings, and rule orderings require no refinement by the

developer, with five out of seven refactoring scenarios re-

quiring at most one minor change. The accuracy of the in-

ferred refactorings has an important practical significance.

Unlike the hand-written upgrade utility provided by TestNG,

the JUnit 4 to TestNG refactorings inferred by our approach

accurately upgrade all JUnit 4 test cases without requiring

any manual refinement.

5.2 Case Studies

To demonstrate the effectiveness of a refined refactoring, we

have upgraded the JUnit 3 test cases of four open-source,

real-world applications to JUnit 4. Table 4 presents the total

number of lines of testing code, TestCase classes, test

methods, setUp methods, and tearDown methods upgraded

in each application. Overall, we have successfully upgraded

more than 80K lines of Java source code, eliminating the

need to perform this refactoring by hand.

6. Related Work

Our approach relies on automated inference of program

transformation and structural program differences. While

these are broad and extensive research areas, to the best of

our knowledge, none of the existing techniques in either of

these areas are sufficient to automatically upgrade applica-

tions that use annotation-based frameworks.

6.1 Technique Classification

In a comprehensive survey, Visser [41] presents a taxonomy

of program transformation systems. This taxonomy divides

program transformations into two broad categories: trans-

lation and rephrasing. Translation involves transforming a

program from one language to another, whereas rephras-

ing is concerned with program-improving transformations

within the same language. Refactoring is a special subclass

of rephrasing that improves the design of a program while

maintaining its functionality. Renovation brings a program

up to date with changed requirements, and migration ports a

program from one language to another.
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Application Lines of Code Test Cases Tests setUp Methods tearDown Methods

JHotDraw 7.0.9 378 2 42 2 2

JBoss Drools 4.0.3 16,942 101 453 38 11

Apache Ant 1.7.0 21,969 251 1,714 187 99

JFreeChart 1.0.8 41,056 318 1,739 39 1

Total 80,345 672 3,948 266 113

Table 4. Upgrade statistics for the four real-world case studies.

Our approach entails changing the application code to

use a different framework. The program’s semantics is

preserved–the program does the same thing but using a dif-

ferent framework, thus classifying our approach as a refac-

toring. However, traditional refactoring techniques do not

capture large scale changes such as the use of a different

framework. Upgrading an application that uses a frame-

work based on subtyping and naming requirements to an

annotation-based framework can also be considered a reno-

vation. Additionally, transforming legacy applications writ-

ten in a language without annotations to a language with

annotations is migration, as the different versions of a lan-

guage (e.g., Java 1.4 vs. Java 1.5) can be considered as two

different languages. Since semantic equality is the main goal

of our transformations, we consider our approach a refactor-

ing.

6.2 Program Transformation Systems

Our technique relies on rule-based program transformations

to implement the automatically-inferred refactorings. Mul-

tiple program transformation systems have appeared in the

research literature. A representative of a state-of-the-art gen-

eral program transformation system is Stratego/XT [42],

which enables a variety of transformations from both the

translation and rephrasing categories. Another example of a

multi-language transformation system is DMS R©[2], which

focuses on scalability and efficiency.

Several other transformation systems target a single lan-

guage. JaTS [7] provides a Java-like syntax for specifying

program transformations in a manner similar to macros. In-

ject/J [22] enables program transformations at a level higher

than that of an abstract syntax tree (AST) by providing a

meta-model that can be manipulated via a domain-specific

scripting language. TXL [10] uses a first order functional

programming model, allowing explicit programmer control

over several phases of the parsing and rewriting process.

iXJ [5] aims at providing a visual language to enable inter-

active program transformations. The Smalltalk Refactoring

Browser [32], a key example of a successful application of

program transformation in a commercial setting, uses an ex-

tended Smalltalk syntax to specify AST pattern trees. The

Arcum framework [35] uses declarative pattern matching

and substitution to specify crosscutting design idioms.

While these systems are extremely powerful tools for im-

plementing program transformations, they do not provide

support for automatically inferring transformation rules, as

required by our approach. However, our algorithm is general

enough that it could be used to infer transformation rules in

any of the above systems that support metadata transforma-

tions.

6.3 Program Differencing

To infer the necessary set of transformations, our technique

requires the ability to calculate differences between two pro-

gram versions. Program differencing is an active research

area and several differencing algorithms have been proposed

recently.

Dmitriev describes a make utility for Java [19] that lever-

ages program change history to selectively recompile depen-

dent source files. UMLDiff [43, 45] detects structural differ-

ences between two successive version of a program and ac-

curately models the design evolution of the system. DSMD-

iff [26] identifies differences between domain-specific mod-

els. Kim et al. [24] use a string similarity measure to infer

structural changes at or above the level of a method header,

represented as first-order relational logic rules. Since none

of these techniques extend beyond the method header level,

they cannot be leveraged to detect upgrade patterns at the

required level of granularity.

The Breakaway tool [13] helps determine the detailed

correspondences between two classes through the visualiza-

tion of similarities between two ASTs. The Change Distill-

ing algorithm [21] uses an optimized version of a tree dif-

ferencing algorithm for hierarchically structured data [8] to

extract fine-grained source code changes. The JDiff [1] al-

gorithm uses an augmented representation of a control-flow

graph to identify changes in the behaviors between two ver-

sions of an object-oriented program. Since none of these al-

gorithms can generalize the inferred differences, they cannot

be leveraged to infer generalized refactoring rules.

6.4 API Evolution

Transitioning a legacy application from a convention-based

to an annotation-based framework is closely-tied to the prob-

lem of API evolution, which has been a highly-active area

of recent research. Explicit documentation (e.g., change an-

notations [9], refactoring tags [33], metapatterns [39], and

deprecation inlining [29]) has been proposed as a means of

facilitating evolution of framework dependent applications.
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More recent approaches aim at automating the inference

and application of refactorings. CatchUp! [23] records refac-

torings done by framework developers and provides facili-

ties for replaying them on the client to update application

code. Extension rules [11, 12] enable generalization trans-

formations that add variability and flexibility into the class

structure of a framework, thereby ensuring consistency with

client applications. RefactoringCrawler [16] combines syn-

tactic and semantic analyses to detect refactorings in evolv-

ing components. RefacLib [37] follows a similar approach,

but replaces semantic analysis with various analysis heuris-

tics. MolhadoRef [17] is a software configuration manage-

ment system that reduces merge conflicts and facilitates pro-

gram evolution comprehension by tracking refactorings and

being aware of program entities. ReBA [18] generates com-

patibility layers that ensure binary compatibility between

new library APIs and old clients, similarly to a binary adap-

tation layer in [14] that adapts legacy binaries for new frame-

work releases. Diff-CatchUp [44] leverages design differ-

ences inferred by the UMLDiff algorithm described above

to apply a set of heuristics to suggest API replacements in

response to compilation errors.

While these approaches have all been very effective for

their target domains, they differ from our approach. Specifi-

cally, they only support simple refactorings such as Change

Signature, and they do not combine and generalize these

refactorings, as required for upgrading applications that use

annotation-based frameworks.

6.5 Programming by Demonstration

Inferring a set of rules from a pair of examples bears simi-

larity to programming by demonstration [25]. For a system

to be classified as “programming by demonstration,” it must

meet two criteria. First, the programmer must create the ap-

plication via the same commands or process that would be

used to perform the task manually. Second, the programmer

must write the program by giving an example of the desired

behavior. Since Rosemari enables programmers to use the

standard Eclipse interface to input representative examples,

it could be classified as a refactoring by demonstration sys-

tem.

7. Future Work

Currently, our inferencing algorithm supports only Java 5 an-

notations. In the future, we plan to extend this work to sup-

port the upcoming Java 7 annotations that enable annotating

a broader set of program elements. However, our structural

differencing algorithm will need to be extended to handle an-

notated local variables in method bodies, possibly requiring

static analysis.

In addition, many frameworks that used XML-based

metadata rather than type and naming requirements in their

previous versions have since transitioned to annotations. We

plan to extend our approach to automatically infer refactor-

ings for legacy applications that use XML-based metadata.

Such an extension could potentially be enabled by extending

the notion of a prior representative example to include XML

snippets, and subsequently incorporating XML analysis into

our algorithm.

Finally, finding a more unified approach to inferring

refactoring rules has great potential benefits. This may be

realized either by replacing the current pattern-based ap-

proach with a more sophisticated analysis, introducing a step

for inputting domain-specific knowledge, or adding algo-

rithmic support for multiple representative examples. These

enhancements could eliminate the need for a developer to

decide on which upgrade pattern to use, flattening the learn-

ing curve for using our system and increasing the possibility

of widespread adoption.

8. Conclusions

This paper presented Annotation Refactoring, an approach

to solving the Vendor and Version lock-in problems asso-

ciated with annotation-based frameworks. Our approach is

based on the wide availability of upgrade guides contain-

ing examples of legacy classes and their upgraded versions.

Leveraging these examples, our tool enables framework de-

velopers to generate refactoring utilities capable of automati-

cally upgrading legacy applications. As demonstrated by our

case studies, the inferred refactorings are highly-accurate

and can effectively upgrade large-scale, real-world applica-

tions.
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[14] I. Şavga and M. Rudolf. Refactoring-based support

for binary compatibility in evolving frameworks. In

GPCE ’07: Proceedings of the 6th International Con-

ference on Generative Programming and Component

Engineering, pages 175–184, New York, NY, USA,

2007. ACM.

[15] L. DeMichiel and M. Keith. JSR 220: Enterprise

JavaBeans 3.0, 2008. http://jcp.org/aboutJava/

communityprocess/final/jsr220/index.html.

[16] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.

Automated detection of refactorings in evolving com-

ponents. In ECOOP, pages 404–428, 2006.

[17] D. Dig, K. Manzoor, R. Johnson, and T. N.

Nguyen. Refactoring-aware configuration management

for object-oriented programs. In ICSE ’07: Proceed-

ings of the 29th International Conference on Software

Engineering, pages 427–436, Washington, DC, USA,

2007. IEEE Computer Society.

[18] D. Dig, S. Negara, V. Mohindra, and R. Johnson.

ReBA: refactoring-aware binary adaptation of evolving

libraries. In ICSE ’08: Proceedings of the 30th interna-

tional conference on Software engineering, pages 441–

450, New York, NY, USA, 2008. ACM.

[19] M. Dmitriev. Language-specific make technology

for the Java programming language. SIGPLAN Not.,

37(11):373–385, 2002.

[20] Eclipse Foundation. Eclipse Java development tools,

March 2008. http://www.eclipse.org/jdt.

[21] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change

distilling: Tree differencing for fine-grained source

code change extraction. IEEE Trans. Softw. Eng.,

33(11):725–743, 2007.

[22] T. Genssler and V. Kuttruff. Source-to-source trans-

formation in the large. In Modular Programming Lan-

guages, pages 254–265. Springer-Verlag, 2003.

[23] J. Henkel and A. Diwan. CatchUp!: capturing and re-

playing refactorings to support API evolution. In ICSE

’05: Proceedings of the 27th International Conference

on Software Engineering, pages 274–283, New York,

NY, USA, 2005. ACM.

[24] M. Kim, D. Notkin, and D. Grossman. Automatic infer-

ence of structural changes for matching across program

versions. In The 29th International Conference on Soft-

ware Engineering (ICSE’07), pages 333–343, 2007.

[25] H. Lieberman. Your Wish is My Command: Program-

ming By Example. Morgan Kaufmann, 2001.

[26] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A differentia-

tion tool for domain-specific models. European Journal

of Information Systems, 16:349–361, 2007.

[27] D. Panda, D. Clarke, and M. Schincariol. EJB 3.0

migration. Technical report, Oracle, October 2005.

[28] R. Pawlak, C. Noguera, and N. Petitprez. Spoon: Pro-

gram analysis and transformation in Java. Technical

report, INRIA Research Report, 2006.

[29] J. H. Perkins. Automatically generating refactorings

to support API evolution. In PASTE ’05: Proceed-

ings of the 6th ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering,

pages 111–114, New York, NY, USA, 2005. ACM.

[30] M. Proctor, M. Neale, P. Lin, and M. Frandsen. Drools

Documentation. Technical report, JBoss Inc., 2006.

310

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://www.eclipse.org/jdt


[31] C. Richardson. Untangling enterprise Java. Queue,

4(5):36–44, 2006.

[32] D. Roberts and J. Brant. Tools for making impossi-

ble changes - experiences with a tool for transforming

large Smalltalk programs. Software, IEE Proceedings

-, 151(2):49–56, 2004. 1462-5970.

[33] S. Roock and A. Havenstein. Refactoring tags for auto-

matic refactoring of framework dependent applications.

In Proc. Int’l Conf. eXtreme Programming and Flexible

Processes in Software Engineering (XP), 2002.

[34] C. Russell. Java Data Objects 2.1, June 2007. http:

//db.apache.org/jdo/specifications.html.

[35] M. Shonle, W. G. Griswold, and S. Lerner. Beyond

refactoring: a framework for modular maintenance of

crosscutting design idioms. In ESEC-FSE ’07: Pro-

ceedings of the the 6th ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pages 175–

184, 2007.

[36] R. Stuckert. JUnit reloaded, December 2006.

http://today.java.net/pub/a/today/2006/

12/07/junit-reloaded.html.

[37] K. Taneja, D. Dig, and T. Xie. Automated detection

of API refactorings in libraries. In ASE ’07: Proceed-

ings of the 22nd IEEE/ACM International Conference

on Automated Software Engineering. IEEE Computer

Society, 2007.

[38] W. Tansey and E. Tilevich. Refactoring object-oriented

applications for metadata-based frameworks. Technical

report, Virginia Tech, January 2008.
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