
Efficient Automated Marshaling of C++ Data Structures for MPI Applications

Wesley Tansey and Eli Tilevich

Center for High-End Computing Systems

Department of Computer Science

Virginia Tech

Email: {tansey,tilevich}@cs.vt.edu

Abstract

We present an automated approach for marshaling C++

data structures in High Performance Computing (HPC)

applications. Our approach utilizes a graphical editor

through which the user can express a subset of an object’s

state to be marshaled and sent across a network. Our tool,

MPI Serializer, then automatically generates efficient mar-

shaling and unmarshaling code for use with the Message

Passing Interface (MPI), the predominant communication

middleware for HPC systems.

Our approach provides a more comprehensive level of

support for C++ language features than the existing state

of the art, and does so in full compliance with the C++

Language Standard. Specifically, we can marshal effec-

tively and efficiently non-trivial language constructs such as

polymorphic pointers, dynamically allocated arrays, non-

public member fields, inherited members, and STL con-

tainer classes. Additionally, our marshaling approach is

also applicable to third party libraries, as it does not re-

quire any modifications to the existing C++ source code.

We validate our approach through two case studies of

applying our tool to automatically generate the marshal-

ing functionality of two realistic HPC applications. The

case studies demonstrate that the automatically generated

code matches the performance of typical hand-written im-

plementations and surpasses current state-of-the-art C++

marshaling libraries, in some cases by more than an or-

der of magnitude. The results of our case studies indicate

that our approach can be beneficial for both the initial con-

struction of HPC applications as well as for the refactoring

of sequential applications for parallel execution.

1 Introduction

Parallel programming for High Performance Computing

(HPC) remains one of the most challenging application do-

mains in modern software engineering. At the same time,

the programmers who create applications in this complex

domain are often non-experts in computing. That is, the

primary users of parallel processing tend to be lab scientists

and engineers, many of whom have limited experience with

parallel programming. The dichotomy between the intrin-

sic difficulty of this application domain and the non-expert

status of its many application developers is a major bottle-

neck in the scientific discovery process. This provides a

strong motivation for research efforts aimed at making par-

allel processing more intuitive and less error-prone.

Recent studies [16, 15] have indicated that Shared Mem-

ory Multiprocessor (SMMP) programming models can lead

to higher programmer productivity compared to Distributed

Memory Multiple Processor (DMMP) models (i.e., com-

pute clusters). A key difference between these two pro-

gramming models is the need to pass program state between

multiple processors across the network in DMMP. The pro-

gramming technique for accomplishing this goal is called

marshaling, also known as serialization. The technique en-

tails representing the internal state of a program in an exter-

nal format. Data in an external format can then be passed

across the network. The reverse of this technique is called

unmarshaling, also known as deserialization. These tech-

niques are difficult and error-prone to implement by hand

without library or automated tool support and likely con-

tribute to the discrepancies in programmer productivity be-

tween the SMMP and DMMP models.

Nevertheless, the relatively lower cost of DMMP hard-

ware makes it more common and accessible to a wider

group of parallel programmers [35]. The primary middle-

ware facility for parallel programming on a compute cluster

is the Message Passing Interface (MPI) [24]. This middle-

ware facility is ubiquitous, being available on virtually ev-

ery parallel cluster-based computing system and has a stan-

dardized application programming interface (API). In ad-

dition, MPI aims at providing a uniform API for multiple

programming languages such as Fortran, C, and C++. Con-

sequently, this API has to be tailored to the lowest com-

mon denominator, providing only low-level marshaling fa-



cilities. As a result, C++ programmers are forced to provide

tedious and error-prone code to interface their C++ appli-

cation code with the MPI marshaling facilities. Therefore,

efforts to map higher-level features of C++ to lower-level

marshaling facilities of MPI (either via libraries or auto-

matic tools) have the potential to significantly improve pro-

grammer productivity.

C++ is one of the foremost higher-level programming

language that provides support for object oriented, procedu-

ral, and generic programming models. While large portions

of engineering and scientific code have been written in For-

tran, C++ is often a preferred language for programming

complex, performance-conscious models due to its avail-

ability, portability, efficiency, and generality [36, 4, 23]. As

C++ is being used more and more in scientific and engineer-

ing computing, the importance of alleviating the burden of

implementing marshaling logic in C++ for MPI grows due

to the number of non-expert users in these domains. How-

ever, marshaling C++ data structures is non-trivial due to

the inherent complexity of the language.

This paper presents a novel approach to overcoming

the challenges of mapping higher-level features of C++ to

the lower-level marshaling facilities of MPI. Our approach

eliminates the need for the programmer to write any mar-

shaling code by hand. Instead, our tool uses compiler tech-

nology to parse C++ code and to obtain an accurate descrip-

tion of a program’s data structures. It then displays the

resulting description in a graphical editor that enables the

programmer to simply “check-off” the subset of a class’s

state to be marshaled and unmarshaled. Our tool then auto-

matically generates efficient MPI marshaling code, whose

performance is comparable to that of hand written code.

Our approach provides a more comprehensive level of

support for C++ language features than the existing state of

the art. Specifically, we can marshal effectively and effi-

ciently non-trivial language constructs such as polymorphic

pointers, dynamically allocated arrays, non-public member

fields, inherited members, and STL container classes. A

distinguishing characteristic of our approach is that it pro-

vides support for a significant subset of the C++ language

without requiring any modifications to the existing C++

source code. This makes our approach equally applicable to

third party libraries as well as to programmer-written code.

Our tool generates code that uses standard MPI calls and

requires no additional libraries, thereby simplifying deploy-

ment.

The rest of this paper is structured as follows. Section

2 overviews directly and indirectly related work. Section 3

presents a motivating example and shows the deficiencies of

prior approaches. Section 4 details our automatic marshal-

ing techniques and describes our automated tool. Section 5

validates our approach by presenting two case studies. Sec-

tion 6 outlines future work, and Section 7 concludes.

2 Motivation and Related Work

A wealth of existing research literature deals with some

aspect of marshaling program state. Nevertheless, as we ar-

gue next, our domain presents a unique set of challenges

which have not been fully addressed by prior approaches.

We first explain the unique challenges of automatically gen-

erating C++ marshaling functionality. Then we examine

indirectly related research on implementing and improving

serialization in Java, C, and C++. Finally, we detail prior

efforts to automate marshaling C++ data structures for MPI

and compare the existing state of the art with our approach.

2.1 Design Objectives

In creating an automated tool for generating marshaling

functionality for C++ data structures, we set the following

objectives:

1. The tool should provide abstractions to automate the

handling of low-level marshaling details, to make our

approach appealing to experts and non-experts alike.

2. The generated marshaling code should be highly effi-

cient, as performance is a crucial requirement for HPC

applications.

3. The tool should be able to marshal any subset of an

object’s state to minimize the amount of network traffic

and enable multiple marshaling strategies per object

rather than providing only one strategy per type (i.e.,

C++ class) to allow maximum flexibility.

4. The generated marshaling functionality should not re-

quire any modification to the existing code, to make

our approach work with third-party libraries.

5. The generated code should use only standard MPI calls

and not require any runtime library to ease deployment

and to ensure cross-platform compatibility.

6. The marshaling technique should be able to support a

subset of the C++ language that contains commonly

used features including:

(a) Non-primitive fields

(b) Pointers

(c) Non-public fields (i.e., private and protected)

(d) Static and dynamic arrays

(e) Inheritance

(f) Standard Template Library (STL) containers

In the following discussion of related work, we will refer

to the above six objectives to motivate our approach and to

explain why existing approaches are insufficient.



2.2 Challenges of Automatic C++ Mar-
shaling

Ultimately, automatic marshaling requires the ability for

an external program entity to traverse an object graph. The

marshaling functionality has to be able to access all the

fields of a C++ object irrespective of their access protection

level, including private and protected fields. Additionally,

the marshaling functionality must be able to determine type

and size information about each marshaled field. In the case

of pointers and dynamically allocated structures, this infor-

mation is not generally available at runtime.

The standard RunTime Type Information (RTTI) [18] of

C++ is not sufficient to provide support for automatic mar-

shaling. However, efforts have been made to provide ad-

vanced facilities for C++ that enable access to runtime type

information. The most notable of which is the Metaobject

Protocol (MOP) for OpenC++ [7], which enhances the lan-

guage with reflective capabilities providing an effective ap-

proach to dealing with the challenges outlined above. Nev-

ertheless, standard C++ implementations do not posses re-

flective capabilities. Thus, an approach using any non-

standard extensions of C++ would be inappropriate, as it

would violate objective four in the previous section.

2.3 Indirectly Related Work

An example of a mainstream, commercial object ori-

ented programming language with built-in reflective capa-

bilities is Java. Ever since the capability to “pickle” the

state of a Java object [29] was added to the language in

the form of Java Object Serialization [32], numerous ap-

proaches for optimizing this capability have been proposed.

Java reflection[31] provides capabilities for runtime inspec-

tion of Java object graphs and also for modifying object

state. Many of the proposed approaches of optimizing

Java serialization had the aim of making the language more

amenable for HPC. The proposals for faster serialization

eliminated the overheads of reflection by providing custom

code for individual objects [27], using native code [21, 22],

and finally using runtime code generation to specialize se-

rialization functionality [1]. Because C++ does not have

built-in reflective capabilities, none of these approaches are

applicable to us. It is worth noting that the vision of Java as

a language for HPC has not taken hold in mainstream high

performance computing.

Remote Procedure Call (RPC) systems such as Sun RPC

[33] and DCE RPC [34] provide marshaling capability for

C structures. The programmer provides an IDL specifica-

tion for a remote procedure call and its parameters, and a

stub compiler automatically generates marshaling and un-

marshaling code. However, the marshaling/unmarshaling

functionality of RPC systems is not suitable for our ap-

proach. First, their target language is C rather than C++,

which violates objective six. Second, the generated code

does not use standard MPI calls, which violates objective

five. Finally, it is not easy to specify a subset of an object

state to marshal, which violates objective three.

CORBA [26] and DCOM [6] are object-oriented exten-

sions of the RPC systems above. While they do provide

C++ language mappings, they do not cover all of the C++

language features in objective six. Specifically, CORBA

marshaling facilities support only single class inheritance

and have no notion of protected-fields [25]. Furthermore,

to satisfy the programming conventions of CORBA, exist-

ing C++ code either has to be modified or special factory

classes must be written [26], violating objectives four and

one, respectively. Neither CORBA or DCOM marshaling

provide special handling for STL container classes. DCOM

is platform-dependent, being mainly supported on the Win-

dows platform. Lastly, CORBA and DCOM require runtime

libraries, violating objective five.

Adaptive parameter passing [20] aims at optimizing RPC

marshaling by sending a subset of an object’s state graph.

The approach introduces a domain specific language and

does not support MPI, violating objective five and not suffi-

ciently meeting objective one.

2.4 Directly Related Work

Several prior approaches have attempted to provide au-

tomatic serialization of C/C++ data structures for MPI ap-

plications. These approaches include both automatic tools

and special purpose libraries. The automatic tools that we

consider closely related work include AutoMap/AutoLink

[11], C++2MPI [14], and MPI Pre-Processor [28]. In ad-

dition, Boost.MPI and Boost.Serialization [17] provide li-

brary support for seamless marshaling and unmarshaling.

Next we describe and compare the features of each of these

approaches to motivate our approach and demonstrate how

it improves on existing state-of-the-art.

AutoMap/AutoLink [11] provides automatic marshaling

of C structures by enabling the user to annotate fields to

be marshaled. While the annotations provide a level of ab-

straction, its granularity might be too low-level particularly

for non-expert users, possibly violating objective one. Ob-

viously, this approach will fail if the fields are a part of a

structure in a third-party un-modifiable library, which vio-

lates objective five. In addition, AutoMap/AutoLink does

not support C++, which violates objective six.

C++2MPI [14] and MPI Pre-Processor [28] provide

automatic creation of MPI Datatype’s for C/C++ data

structures. An MPI Datatype is a list of memory offsets

describing the data to be marshaled given the base offset of

a structure. However, the approach makes an implicit as-

sumption that all memory in a structure has been allocated



Objectives AM/AL C++2MPI MPIPP Boost MPI Serializer

1. High-level abstractions +/- + + + +

2. Efficient Code + + + +/- +

3. Multiple partial object marshaling - - - - +

4. No source modification required - - + - +

5. No run-time library required + + + - +

6. Support C++ - + - + +

a. Non-primitive fields - - - + +

b. Pointers - - - + +

c. Non-public fields - + - + +

d. Static and dynamic arrays - +/- - + +

e. Inheritance - - - + +

f. STL containers - - - + +

Table 1. Comparison to directly related state-of-the-art approaches

statically, which violates objective six. In addition, the tools

do not support marshaling subsets of an object state, which

violates objective three.

Finally, the Boost.MPI and the Boost.Serialization li-

braries [17] aim at modernizing the C++ interface to MPI

by utilizing advanced generic programming techniques [8].

These libraries provide support for automatic marshaling of

primitive data types, user-defined classes, and STL con-

tainer classes. In order for a user-defined class to use

the services of the Boost libraries, it has to supply a

serialize method either as a class member or as an ex-

ternal method. To use a member method requires changes

to the original source code of the class, which violates

objective four. This violation can be avoided by supply-

ing serialize as an external method. However, in this

case serialize would not be able to access non-public

fields of a class, without the class declaring the method as

friend, which violates objective six. A friend decla-

ration, of course, would once again violate objective four.

Moreover, the Boost libraries follow the per-type marshal-

ing strategy. That is, all objects of a given C++ class are

marshaled based on the functionality of the corresponding

serialize method, violating objective three. While the

logic inside such a serialize method might marshal ob-

jects differently depending on some of their properties (e.g.,

field values), this offers only limited flexibility and might

incur significant performance overheads, violating objective

two.

Table 1 illustrates how well each directly related ap-

proach satisfies our stated objectives, thereby motivating

our approach.

3 Motivating Example

In the previous section, we gave a general explanation

about why the existing state-of-the-art does not fully ad-

dress the needs of MPI C++ programmers. To further elu-

cidate this claim, we present a concrete example of a C++

class and show why existing approaches are insufficient to

enable this class with efficient marshaling functionality. In

the process, we also pinpoint the additional capabilities re-

quired to accomplish this goal.

Our example comes from a well-known computational

problem in astrophysics, the N-Body problem [19]. This

problem belongs to an important class of parallel algorithms

utilizing long range data interactions. In layman’s terms,

the algorithm computes the gravitational force exerted on a

single mass based upon its surrounding masses. To express

this problem in C++, a programmer might create a class

Mass as follows:

c l a s s Mass {
p r i v a t e :

v e c t o r <Mass> s u r r o u n d i n g ; / / n e a r b y masses

p r o t e c t e d :

f l o a t f o r c e x , f o r c e y ; / / r e s u l t i n g f o r c e

p u b l i c :

f l o a t mass ; / / mass v a l u e

f l o a t x , y ; / / p o s i t i o n

. . .

} ;

As part of the algorithm, we need to send an object of this

class from one process to another. Furthermore, only a sub-

set of the object’s state is needed at any given time. Specif-

ically, when sending the Mass object from the Master pro-

cess to the Worker process, only fields mass, x, y, and

surrounding are required. Conversely, when sending

the object in the opposite direction, only fields force x

and force y are needed.

Let us consider how these simple marshaling tasks can

be successfully accomplished using the existing state-of-

the-art approaches to C++ marshaling for MPI. In par-

ticular, we evaluate the four directly related approaches



discussed in the previous section: AutoMap/AutoLink,

C++2MPI, MPIPP, and Boost.

The marshaling functionality required for sending the

object from the Master to the Worker process obviously

cannot be accomplished by using any of the first three ap-

proaches, as they provide no support for marshaling fields

of dynamically-determined size such as STL containers.

Additionally, because these three approaches do not sup-

port partial object marshaling, they could only provide mar-

shaling functionality for sending the object in the oppo-

site direction by defining a new structure and copying the

force x and force y fields to a temporary instance of

this structure.

The Boost libraries do provide support for the required

marshaling functionality, but this support is not adequate to

address all of the requirements. The programmer could add

a serialize member method to the Mass class to marshal

the required fields for the Master to Worker communica-

tion. Notice that this approach would fail if class Mass

could not be modified (e.g., being a part of a third-party li-

brary). However, the marshaling functionality implemented

by such a serialize method would be per-type. As a re-

sult, it would be non-trivial to use different marshaling logic

when sending the object back from the Worker to the Mas-

ter. Recall that in this case we only want to send back the

fields force x and force y. One way to enable such

custom marshaling would be to add an extra boolean di-

rection field to the class and to set it to an appropriate value

before marshaling the object. Nevertheless, even if code

modifications were possible, this solution might not be ac-

ceptable, as it incurs performance overheads by preventing

Boost from optimizing the marshaling functionality through

MPI Datatype’s.

To summarize, the primary reasons why the existing

state-of-the-art approaches fell short of meeting the de-

mands of this marshaling task are that they either failed to

provide adequate support for common C++ language fea-

tures (i.e., non-public fields, STL container) or required ex-

tensive code modification and restructuring. Thus, we feel

that this simple example sufficiently motivates the need for

a better approach to automatic C++ MPI marshaling. While

this was only a simple example, the case studies that we

present in Section 6 further justify the need for our new ap-

proach and automatic tool.

4 A Generalized Automatic C++ MPI Mar-

shaling Approach

The domain of HPC applications is computationally in-

tensive. Even while utilizing parallel hardware resources,

HPC applications often run for prolonged periods of time

before arriving at a solution. Lab scientists and engineers,

who are the primary developers of HPC applications, care

first and foremost about decreasing this “time-to-answer.”

This presents a unique set of challenges to software en-

gineering researchers who aim at providing novel program-

ming tools in support of HPC application developers. These

tools must provide a high degree of usability while still

producing highly efficient code. These two goals are of-

ten irreconcilable. Ensuring good usability entails provid-

ing abstractions, which are commonly detrimental to per-

formance. In order to create a user-friendly automated tool

for high performance applications, we make the following

design assumptions:

• Any changes to the marshaling functionality will be

made via the GUI of our tool, which will re-generate

the marshaling code.

• The generated marshaling code will not be modified

by hand.

• The generated marshaling code places a higher priority

on performance than readability.

We believe that these assumptions are reasonable, as the

primary focus for HPC developers is on performance, us-

ability, and time-to-answer.

Next we describe the main steps of our approach in turn.

Figure 1 shows an overview of the control flow of our ap-

proach and automated tool. The programmer interacts with

the tool through a GUI. As the first step, the tool uses a

compilation technology (i.e., parsing) to extract informa-

tion from the C++ data structures (e.g., classes and structs)

for which marshaling code can be generated. Then the pro-

grammer uses the GUI to select the subset of an object state

to be marshaled. Figure 2 displays class Mass from Sec-

tion 3, with fields mass, x, y, and surrounding se-

lected for marshaling. This visual input is the only action

required from the programmer to parameterize the backend

code generator of our tool, which then generates marshal-

ing functionality. The programmer can then simply include

the automatically generated marshaling code with the rest

of their HPC application.

4.1 User Interface

The programmer starts by selecting a C++ source file us-

ing a standard file browse dialog. In response, the tool in-

vokes a C++ parsing utility called GCCXML [10]. This

utility taps into the platform’s C++ compiler (e.g., GCC

on UNIX or Visual C++ on Windows) to create a struc-

tured XML description of a given C++ compilation unit;

this XML description can be used by other language pro-

cessing tools. Our tool then parses the XML file and dis-

plays the extracted information to the user through a GUI.

The GUI employs a tree-view visualization [13] to dis-

play C++ object graphs. The tree-view provides an intuitive



GUI

Marshaling

Logic

Generator

Parser

(GCC-XML)

Description

(XML)

Main

Source

File User Input
Subset of

Object Graph

Isomorphic

Structure

Generator

Structures

With friend

Declarations
Offsets

Calculator

(Generated)

Offsets

Calculation

Code

Generated

Marshaling

Code

Figure 1. An overview of the control flow for MPI Serializer.

Figure 2. Selecting the fields of Mass to marshal.

interface for the programmer to explore the structure of an

object graph and to select the fields to be included into the

subset of the marshaled object’s state. The root node of the

tree-view represents the main class selected for marshaling.

All other nodes represent fields transitively reachable from

the main class. To prevent circular references from caus-

ing infinite node expansion, the tree-view implements a lazy

node visualization strategy, expanding a node only when it

is selected for marshaling.

4.2 Handling C++ Language Features

Automatic marshaling of C++ data structures presents

many challenges arising as a result of the sheer complex-

ity of this mainstream programming language. In designing

our tool, we had to address a number of these challenges

to support a reasonable subset of the language. In the fol-

lowing discussion, we highlight the novel insights we have

gained from designing our approach and automated tool.

4.2.1 Dynamic arrays

In C++, the meaning of a pointer variable is somewhat am-

biguous. A pointer may be pointing to the memory location

of a single element, or it may be pointing to the first element

in a dynamic array. In the latter case, the language provides

no standard way to determine the array’s size. By con-

vention, when designing a class, many C++ programmers

define an additional member variable to keep track of the

size of its corresponding dynamic array member variable.

Our strategy for marshaling dynamic arrays assumes that

the programmer is following this convention. To this end,

the tool’s GUI enables the programmer to visually disam-

biguate the meaning of a pointer variable to be marshaled.

If the variable is indeed a dynamic array, the programmer

can select the numeric field representing the array’s size.

4.2.2 Polymorphic fields

Another complication that pointer fields present for mar-

shaling is polymorphism. A pointer to a base class may ac-

tually be assigned to an instance of any of its subclasses.

Our tool automatically determines whether the possibil-

ity for polymorphism exists by examining the inheritance

graph of each field. In lieu of a precise static analysis, the

programmer is expected to specify object graph subsets for

all possible derived instances to which a pointer field could

be pointing at runtime. Thus, the programmer implicitly

disambiguates the range of polymorphic possibilities for a

pointer field. In the case of multiple possibilities, runtime

type information (RTTI) is employed in the generated code

to determine the appropriate marshaling functionality for

the polymorphic field.

4.2.3 Non-public and Inherited fields

C++ supports the encapsulation principle of object-oriented

programming by disallowing outside entities (i.e., other

classes and methods) from accessing non-public fields of a

class. However, non-public fields may be part of the subset

of an object’s state selected for marshaling. Previous di-

rectly related approaches employed two different strategies

for accessing non-public fields for marshaling.



Offsets List

Mass.force_x, 16

...

Original Class

class Mass {

private:

vector<Mass> surrounding ;

protected:

float force_x, force_y ;

public:

float mass; //mass value

float x, y ; //position

. . .

} ;

class Mass {

friend class OffsetGenerator;

private:

vector<Mass> surrounding ;

protected:

float force_x, force_y ;

public:

float mass; //mass value

float x, y ; //position

. . .

} ;

Generated Isomorphic Class

class OffsetGenerator {

. . .

 void createOffsetsList ( ) {

int offset = offsetof(Mass, force_x);

writeOffset(”Mass.force_x”, offset) ;

. . .

  }

}

Field Accessor Class

MPI_Datatype workerToMaster;

void createDatatypes (Mass* mass, . . .) {

   MPI_Aint addresses[2] = {. . .};

   . . .

//add force_x to this datatype

char* force_x = ((char*)mass) + 16;

MPI_Address((float*)force_x, addresses[0]);

   . . .

//register the datatype

   MPI_Type_struct(. . ., &workerToMaster);

   MPI_Type_commit(&workerToMaster);

}

Generated Marshaling Code

Figure 3. Accessing non-public fields using our C++ standard-compliant strategy.

The Boost libraries require declaring their library

Archive class as a friend to all marshaled classes.

In C++, a friend entity is granted access to the non-

public fields of a befriended class. This strategy is not

acceptable for our approach, as it requires modification to

the existing source, thereby violating our design objectives.

C++2MPI uses a different strategy by creating an isomor-

phic copy of all marshaled classes, replacing all non-public

declarations with public ones in the replicated classes. The

non-public fields’ offsets in the original classes can subse-

quently be obtained by consulting the corresponding off-

sets in the replica classes at runtime. While this strategy

does not require changes to the existing source code, the

C++ standard [18] only requires that non-bit-fields of a class

or structure without an intervening access-specifier (i.e.,

private, protected, or public) be laid out in non-

decreasing address order. In other words, a C++ compiler is

free to allocate blocks of fields with different access speci-

fiers in an arbitrary order. As such, the C++2MPI strategy

is not guaranteed to work for all C++ standard-compliant

compilers. This strategy also results in code bloat: ev-

ery marshaled class has to be deployed with its isomorphic

copy. Such code bloat could be detrimental for the locality

of reference in the processor’s cache, resulting in perfor-

mance overhead, which is unacceptable for our approach.

Thus, solving the challenge of accessing non-public fields

requires a new strategy capable of maintaining the existing

source code without sacrificing performance.

To this end, we have designed an approach to calculate

the offsets of all fields of a C++ class that ensures cross-

platform and compiler independence while still strictly ad-

hering to the C++ standard. This design is enabled by

adding an additional code generation layer on top of the

existing infrastructure of our tool. This layer generates

metadata about the marshaled C++ data structures using a

technique that combines the strategies of C++2MPI and the

Boost libraries.

For each class, our approach generates an isomorphic

copy that preserves the order of fields and access speci-

fiers but also includes a friend declaration for a generated

“field accessor” class. The field accessor class creates a list

of all fields’ offsets in a class using the standard offsetof

macro. In C++, friend declarations are strictly compile-

time concepts and have no affect on the memory layout of

a class or its instances. Therefore, the field offsets obtained

from a generated isomorphic class are guaranteed to be the

same as the corresponding field offsets in the original class.1

The obtained offsets are then inserted into the generated

marshaling code to access an object’s non-public fields. A

slightly simplified example of accessing the protected

field force x in class Mass is shown in Figure 3. This

approach minimizes runtime overhead by using generated

constant offset values to access non-public fields, main-

tains a cache-friendly memory footprint by using isomor-

phic classes only at generation-time, and is guaranteed to

be cross-platform and compiler independent by following a

C++ standard-compliant strategy.

One could argue that our solution for accessing non-

public and inherited fields violates the encapsulation prin-

ciple by allowing an outside entity (i.e., the marshaling

method) to access the non-public state of an object. How-

ever, the current solution is acceptable for the HPC do-

main, which has the requirements of preserving the existing

source code and not incurring performance overheads take

priority over strict adherence to object-oriented principles.

4.3 Generating Efficient Marshaling Code

In addition to the ability to support a large subset of

the C++ language, our approach also implements a fast

and memory-efficient buffer packing strategy. This strat-

egy minimizes the required size of the buffer, reducing the

1Our approach relies on two assumptions. First, either the source or

a corresponding GCCXML descriptor file must be provided for all third-

party libraries. Note that the latter option is reasonable for closed-source

libraries since the GCCXML file describes only the structure of the library

and not any proprietary logic. Second, the C++ compiler must be deter-

ministic. That is, the memory layout of two identically-named isomorphic

classes will be the same. Although this property is not strictly guaranteed,

it would likely be infeasible for a non-deterministic C++ compiler to be

standards-compliant.



bandwidth needed to transmit marshaled data. The key to

the efficiency of our approach is generating code that lever-

ages the mature marshaling facilities of MPI. Therefore, we

first give a quick overview of these facilities before describ-

ing the novel insights of our strategy.

MPI provides a variety of API facilities to support

marshaling. However, for this discussion, we focus on

MPI Datatype and MPI Pack. The MPI Datatype

construct provides a reusable cached collection of static

memory offsets for efficient marshaling of arbitrary data

structures. The programmer first initializes an instance of

a data structure and calculates the memory offsets and sizes

of the fields to be marshaled. These offsets are then stored

in an MPI Datatype for later use.

To pack data into a buffer, MPI provides an API function

MPI Pack. The user passes the data structure to be mar-

shaled and the buffer to store the marshaled data. However,

MPI Pack supports only primitive C++ types and user-

defined MPI Datatype’s. For objects containing dynam-

ically allocated fields, using MPI Pack is not trivial, as it

requires static offsets for all the marshaled data.

To guide the generation of efficient marshaling code, our

approach first performs a bounds-checking operation on the

marshaled object graph. Bounds-checking traverses the ob-

ject graph in order to determine if the user-specified subset

of the object’s state is “bounded.” A bounded object state

is a transitive property, signifying whether memory offsets

and sizes of all marshaled fields can be determined stati-

cally. An object graph containing dynamic array, pointer, or

STL container fields violates this property.

Since using MPI Datatype is known to be more effi-

cient for packing bounded objects than packing fields indi-

vidually [24], our approach utilizes this construct for mar-

shaling all bounded subsets of an object graph. Figure 4

illustrates how our approach utilizes MPI Datatype.

If the programmer selected an unbounded subset of an

object graph, our approach then employs static polymor-

phism to provide a global method MPI Pack with a sim-

ilar signature to that of the standard MPI Pack method.

While the standard method takes an MPI Datatype as

a parameter, the generated polymorphic method takes

an automatically-generated MPI Descriptor enum type

specifying the marshaling strategy to use.

This approach is particularly useful for non-experts,

who can follow a uniform convention by calling both

the standard MPI Pack on a bounded object with an

MPI Datatype and by calling the generated MPI Pack

on an unbounded object using an MPI Descriptor. The

distinction between the standard and the generated version

of MPI Pack is resolved at compilation time, resulting in

zero runtime performance overhead.

MPI_Datatype _1

sizeoffset

420

424

428

Mass

Vector <Mass > surrounding

float force _x, force _y

float mass

float x

float y

Vector <Mass >

Vector <Mass > surrounding

float  force _x, force _y

float mass

  float x

  float y

Mass item 1

Vector <Mass > surrounding

float force _x, force _y

float mass

  float x

  float y

Mass itemN

...

MPI_Datatype _2

sizeoffset

420

424

428

Legend

   Unbounded fields

   Unselected fields

   Bounded Fields

Figure 4. An example of mapping bounded subsets of an

object graph to MPI Datatype’s. The offsets and sizes

are for a 32-bit architecture using GCC.

4.4 Using Generated Code

To further illustrate how the programmer uses generated

marshaling code, consider the Master-Worker communica-

tion that needs to pass instances of class Mass. In the

case of passing an instance of Mass from Worker to Mas-

ter, the subset of the object graph consists of force x

and force y, and as such is entirely bounded. To max-

imize efficiency, the tool generates an MPI Datatype

(workerToMaster) for this subset. However, pass-

ing an instance of Mass from Master to Worker, the

marshaled subset is unbounded, as it contains an STL

container field, surrounding. This subset, therefore,

requires custom marshaling code, capable of traversing

unbounded subset efficiently. The generated code con-

sists of a custom MPI Pack function and an enum type,

masterToWorker. However, the marshaling interface

exposed to the programmer is almost identical in bounded

and unbounded cases, as shown below:

void foo ( ) {
Mass mass ; char∗ buf ;

. . .

/ / pack f o r Mas te r t o Worker

MPI Pack(&mass , 1 , masterToWorker , buf , . . . ) ;

. . .

/ / pack f o r Worker t o Mas te r

MPI Pack(&mass , 1 , workerToMaster , buf , . . . ) ;

}



Marshalling and Unmarshalling Micro-Benchmark

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Surrounding Masses

L
o

g
a

ri
th

m
ic

 T
im

e
 (

n
s

)

Boost

MPI Serializer

Hand Written

Figure 5. Benchmark results comparing the total marshaling

and unmarshaling time required for the Mass class example.

Marshalling and Unmarshalling Comparison for NEAT

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

Population Size (Organisms)

L
o

g
a
ri

th
m

ic
 T

im
e
 (

m
s
)

Boost

MPI Serializer

Figure 6. Benchmark results comparing the marshaling time

required for a population of organisms (i.e. potential solutions)

for NEAT.

The two separate packing calls are exposed to the pro-

grammer as if they were the same MPI Pack call, even

though the call for masterToWorker actually invokes a

specialized generated packing method. The advantage of

this approach is that it enables the programmer to use the

generated code almost identically to how they use the stan-

dard MPI interface.

5 Case Studies and Performance Results

The purpose of the presented case studies and the asso-

ciated performance comparisons is to validate our approach

against the requirements stated in Section 2.1 as well as

against the existing state of the art. To recap, our goal is

to support a sufficiently large subset of the C++ language,

while ensuring high performance in the generated marshal-

ing code.

The evaluation of MPI Serializer that we have conducted

consists of micro-benchmarks and case studies. The micro-

benchmarks enable us to pinpoint the fine-grained perfor-

mance advantages and limitations of our approach. The two

case studies involve the automatic generation of the mar-

shaling functionality for real HPC applications. The first

case study showcases the use of our tool as a refactoring aid

in the often difficult task of parallelizing a sequential pro-

gram. The second case study demonstrates the fitness of

our tool to provide efficient marshaling functionality for an

existing high-performance application.

In making the performance related arguments, we com-

pare our work against the Boost libraries and hand-written

code on a 3.0GHz dual-core Pentium 4 with 2GB of RAM

running Debian GNU/Linux, GCC version 4.1.2. However,

a comparison of our work with other directly related ap-

proaches, such as MPI Pre-Processor [28], AutoMap/Au-

toLink [11], or C++2MPI [14], is impossible due to their

lack of support for C++ language features or even C++ it-

self.

One additional advantage of our approach that is easy to

overlook by focusing on performance numbers is that it re-

duces the amount of maintained hand-written source code.

Since the complexity of software grows exponentially in

relation to the size of a program [5], every line of source

code that the programmer has to write by hand contributes

to the software maintenance burden. Addressing changed

requirements or fixing program defects requires a program

maintenance effort that is directly proportional to the size

of a program [12]. By reducing the amount of maintained

source code, our approach has the potential to ease the soft-

ware maintenance burden. Therefore, while the following

case studies highlight performance gains, our approach also

provides software engineering benefits to the target applica-

tions.

5.1 Micro-benchmarks

For the micro benchmark, we used the Mass class de-

scribed in Section 3. Figure 5 shows the total combined

marshaling, sending, and unmarshaling time taken for the

Master to Worker communication as described earlier. The

x-axis represents the number of surrounding Mass objects

(i.e., being marshaled and unmarshaled). The figure demon-

strates the differences in performance between hand-written

code utilizing the Boost libraries and code automatically

generated by our tool. The results show a speed-up be-

tween 2x and 4x for our approach compared to Boost, with



the rate of speedup increasing as the size of the transmitted

data structure grows.

While the generated code is highly efficient, the pro-

grammer can still write fine-tuned marshaling code by hand,

which would yield better performance. This benchmark ex-

plores an optimization technique for marshaling collections

called striding. It refers to using a heuristic to reduce the

number of collection elements to be marshaled. The results

show that using a basic striding increment of 3 (i.e., select-

ing only 1/3 of the elements in the vector of Mass objects)

can still beat our approach.

5.2 Parallelizing NEAT

NeuroEvolution through Augmenting Topologies [30]

(NEAT) is an artificial intelligence algorithm for training

a collection of artificial neural networks. NEAT is a genetic

algorithm [3] that mimics Darwinian evolution by repeat-

edly competing potential solutions against each other and

then selecting and breeding the fittest individual solutions.

We used MPI Serializer to automatically generate marshal-

ing code for an on-going research project that parallelizes

NEAT to run on a supercomputer [37].

Figure 6 shows the time required to marshal and umar-

shal a NEAT population set using the Boost libraries com-

pared to using our approach. The x-axis in Figure 6 rep-

resents the number of potential solutions (i.e., population

elements) to be marshaled. The performance numbers indi-

cate similar scalability for both approaches. However, the

abstractions provided by the Boost libraries result in a per-

formance overhead causing our approach to be as much as

an order of magnitude faster in some cases. Additionally,

this particular application requires the marshaling and un-

marshaling of several nested fields (i.e., object fields with

other object fields). Providing Boost serialize meth-

ods by hand is much more difficult for this case, as several

classes must be modified. By contrast, our approach re-

quires the programmer to manipulate only a single visual

hierarchy.

5.3 mpiBLAST 2.0

mpiBLAST [9] is a widely-used, open-source, parallel

application for aligning genome sequences. It solves the

problem of finding the closest known matching sequence

for a given genome. mpiBLAST has been known to as-

sist in the process of scientific discovery in domains as di-

verse as new drug development and classifying new virus

species. mpiBLAST 2.0 is written in C++ [2], with MPI as

the communication middleware. In this case study, we re-

implemented the hand-written marshaling functionality of

mpiBLAST by using both the Boost libraries and our au-

tomated tool. For benchmarking, we chose the phase of

Marshaling Comparison for mpiBLAST

0.01

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

Result Collections

L
o

g
a

ri
th

m
ic

 T
im

e
 (

m
s

)

Boost

Hand Written

MPI Serializer

Figure 7. Benchmark results comparing the marshaling

time required for a collection of genome alignment results.

the mpiBLAST algorithm when the Worker processes re-

port back their search results to the Master.

Figure 7 compares the performance between the original

hand-written code, the code using the Boost libraries, and

the code automatically generated by our tool. The x-axis

represents the number of sequence result collections mar-

shaled. The results show that the automatically generated

code is slightly more efficient than hand-written code and

nearly an order of magnitude faster than the Boost imple-

mentation in some cases.

Similar to the NEAT case study, Boost’s abstractions

once again account for the overhead incurred while mar-

shaling and unmarshaling. More surprisingly, the gener-

ated code yielded better performance than the original hand-

written implementation. The cause of this is that the orig-

inal implementation currently uses a less-efficient stream-

based strategy to marshaling and umarshaling, to aide in the

debugging process. However, the code generated automati-

cally by our tool should require no debugging (provided that

the tool’s implementation is mature enough), as long as the

visual input specified by the programmer correctly reflects

the subset of the object graph to be marshaled.

6 Future Work

The target audience of our approach and automated tool

is non-expert HPC programmers. Therefore, to further in-

crease the usability of our tool, we would like to focus on

improving the software engineering quality of the generated

code. First, by replacing packing calls with size calcula-

tions, the same approach can be used to automatically de-

termine the exact size of a destination buffer. Integrating

this technique will make it possible for the generated code



to provide a more programmer-friendly external interface,

similar to that of Boost.

Our approach is not necessarily divergent from Boost

and other marshaling libraries. The clean, object-oriented

interface that the Boost libraries provide to MPI program-

mers may in some cases be worth the accompanying over-

head. Consequently, as a future extension, we plan to pro-

vide the capability to generate Boost serialize methods

for data structures. This demonstrates that our approach’s

intuitive visual interface does not need to generate marshal-

ing code which is difficult to read or modify by hand if nec-

essary.

Finally, although our tool generates code specifically for

HPC applications using MPI, our generalized approach ex-

tends beyond this specialized domain. Examples of other

applicable software development scenarios that could ben-

efit from having automatically generated marshaling code

packed to a generic buffer include transmission, permanent

storage, and check-pointing.

7 Conclusions

Our approach provides automatic synthesis of efficient

marshaling functionality for HPC applications based en-

tirely on visual input supplied by the programmer. This

aspect of our approach is particularly appealing to the

many lab scientists and engineers who have limited paral-

lel programming experience. By automatically generating

low-level, high-performance marshaling code, our approach

eliminates the need to write tedious and error-prone code by

hand, thereby facilitating the process of scientific discovery.

Acknowledgments

The authors would like to thank Jeremy Archuleta for

his help with the mpiBLAST 2.0 benchmark and the anony-

mous reviewers for useful comments that helped improve

the paper. This research was supported by the Department

of Computer Science at Virginia Tech.

References

[1] B. Aktemur, J. Jones, S. Kamin, and L. Clausen. Op-

timizing marshalling by run-time program generation.

In 4th International Conference on Generative Pro-

gramming And Component Engineering (GPCE’05),

Tallinn, Estonia, October 2005.

[2] J. S. Archuleta, E. Tilevich, and W. Feng. A Main-

tainable Software Architecture for Fast and Modular

Bioinformatics Sequence Search. In 23rd IEEE Inter-

national Conference on Software Maintenance, Paris,

France, October 2007.

[3] N. Barricelli. Esempi Numerici di Processi di

Evoluzione. Methodos, 6(21-22):45–68, 1954.

[4] J. Barton and L. Nackman. Scientific and Engineering

C++: An Introduction with Advanced Techniques and

Examples. Addison-Wesley Longman Publishing Co.,

Inc. Boston, MA, USA, 1994.

[5] D. Berry. Academic Legitimacy of the Software Engi-

neering Discipline. Carnegie-Mellon University, Soft-

ware Engineering Institute, 1992.

[6] N. Brown and C. Kindel. Distributed Component Ob-

ject Model Protocol–DCOM/1.0. Microsoft Corpora-

tion, November 1998.

[7] S. Chiba. A metaobject protocol for C++. ACM SIG-

PLAN Notices, 30(10):285–299, 1995.

[8] K. Czarnecki and U. Eisenecker. Generative pro-

gramming: methods, tools, and applications. ACM

Press/Addison-Wesley Publishing Co. New York, NY,

USA, 2000.

[9] A. E. Darling, L. Carey, and W. Feng. The design, im-

plementation, and evaluation of mpiBLAST. In Clus-

terWorld Conference & Expo and the 4th International

Conference on Linux Cluster: The HPC Revolution

2003, San Jose, California, June 2003. Best Paper:

Applications Track.

[10] GCC-XML, the XML output extension to GCC, 2007.

http://www.gccxml.org/.

[11] D. Goujon, M. Michel, J. Peeters, and J. Devaney. Au-

tomap and autolink: Tools for communicating com-

plex and dynamic data-structures using MPI. In

Lectures Notes in Computer Science, volume 1362,

page 98, 1998. Presented at CANPC98.

[12] L. Gremillion. Determinants of program repair main-

tenance requirements. Communications of the ACM,

27(8):826–832, 1984.

[13] C. Guzak, J. Bogdan, G. Pitt III, and C. Chew. Tree

view control, November 1999. US Patent 5,977,971.

[14] R. Hillson and M. Iglewski. C++2MPI: A software

tool for automatically generating MPI datatypes from

C++ classes. In International Conference on Parallel

Computing in Electrical Engineering (PARELEC’00),

Washington, DC, USA, 2000. IEEE Computer Soci-

ety.

[15] L. Hochstein and V. R. Basili. An empirical study

to compare two parallel programming models. In

SPAA ’06: Proceedings of the eighteenth annual ACM



symposium on Parallelism in algorithms and archi-

tectures, pages 114–114, New York, NY, USA, 2006.

ACM.

[16] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili,

J. Hollingsworth, and M. Zelkowitz. HPC program-

mer productivity: A case study of novice HPC pro-

grammers. In ACM/IEEE Supercomputing Conference

(SC’05), 2005.

[17] P. Kambadur, D. Gregor, A. Lumsdaine, and

A. Dharurkar. Modernizing the C++ interface to MPI.

In 13th European PVM/MPI Users Group Meeting

(EuroPVM/MPI’06). Springer, 2006.

[18] A. Koenig. The C++ Language Stan-

dard. Report ISO/IEC 14882: 1998, 1998.

http://www.nctis.org/cplusplus.htm.

[19] B. Lester. The Art of Parallel Programming. Prentice-

Hall, Inc., Upper Saddle River, New Jersey, USA,

1993.

[20] C. Lopes. Adaptive parameter passing. In Object

Technologies for Advanced Software: Second JSSST

International Symposium (ISOTAS’96), Kanazawa,

Japan, March 1996. Springer.

[21] J. Maassen, R. Van Nieuwpoort, R. Veldema, H. Bal,

T. Kielmann, C. Jacobs, and R. Hofman. Efficient Java

RMI for parallel programming. ACM Transactions

on Programming Languages and Systems, 23(6):747–

775, 2001.

[22] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal,

and A. Plaat. An efficient implementation of Java’s

remote method invocation. In The seventh ACM SIG-

PLAN symposium on Principles and Practice of Par-

allel Programming, pages 173–182, New York, New

York, USA, 1999. ACM Press.

[23] U. Mello and I. Khabibrakhmanov. On the reusabil-

ity and numeric efficiency of C++ packages in scien-

tific computing. In The ClusterWorld Conference and

Expo, pages 23–26, June 2003.

[24] Message Passing Interface Forum (MPIF). MPI-2:

Extensions to the message-passing interface. Techni-

cal report, University of Tennessee, Knoxville, 1996.

[25] Object Management Group. Objects by Value Specifi-

cation, 1998. ftp://ftp.omg.org/pub/docs/orbos/98-01-

18.pdf.

[26] Object Management Group. C++ Lan-

guage Mapping Specifications, 2003.

http://www.omg.org/docs/formal/03-06-03.pdf.

[27] M. Philippsen, B. Haumacher, and C. Nester. More

efficient serialization and RMI for Java. Concurrency

Practice and Experience, 12(7):495–518, 2000.

[28] E. Renault and C. Parrot. MPI Pre-Processor: Gen-

erating MPI derived datatypes from C datatypes au-

tomatically. In The 2006 International Conference

Workshops on Parallel Processing, pages 248–256,

Washington, DC, USA, 2006. IEEE Computer Soci-

ety.

[29] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Pick-

ling state in the JavaTMsystem. In COOTS’96: Pro-

ceedings of the 2nd conference on USENIX Con-

ference on Object-Oriented Technologies (COOTS),

pages 19–19, Berkeley, CA, USA, 1996. USENIX As-

sociation.

[30] K. O. Stanley and R. Miikkulainen. Evolving neural

networks through augmenting topologies. Evolution-

ary Computation, 10(2):99–127, 2002.

[31] Sun Microsystems. Java Core Reflection API and

Specification, 1997.

[32] Sun Microsystems. Java Object Serialization Specifi-

cation, 2001.

[33] Sun Microsystems. RPC: Remote Procedure Call Pro-

tocol Specification, 2004.

[34] The Open Group. DCE 1.1 RPC Specification, 1997.

http://www.opengroup.org/onlinepubs/009629399/.

[35] TOP500. Top 500 supercomputing sites - architecture.

http://top500.org/stats/28/archtype/.

[36] T. L. Veldhuizen and M. E. Jernigan. Will C++ be

faster than Fortran? In ISCOPE ’97: Proceedings

of the Scientific Computing in Object-Oriented Par-

allel Environments, pages 49–56, London, UK, 1997.

Springer-Verlag.

[37] Virginia Tech. Virginia Tech terascale computing fa-

cility. http://www.arc.vt.edu/arc/SystemX/.


