
Transforming Introductory Computer Science Projects
via Real-Time Web Data

Austin Cory Bart, Eli Tilevich, Simin Hall, Tony Allevato, and Clifford A. Shaffer
{acbart,tilevich,thall57,allevato,shaffer}@vt.edu

Virginia Tech

ABSTRACT
While computing is becoming increasingly distributed, pro-
gramming projects in introductory classes remain mostly
divorced from the student’s day-to-day computing experi-
ences. These experiences entail interacting with real-time
Web-based data from sources that include weather reports,
news updates, and restaurant recommendations. The dis-
connect between student experiences and the content of their
programming projects is known to drive some students away
from computing. In addition, to adequately prepare stu-
dents for the realities of modern software engineering, edu-
cators should introduce issues pertaining to distributed com-
puting early in the curriculum. To address these problems,
we have created RealTimeWeb—an architectural framework
that makes real-time web data accessible for introductory
programming projects. The framework effectively introduces
important real-time distributed computing concepts without
overwhelming students with the low-level details that work-
ing with such data typically requires. Preliminary results
indicate that our approach can be effective in the context of
a typical CS2 course, and that real-time data is relevant to
students. RealTimeWeb libraries and associated resources
are publicly available for use, with multiple language bind-
ings to many real-time data sources. A rapid-prototyping
tool available through the project’s website facilitates the
development of client libraries with easily accessible APIs
for new real-time Web-based data sources.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Design, Human Factors, Reliability, Experimentation

Keywords
distributed computing, projects, introductory courses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE ’14 ’14 Atlanta, Georgia USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Most people’s experience with computing today involves

distributed Web architectures and continuously updated,
remote data sources. College students consume real-time
Web-based data on their mobile devices. Examples abound.
Weather information, traffic data, stock values, shopping
deals—all of these real-time data sources are available as
remote Web-based services that are then integrated into
web-based applications available through browsers or mobile
apps. Interacting with Web-based real-time data influences
students’ perception of what Computer Science is. This per-
ception comes with them when they embark on studying the
discipline.

Computing educators might do well to introduce issues
related to real-time web data into the curriculum as early
as possible for two reasons. First, meeting students’ expec-
tations that Computer Science studies exciting topics that
are relevant to the students’ experiences as computer users
can help attract and retain good students [2, 1, 7]. Sec-
ond, since distributed real-time data has entered the main-
stream of computing, students should be introduced to the
corresponding technical issues to prepare for the modern IT
workforce. Indeed, the new ACM/IEEE Computer Science
Curriculum 2013 advises 10 hours of material on a new ded-
icated Networking and Communication Knowledge Area [9].

Introducing real-time data is not only about increasing
engagement. Perhaps more important, it is an avenue for
exploring computing in a social context. The CS Curricu-
lum 2013 emphasizes the importance of Social Issues [9],
prescribing 16 hours on topics such as Social Context and
Data Privacy. The ability to access real-world data streams
enables introductory learners to deal with real-world prob-
lems. Consider assigning students to explore how geological
data about earthquakes can be used to aid disaster relief.
Another project might have students mine political data
to find evidence of corruption. Yet another project, per-
haps controversially, would involve analyzing social media
data provided by services including Twitter or Facebook, to
identify the cases of private data being left publicly available
unintentionally. Tying actual class projects to such topics
can powerfully convey computing’s role in society to the in-
troductory learner.

Alas, despite its ubiquity, incorporating distributed com-
puting into the curriculum has proved difficult due to lack
of educational resources. Even the seasoned software devel-
oper finds working with network protocols and parsing bi-
nary data streams conceptually complex, particularly in the
presence of overwhelming technical issues that range from

handling partial failure to dealing with distributed compo-
nents evolving independently from each other. Not surpris-
ingly, a common CS curricular design strategy is to leave
the challenges of teaching distributed computing for later
courses, when students will have accumulated sufficient tech-
nical expertise and tolerance for engineering non-trivial sys-
tem designs.

The net effect of these curricular design choices is that
the content of introductory courses remains isolated from
issues pertaining to Web-based real-time data. Program-
ming projects are particularly vulnerable to this omission.
When working on programming projects, introductory stu-
dents find themselves disconnected from familiar data from
social media, news outlets, and local business. Instead, they
find themselves given abstract, toy problems with limited
context in their lives. Divorcing the content of programming
projects from the students’ experiences as computer users
has a debilitating effect on motivation and engagement [2].
In fact, competent students are known to leave the major,
having been discouraged by the lack of relevance for what
they learn [1]. This problem is particularly acute for female
students, for whom real-world application has been identi-
fied as the primary motivation for studying the discipline [7].
Our vision is that introductory courses can overcome the
technical barriers inherent in working with real-time web
data, enabling us to introduce novel, relevant projects to
students.

2. PRIOR WORK
Insulating beginner programmers from complicated sys-

tems while still providing the ability to manipulate interest-
ing data is not a novel concept. For example, most program-
ming environments designed for novices feature convenient
methods for manipulating images and sounds. Racket [6]
treats images as a primitive data type, avoiding the complex,
low-level programming that is typically required. While im-
ages and sounds have an obvious appeal, they lack the direct
real-world connection afforded by real-time data. However,
little work has focused on creating similar student-oriented
interfaces for real-time data sources.

An example of a positive impact of working with real-time
data on student learning is a project at Stanford in a Ge-
ological Sciences course. In this project, students worked
with real-time data on earthquakes [5]. Although students
did not program, scientific computational tools were used
to analyze the data and reach conclusions. The instructor
reported that students became significantly more engaged
as they worked with data that had relevance to them. For
instance, many students became excited when they discov-
ered that there were earthquakes happening in their region
all the time. The final assignment had students choose a city
that they wanted eventually to live in and determine the ge-
ological risks of the area. The instructor reported that, even
after the course had ended, students applied similar analy-
sis to other geographical regions relevant to their lives. This
assignment contextualized the learning experience for the
student, and created “a personal connection and positive af-
fect that motivates their future learning” [5]. Corresponding
projects, perhaps even using the same data source, are ripe
for a programming class.

Similar projects have been used in statistics courses [3]
and data mining courses [10]. Although other domains seem
ready and willing to bring real-world data into the class-

room, the research literature on the topic is scarce. A project
conducted by Dr. Marc Waldman introduces realistic open
data into upper-level database courses [11]. In essence, this
project challenges experienced learners by taking advantage
of the complicated nature of real-world data. While our pri-
mary design objective is to accommodate novice users, we
also strive to appropriately challenge more advanced users,
enabling them to develop higher-level skills.

3. OUR APPROACH
We have created and distributed a software architecture

framework (named “RealTimeWeb”) that provides introduc-
tory programming students with an easy way to manipulate
distributed real-time data. Our approach offers technical
scaffolding for the students to gradually ease into (or com-
pletely circumvent if appropriate) some of the most vex-
ing complexities of distributed computing. At the heart of
our project are carefully engineered client libraries through
which students can access the data provided by real-time
web services. These libraries are readily available through
an online curated gallery, designed to be quickly adapted to
instructors’ specific academic needs. This gallery also pro-
vides a tool for rapidly prototyping new libraries based on
our framework.

3.1 Client Libraries
To connect students to real-time data sources, we have

designed client libraries with features intended specifically
for novice programmers. Each library offers a selection of
method calls to request, parse, and return real-time data.
Presently, we have created libraries to provide

• Business reviews from Yelp.

• Weather forecasts from the National Weather Service.

• Stock trading information from Yahoo Finance.

• Global earthquake reports from the US Geological Sur-
vey.

• Content from link-sharing site Reddit.com.

In theory, any publicly available online real-time data
source can be targeted by our framework, and we intend
to continuously offer new and improved client libraries.

3.1.1 Language
There are many different programming languages used in

introductory CS courses [9]. To account for this, we imple-
mented each library in a number of common beginner lan-
guages, including Python, Java, and Racket. We have also
made an effort to provide compatibility on key platforms,
including Android.

3.1.2 Scaffolding
The instructor can determine how data is returned, so

as to provide varying levels of scaffolding. Choices include
raw strings of data, semi-structured hashes and lists, or
object-oriented classes. Some libraries are available in re-
duced variants that return atomic data (e.g., a derivative of
the Weather Service client library returns only the current
temperature, as opposed to a complete forecast including
humidity, wind, etc.). In this way, how much work students
must perform to manipulate the data can be altered to suit
the class. This means that the libraries can be used in a
wide variety of educational scenarios.

Real-time

Data Source

Client Library

Data Cache

Client

Library

Student

Code

Send:
get_temperature(“Newark, DE”)

Receive:
Current temperature (integer)

Send:

http://forecast.gov?city=newark,de

Receive:
JSON-formatted string

Figure 1: Client Library Architecture

3.1.3 Internalized Data Cache
Perhaps the single most useful feature of the libraries is

the internalized data cache. The cache can be used to avoid
making requests directly to the actual data source, instead
accessing a local, static data store (a file). Figure 1 demon-
strates the flow of data when using a client library. The
cache option offers a number of advantages.

Idempotency By its nature, real-time data is subject to
rapid temporal changes. Weather forecasts change on
a daily basis, for example, and services like Reddit or
Twitter change by the minute. Developing a program
that uses such volatile data can be tricky, since it can
change between runs of the program. To accommodate
introductory students, the libraries make it possible to
used cached local data, so consistency of input from
run to run is guaranteed.

Consistency The content and structure of the web is highly
dynamic, as are the web services composing it. Be-
cause service APIs commonly evolve at a dizzying pace,
the libraries that depend on them must be updated ac-
cordingly. Even during a single semester, changes in
the data source could be introduced that would result
in an out-of-date library. However, this problem can
be bypassed by keeping to the internal data cache until
an updating fix is released, avoiding any serious delays
in development.

Connectivity Although most campuses have gigabit inter-
net connections, this is not universal. Additionally,
many students live in off-campus settings with varying
internet capabilities. Requiring students to develop an
internet-based application with poor internet connec-
tions can be a tall order. However, the the cache allows
client libraries to be used offline, if necessary.

Efficiency Even assuming a fast and stable connection, the
performance of many web services is limited by the
number of connections that the server can handle. Stu-
dent developers can be polite consumers by developing
with client-side data, greatly reducing the number of
calls to the online service. This is especially important

since many APIs throttle the number of requests (e.g.,
100 API calls per day), sometimes penalizing abusers
with time-outs and bans. To avoid this, web service
clients typically use a polling architecture (with an
artificial delay between requests); running with local-
data negates the need for the delay, and makes large-
scale testing practical.

Tests Instructors can use the cached data for testing, ensur-
ing uniform coverage by all students. There is no need
to worry about students missing out on edge cases not
covered during a particular time interval, since they
can be provided with the important cases in test files.
Since the cache is stored in a convenient JSON-based
data format, it can easily be modified by instructors
to return specific results. The ability to ensure consis-
tent tests is particularly useful for automated grading
systems, such as Web-CAT [4].

3.1.4 Threading
To address the needs arising in an assortment of situa-

tions, the libraries offer the flexibility of returning the re-
sults of API calls either synchronously or asynchronously.
Concurrent programming, although an important skill for
students to develop, can be overwhelming for beginners.
Even as work to integrate multiprogramming into lower-level
courses moves forward, scaffolding is still required if we want
intro students to develop applications with parallel process-
ing capabilities. Using the asynchronous return mode, the
hard problems of threading can be avoided.

3.1.5 Open-source
The libraries are meant to be good examples of API de-

sign. As students gain mastery, they can be encouraged to
read the source code to learn how network communication
and data parsing is implemented. They can then modify,
extend, and even re-implement the API as they see fit. If
students choose to create their own API based on our model,
they can submit it to our gallery and gain wider recognition
for their work.

3.1.6 Examples
Figure 2 demonstrates using the Java version of the Earth-

quake library. This sample program polls the online service
for new earthquakes and then notifies the user. This polling
architecture is a common pattern for web-service consumers,
so it is useful to expose it to students. Note that if line 12
had been omitted, the library would have returned results
from its internal cache instead of the online service. In turn,
this would allow us to remove the Thread.sleep in line 32,
and receive huge speed boosts. Also note the use of a Hash-

Set - since data is returned from the past hour, but accessed
every five minutes, there is a significant amount of redundant
data that must be filtered out. The local cache replicates
this redundancy for complete authenticity.

Figure 3 shows an example of using the reduced Racket
WeatherService library, which only exposes a method to get
the current temperature of a city.

3.2 Curated Gallery
Complete libraries and documentation are available at

http://research.cs.vt.edu/vtspaces/realtimeweb/. Be-
sides the various language bindings available for a service
(e.g. Python, Racket, Java), there are a number of other
useful pieces of information:

Figure 2: A simple program demonstrating the Java Earthquake library

1 import java . u t i l . L i s t ;
2 import java . u t i l . HashSet ;
3 import realt imeweb . ea r thquake s e rv i c e . main . EarthquakeService ;
4 import realt imeweb . ea r thquake s e rv i c e . domain . Earthquake ;
5
6 public class EarthquakeDemo {
7
8 public stat ic void main (St r ing [] a rgs) throws EarthquakeException {
9 // Use the EarthquakeServ ice l i b r a r y

10 EarthquakeService es = EarthquakeService . g e t In s tance () ;
11
12 es . connect () ; // Remove to use the l o c a l cache
13
14 // 5 minute de lay , but i f we use the cache no d e l a y i s needed !
15 int DELAY = 5 ∗ 60 ∗ 1000 ;
16
17 HashSet<Earthquake> seenQuakes = new HashSet<Earthquake >() ;
18
19 // P o l l s e r v i c e r e g u l a r l y
20 while (true) {
21 // Get a l l ear thquak es in the pas t hour
22 List<Earthquake> l a t e s t = es . getEarthquakes (His tory .ALL) ;
23 // Check i f t h i s i s a new ear thquake
24 for (Earthquake e : l a t e s t) {
25 i f (! seenQuakes . conta in s (e)) {
26 // Report new ear thq uakes
27 System . out . p r i n t l n (”New quake ! ”) ;
28 seenQuakes . add (e) ;
29 }
30 }
31 // Delay to avoid spamming the weather s e r v i c e
32 Thread . s l e e p (DELAY) ;
33 }
34 }
35 }

Figure 3: A simple program demonstrating the
Racket Weather library

1 (require ”weathe r−o f f l i ne . rkt ”)
2
3 ; s t r i n g −> s t r i n g
4 ; Consumes a c i t y and r e t u r n s whether i t s
5 ; curren t temperature i s ”hot ” or ”c o l d ”
6 (define (report−weather c i t y)
7 (cond [(< 70 (get−temperature c i t y))
8 ”hot ”]
9 [else ”co ld ”]))

10
11 ; We use the o f f l i n e v e r s i o n o f the l i b r a r y
12 ; f o r c o n s i s t e n t check−expects
13 (check−expect (report−weather ”Nome, AK”)
14 ”co ld ”)
15 (check−expect (report−weather ”Miami , FL”)
16 ”hot ”)

• API documentation and student-oriented user guides
for each language and library.

• Alternative datasets for the internalized data cache
(e.g., instead of business reviews from around “Blacks-
burg, VA”, there might be another dataset for “Indi-
anapolis, IN”).

• Reduced variants of the libraries for targetted assign-
ments.

• Example assignments that use the library.

All resources are open-source and fully supported. They
are being continuously refined and extended.

3.3 Prototyping Tool
An important byproduct of our project is the creation of

an online tool for rapidly prototyping new libraries. Most of
the code used in our libraries follows the same pattern for
any given language. First, requests are made to a web ser-
vice and raw data is returned (typically as XML or JSON).
Next, the data is parsed into some intermediary, semi-struct-
ured form using dictionary and list types that are native
to the language. Finally, the data is encoded into a read-
only class or struct, depending on the disposition of the lan-

guage. For example, beginner students using Racket might
deal with structs, instead of classes. This is not true in
object-oriented languages such as Python and Java.

Because the data flow is consistent regardless of program-
ming language or data source, we can leverage this similar-
ity to fill out a template for the target languages based on
a single, abstract meta-description (a “Client Library Speci-
fication”). The JSON-formatted Specificiation contains two
parts: information about the methods exposed by the web
service and the structure of the data returned. The system
is compatible with several methods of sending arguments to
web services, including Query Strings, POST Variables, and
URL-Embedded data. Once a user has created a Specifi-
cation, the tool generates valid and functionally-equivalent
Racket, Python, and Java code to access the web services.
These client libraries come ready-made with documentation
provided through the Specification, and their source code is
extremely straightforward to comprehend and extend.

The tool has already been successfully used to create five
of the client libraries. The automatically-generated code
usually requires only a few minor, manual tweaks before it
is ready for public exposure. In fact, the most recently-
created library (for connecting to a Magic: The Gather-
ing card database) took less than an hour to specify, gener-
ate, and refine. The tool, documentation, and examples are
available online as a component of the gallery.

4. TRANSFORMING COURSE PROJECTS
When integrated into a class project, our tools offer several

features that positively impact student engagement. First,
the availability of libraries for a multitude of services cre-
ates options for free-form projects, in which students enjoy
greater autonomy in development. Second, the abundance of
our library offerings also increases the chances of students
finding data sources that are truly relevant to their inter-
ests. Third, the simple design of the libraries fosters a sense
of self-efficacy and competence within the student; they can
work with complicated real-world data without dealing with
the frustrating real-world complications. These aspects are
all recognized as increasing intrinsic motivation and engage-
ment [8].

However, using real-world data does more than just en-
gage students and increase their intrinsic motivation. In-
structors can use the libraries to introduce real-world prob-
lems. Example project ideas include:

• Reddit Service: Social link-sharing website Reddit ag-
gregates interesting content from around the web, in-
cluding news and other real-time data sources. Stu-
dents could be tasked with processing data from the
site and finding interesting patterns in comments and
posts. Even with only a rudimentary knowledge of
string parsing, there are many interesting operations
that can be performed, such as analyzing average com-
ment length or finding a keyword.

• Weather Service: Planning a long-distance trip can be
tricky, and preparing for weather is important. Stu-
dents could investigate how to avoid bad weather be-
tween cities using different search algorithms to find
best possible paths.

• Earthquake Service: Earthquakes happen around the
world, all the time. Students could use a spatial data
structure such as a Quadtree to record and analyze

data about earthquakes and how they affect the world.

As a specific example of the potential educational ben-
efits that RealTimeWeb can afford, consider two alternate
sketches for a programming project that can be assigned to
reinforce the topic of circular linked lists, a fixture of a typ-
ical data structures course. The first version uses abstract
data, while the second one uses the data provided by the
Business Service library that comes as part of the current
RealTimeWeb catalog.

Original Version:

1. Create a circular list data structure capable of holding
heterogeneous data.

2. Create a Data class that contains an integer ID and a
String description.

3. Place Data objects whose ID fields represent consecu-
tive integer values into each node of the list.

4. Remove all the nodes containing Data objects, whose
ID fields are even numbers.

RealTimeWeb Version:

1. Create a circular list data structure capable of holding
heterogeneous data.

2. Download a list of nearby restaurants and place them
into the nodes of the list, sorted by their price levels.

3. Remove all the restaurants that do not offer vegetarian
options.

Although both versions reinforce the same topic of circu-
lar linked lists and require a comparable amount of student
effort, the RealTimeWeb version has students manipulate
data they are likely to encounter in their day-to-day expe-
riences, thus potentially increasing motivation and engage-
ment.

It is important to recognize that integrating these services
needs to be more than skin deep. Students should be given a
situated perspective on how these data streams interact with
the real world. Rather than just downloading an abstract
list of data, assignments should lead to practical, interesting
tools and results that the students can be proud of.

5. FORMATIVE EVALUATION

5.1 Usability Survey
We piloted our Business Service client library in a CS2-

style course offered at Virginia Tech (CS 2114) during Spring
2013. This course covers topics typical to a second semester
Computer Science course, including Object-Oriented con-
cepts and the Java programming language. All students
in the class are Computer Science majors and minors in
their first or second year, with mostly limited prior program-
ming experience. Every week, students use paired program-
ming to complete a lab assignment. There are also three
large projects meant to be completed over the course of the
semester.

During one lab session, students were assigned a multi-
part problem that required the use of the Business Service
library. To personalize their experience with the library, the
internal data cache was filled with data from the Blacksburg
area. The description of the lab began with an overview
of the problems and advantages inherent in using real-time
data, and then described how the Business Service library
could be used. In the first task, students used the library

to create a list of highly rated businesses in the area. In
the second, they expanded that list with more detailed in-
formation. The primary intent of this lab was to familiarize
students with the client library.

Students had a second opportunity to work with the li-
brary in the third project of the course, where they built a
more complicated “Restaurant Guide” Android application.
Students again searched for a list of restaurants in a given
region. This time, however, they were required to place the
results in their implementation for a circular linked list data
structure.

A voluntary survey was administered to the class after
students had completed the project, and 17 responses were
gathered. Overall, the results were positive. All but one
student indicated that they found the API “applicable to
day-to-day computing experiences”, and all students thought
that the API was “easy-to-use”. Qualitative feedback from
the students highlighted “clear, easy-to-figure-out methods”
and that they “provided information that was easy to work
with”.

5.2 Relevancy Survey
In addition to this formative evaluation, a large-scale sur-

vey was conducted of 370 undergraduates at Virginia Tech in
the Fall 2013. 68% of the respondents were Sophomores and
Juniors, 87% were male, and 68% were Computer Science
majors. Students were asked to gauge how much learning a
given technology would benefit their future careers. Working
with Real-time Data compared favorably with Mobile App
Development and Website/Web Application Development
(with most students feeling they would benefit or definitely
benefit from these technologies), as opposed to Program-
ming Robots, Game Development, and Raspberry Pi De-
velopment (with most students feeling somewhere between
neutral and beneficial). This is extremely encouraging, es-
pecially since our RealTimeWeb framework is designed to
be compatible with Mobile technologies and back-end web
application development.

6. FUTURE WORK
Currently, there are five services available through our

client libraries, each in three languages. Ultimately, we plan
to have an extensive gallery that can cater to a wide range of
student interests. We are particularly interested in soliciting
feedback from the community on other services that would
be of interest and languages that should be supported.

Although the results from our formative evaluation were
positive, it is important not to overstate them. More surveys
and careful evaluation will be required to determine the ex-
act impact that real-time data assignments offer educators.
We are using RealTimeWeb in programming projects dur-
ing Fall 2013 at Virginia Tech in a sophomore/junior-level
data structures course, and at University of Deleware in a
freshman-level course.

7. CONCLUSION
Learning to handle real-time web data is an important

skill for modern CS students to develop. This learning expe-
rience also makes introductory programming projects more
relevant to the students’ day-to-day computing experiences,
thereby increasing engagement and motivation. In order to
reduce the technical barriers inherent in interacting with dis-

tributed systems, we have created publicly available client
libraries that make it possible to connect to popular web
services in a student-friendly manner, enabling a gradual
introduction to the complexities of distributed computing.
Results from an early pilot indicate that our libraries are
easy to use by introductory students. The RealTimeWeb
framework provides a promising way to better engage stu-
dents while preparing them for the realities of the modern
IT workplace.

Acknowledgments
This research is supported by the National Science Founda-
tion through the Grant TUES #1140318.

8. REFERENCES
[1] L. Carter. Why students with an apparent aptitude for

computer science don’t choose to major in computer
science. In Proceedings of the 37th SIGCSE technical
symposium on Computer science education, SIGCSE
’06, pages 27–31, New York, NY, USA, 2006. ACM.

[2] D. I. Cordova and M. R. Lepper. Intrinsic motivation
and the process of learning: Beneficial effects of
contextualization, personalization, and choice. Journal
of educational psychology, 88:715–730, 1996.

[3] A. B. Downey. Think Stats. O’Reilly Media, July 2011.

[4] S. Edwards. Using test-driven development in the
classroom: Providing students with automatic,
concrete feedback on performance. In Proceedings of
the International Conference on Education and
Information Systems: Technologies and Applications,
EISTA, 2003.

[5] A. E. Egger. Engaging students in earthquakes via
real-time data and decisions. Science,
336(6089):1654–1655, 2012.

[6] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs. Second
edition, 2012.

[7] A. Fisher, J. Margolis, and F. Miller. Undergraduate
women in computer science: experience, motivation
and culture. In Proceedings of the 28th SIGCSE
technical symposium on Computer science education,
SIGCSE ’97, pages 106–110, New York, NY, USA,
1997. ACM.

[8] R. M. Ryan and E. L. Deci. Self-determination theory
and the facilitation of intrinsic motivation, social
development, and well-being. The American
psychologist, 55(1):68–78, Jan. 2000.

[9] M. Sahami, S. Roach, E. Cuadros-Vargas, and
D. Reed. Computer science curriculum 2013:
reviewing the strawman report from the acm/ieee-cs
task force. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, SIGCSE
’12, pages 3–4, New York, NY, USA, 2012. ACM.

[10] L. Torgo. Data Mining with R, learning with case
studies. Chapman and Hall/CRC, 2010.

[11] M. Waldman. Keeping it real: utilizing NYC open
data in an introduction to database systems course. J.
Comput. Sci. Coll., 28(6):156–161, June 2013.

