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ABSTRACT

As part of their trade, musicians continuously study and analyze
music scores. Important musical tasks such as selecting repertoire
require searching scores for their constituent elements. Searching
collections of scores can be burdensome and cognitively taxing
even for expert musicologists. Despite the promise of computing to
facilitate searching over vast volumes of information, commercial
search engines only operate on score metadata (e.g., composer, time
period, genre, etc.). In this paper, we discuss the user requirements,
design choices, and software architecture of a search engine for
querying music scores beyond metadata (e.g., instrument range,
key/time signature, dynamics, etc.). We also present our proof-of-
concept implementation of this architecture—Ask Toscanini!—which
supports a wide selection of user queries, expressed as structured
text strings, against a collection of digital scores. The engine can
search through any collection of scores, provided in the popular
standardized MusicXML format, which is subsequently transformed
into our custom search-efficient format. In addition to ensuring
search efficiency, our design also renders the engine amenable for
use by musicians, the majority of whom are not computing experts.
The insights reported in this paper can help future research efforts
in enhancing search technologies for music scores and can serve as
a blueprint for creating commercial solutions in this domain.
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1 INTRODUCTION

A music score, also known as sheet music, is a medium through
which composers communicate their creative output to performers.
Scores are self-contained repositories of musical information, which
include tempol, time signaturez, key signature3, instrumentati0n4,
dynamics®, etc.—everything required for performers to interpret a
musical piece. A medium from which performers play, scores are
also commonly searched and studied. In fact, music history reports
on some intellectual feats associated with analyzing musical scores.

The great Italian conductor Arturo Toscanini (1867-1957) was
returning to his dressing room during the intermission after the
first act of a Verdi opera, when the principal oboist nervously burst
into his view: “Maestro, I am afraid we have a problem! A key on
my oboe just broke, making it impossible for me to play the low B
flat” Toscanini thought for a couple of seconds and then reassured
his musician: “We should be fine then—there is no B flat in your
part in the remaining three acts of the opera.” Of course, Toscanini,
one of the greatest conductors of the 20th century, was a musical
genius. Not only had he memorized the entire operatic score, but
he was also able to scan through the entire oboe part in his mind
blazingly fast to come to this reassuring conclusion.

With modern computing technologies, this intellectual feat of
Maestro Toscanini should be easily repeatable. Computers should
enable musicians to answer many more questions about the content
and characteristics of music scores. Unfortunately, major commer-
cial search engines treat music scores as black boxes, operating
on score metadata, without the ability to examine the content of
the searched scores. Typical score metadata includes the piece’s
title, composer, time period, style, and sometimes instrumentation.
As a result, one can search for all the scores written by Mozart
for a string quartet. However, it would be impossible to search
for a subset of such scores that, for example, limit the constituent
instruments to given pitch ranges.

What if a music search engine could query collections of scores
beyond metadata? With a single query, a musician should be able
to identify the pieces across the entire orchestral repertoire with in-
strumental parts in given pitch ranges. A lack of the ability to query
scores beyond metadata makes it impossible to ask important ques-
tions like that. This limitation constrains our very understanding
of the music literature, with only the most knowledgeable musicol-
ogists capable of guessing what the answers are. Indeed, getting

! The number of beats per minute

2The number of beats to a measure expressed numerically

3The key as expressed by the b or ff symbols at the beginning of a staff line
4 Arranging music to be played by a given combination of instruments
5The level of level of loudness or softness
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precise answers even for a single non-trivial piece requires manual
analysis, which is tedious and error-prone. Extending this analysis
to a collection of scores creates a problem intractable for human
experts.

A common real-world use case of manually searching a collection
of music scores is finding the repertoire suitable for a particular per-
formance group. Musicians spend hours searching through scores to
identify those that would correspond to a given ensemble members’
playing abilities [21]. Consider how every school year, thousands
of music directors face the problem of finding a repertoire that
would fit their ensembles. Unless a score has been analyzed by a
musical expert and given a difficulty grade, extant search engines
lack the ability to examine each individual instrumental part. Se-
lecting scores of given time and key signatures, with instrument
parts within certain pitch ranges, can greatly help determine which
scores would be suitable for a given performance group.

However, to properly accommodate its target audience, the en-
gine must offer a query interface that is accessible to musicians.
Despite their intimate understanding of music scores, musicians
may lack the sophisticated understanding of computing required
to interact with a query interface that imposes strict syntactic com-
pliance requirements. We discuss how we overcame this challenge
by creating a structured query interface that enables useful search
functionality, while tolerating simple syntactic imprecisions.

In this paper, we report on our experiences of architecting a
search engine for music scores that can query them beyond meta-
data. We describe our software architecture and a specific proof-of-
concept implementation, called Ask Toscanini!. Given a collection
of scores in the popular MusicXML format [23], Ask Toscanini! ac-
cepts structured web-based queries, entered through a search box
and specifying various individual elements of the searched scores.
In particular, the scores can be searched on time/key signatures,
instrument ranges, tempos, and dynamics. Although Ask Toscanini!
only demonstrates our design ideas, its software architecture pro-
vides all the necessary foundations for building commercial quality
search engines for music scores.

The rest of this paper is structured as follows. Section 2 discusses
the requirements. Section 3 describes the software architecture of
our search engine. Section 4 details our reference implementation.
Section 5 presents our performance evaluation results. Section 6
compares our approach to the related state of the art. Section 7
presents future work directions and concludes the paper.

2 REQUIREMENTS

To provide value for its target audience, a search engine for music
scores must fulfill several requirements. A key challenge in creating
a music score search engine that allows querying musical informa-
tion beyond metadata is overcoming the sharp contrast between the
computing sophistication of the userbase and the complexity of the
search medium. The engine must be useful for musicians, who pos-
sess deep knowledge about musical notation and the fine-grained
details of interpreting any given score. Nonetheless, musicians are
not expected to possess expertise in computing theory, including
the concepts of syntax, logical operators, and data processing. As
search media, music scores can be incredibly complex, represented
as a multi-layered hierarchy of containers, whose exact structure
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can be non-trivial to ascertain. Hence, the engine’s user interface
should abstract the need to operate on non-trivially structured
collections of search data to accommodate the target audience.

The user interface must strike the right balance between ex-
pressiveness and restrictiveness. It should be able to express multi-
conditional queries, while not accepting and returning results to
obviously nonsensical requests. If a search query is only partially
satisfied due to a semantically invalid condition, the user should
not be exposed to wasting their time looking through search results
containing unrelated scores. As an example, consider searching for
scores, whose tempo ranges between 60 and 80 BPM. The user may
mistakenly specify the query as (tempo 80 and 60), which can be
interpreted either as a reversed range or a simple typo (e.g., tempo
80 and 160). Reconciling these requirements raises the need for ad-
vanced error reporting. Not only should the engine flag incorrectly
constructed queries, but it also should be capable of suggesting
meaningful corrections that the users can follow.

The engine must provide high utility, replacing the need for
manually processing collections of scores. The accepted queries
should be able to filter large collections of scores to produce a
reasonably small subset that can be further examined by hand. To
that end, queries should be easily composable to enable building
increasingly complex queries out of simple individual components.
The user should clearly see how the size of the result set decreases
in response to adding search conditions.

Finally, spoiled by the spectacular responsiveness of commercial
web search engines, modern users expect an almost instantaneous
response from emerging search technologies. End users, unaware
of the fundamental dissimilarities between the processes of web
search and that of searching for scores would expect comparable
performance in terms of the response time. At the same time, it
would be highly inappropriate to trade precision for speed, like
may be permissible in the case of web search. A score incorrectly
returned based on a correctly specified query would almost defeat
the purpose of a search engine for music scores.

3 SOFTWARE ARCHITECTURE

By fulfilling the requirements outlined above, one can define a
software architecture for building engines capable of searching
music scores beyond metadata. We first discuss the peculiarities
of the MusicXML format, as our engine works with this universal
music representation. Then we discuss our architecture, its main
components and their interactions.

3.1 MusicXML as a Search Media

Recall that one of our requirements is to provide high utility for an
engine operating on a collection of scores. An important question
concerns which common format should be used for representing
the searched scores. MusicXML is an industry-wide, open-source
format supported by numerous major music software makers, in-
cluding proprietary software and open-source tools [5, 17]. In recog-
nition of the wide embrace of MusicXML, the World Wide Web
Consortium (W3C) [19] adopted the development of this format
for representing music scores for all web-based purposes and the
Library of Congress for digital preservation [1].
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Figure 1: System Architecture for the Search Engine for Music Scores Beyond Metadata.

MusicXML leverages the eXtensible Markup Language (XML)
technology [18] in order to provide self-describing tags that ex-
press all constituent elements of a music score. MusicXML docu-
ments represent hierarchical structures, with the top element of
<score-partwise>, which serves as the root of a hierarchy of contain-
ers. An interesting artifact of MusicXML design is that this universal
standard is intended for rendering musical scores in a score editor
or playing them on electronic devices [18]. When an editor renders
a MusicXML document or a music synthesizer plays it, its content
is read sequentially from top to bottom, with the content being
processed as it is being parsed and extracted. This sequential access
model implies that all search operations on the constituent content
of a score would have the linear asymptotic complexity [26] of
O(n), where n is the size of a score in terms of the number of nodes
in the XML tree. For non-trivial scores in large collections, this
linear complexity would yield very inefficient search performance.
In addition, the physical constraints on computer memory impose
limits on how much data can be searched efficiently. As a result,
when searching large volumes of information, search algorithms
should possess at least logarithmic efficiency (O(lg(n)). Since un-
processed MusicXML documents support only sequential access,
we discovered a need to preprocess the searched scores, thereby
transforming them into a format that is better amenable to the
instantaneous retrieval of solely the important information.

In our reference implementation, we preprocess MusicXML doc-
uments into a collection of score facts—high level information that
pertains directly to user queries such as time signatures, key sig-
natures, etc. We extract and compute score facts from the raw
MusicXML documents in a process that we call fact extraction. The
specific procedures that we follow to extract the relevant facts, as
well as their representation, are detailed in Section 4. Further, we

discuss the performance improvements that result from operating
on preprocessed search media in Section 5.

By querying the extracted facts rather than the original scores,
our design reduces the space complexity by orders of magnitude
and the time complexity to near constant time. This preprocessing
procedure creates the extracted fact documents, structured as a key-
value store, known for the nearly constant efficiency of its retrieval
operations. Preprocessing is quite computationally intensive, due
to the need to parse large XML documents and insert the extracted
data to a database for permanent storage. However, the procedure
needs to be executed only once when new scores are added from the
repository. The resulting costs are then amortized by the sped-up
performance for all the subsequent search queries. In commercial
deployments, we envision running the fact extraction procedure in
batch mode, preferably overnight, when the utilization of the main
query interface is at a minimum.

3.2 System Architecture

Figure 1 describes the system architecture that can be used to build
search engines for querying music scores beyond metadata. The
architecture comprises three main tiers: the client, the server, and
the database. In addition, the database tier includes a separate com-
ponent that preprocesses raw scores into indexed database records;
the preprocessing tier operates independently of the main engine
functionality. The user enters a search query through the user in-
terface (UI) component and receives back a list of matching scores
that can be empty. The Server component processes the queries
by parsing them into access requests to the Database component,
which in turn returns back the score list, presented to the user as a
list of titles, each of which is a link that can be followed to access
the actual score.
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Figure 2: Reference Implementation: Ask Toscanini!

In essence, the architecture is structured around the commonly
used in enterprise computing Model View Controller (MVC) [22],
which provides the benefits of separating key concerns as well as
modularizing the implementation to facilitate both forward devel-
opment and subsequent maintenance. Next we briefly explain how
the components described above map into the MVC architecture.

The Model component encapsulates data management, which
includes a repository of raw scores and their representations as
precomputed score facts. How scores should be transformed into
facts depends on the requirements for a given deployment. The
transformation process can be performed in batch mode over the
entire collection or be performed on demand upon first access.
The important consideration is that the results must be cached
and persisted for subsequent queries. Another facet to consider is
how closely the raw score repository and the facts database are
synchronized. For example, should the removal of a raw score from
the repository immediately be reflected by the database? Otherwise,
a query can return a score fitting the search criteria that is no longer
available in the repository.

The View component encapsulates the user interface and its
visual representation. There can be a wide variety of approaches to
present the front-end of the search engine to the user. An important
consideration is whether the search interface should be text-based
or use some visual domain-specific language. Text-based interfaces
allow for syntax errors that must be handled in a user-friendly
fashion. Visual interfaces should make it impossible to enter syn-
tactically incorrect queries, but could necessarily constrain the

user. Hence, these two options trade flexibility for correctness, and
should be selected based on the deployment requirements.

The Controller component connects the View and Model com-
ponents. It is responsible for detecting when a query is submitted,
passing it to the server for processing, contacting the database,
and routing the query results back to the user. As has become a
standard usage paradigm for search engines, we advocate following
the Request-Reply interaction. In that sense, when a query is in
progress, no other queries should be accepted. Although the query
aspect of the View component should enforce such sequential oper-
ation, the other components should be free to exploit concurrency
at will to ensure high performance and responsiveness.

4 REFERENCE IMPLEMENTATION

Next, we reflect on the design decisions and technologies used to
implement the aforementioned architecture. We have concretely
implemented this architecture as a proof-of-concept search engine,
“Ask Toscanini!”® whose main modules appear in Figure 2. For
our implementation, we build a web-based system that uses stan-
dard enterprise software components, including a Node.js server
component and a MongoDB non-relational database engine.

To facilitate portability, we use JavaScript (ES6) as the imple-
mentation language throughout the system (both frontend and
backend parts). This language’s vast third-party library availabil-
ity and the support for multi-paradigm programming make it the

% Ask Toscanini! is hosted at toscanini.cs.vt.edu
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lingua franca for prototyping any web-based systems for the enter-
prise. For commercial deployments, some of the system’s modules
can be reimplemented in other languages, but in our evaluation,
we have not encountered any performance bottlenecks that would
make us question our choice of implementation language. In our
implementation practices, we emphasize the functional program-
ming aspects of JavaScript with its support for data immutability,
function composition and reuse. However, our adherence to the
functional programming paradigm is not exclusive. We also make
use of object oriented features (for abstracting processes) and pro-
cedural interfaces (for accessing persistent data).

Next, we detail the implementation insights of the key modules
of our reference implementation, to explain our design choices
and how they were shaped by the constraints of the constituent
technologies. In the following subsections, the titles include the
module name and its description under which it appears in Figure
2—i.e., Module (“Module Name”).

4.1 Score Repository (“MusicXML Repository”)

MusicXML contains extraneous information, relevant only for ren-
dering and playback. Our fact extractor (discussed in 4.2) filters out
the irrelevant information.

4.2 Fact Extractor (“Toscanini.js”)

Before we discuss how we extract the relevant facts from a score,
consider Figure 3, which shows the extracted facts from a Bach can-
tata in MusicXML’. In essence, facts are a collection of answers to
the supported queries, formatted as a JSON [9] document. Because
JSON documents can be searched in constant time, the precomputed
facts are retrieved instantaneously. Besides, the size of a typical
facts document is orders of magnitude smaller than the score file it
represents. A typical facts document lists the pitch ranges for all
the constituent instruments, tempo ranges, key signatures, time sig-
natures, and dynamics. As the search engine’s capacities grow, the
facts format needs to evolve accordingly to include the information
required to answer newly supported queries.

For the reference implementation, we have created a fully func-
tional open source fact extractor, Toscanini.jsg. The module can be
instantiated as an object, taking as input a single MusicXML string
representing the entire score. Individual score elements can be re-
trieved by calling methods, such as getPitchRange(instrumentName),
which retrieves the playing range for a given instrument as a
JavaScript object (dictionary)—{*‘minPitch'': 30, ‘‘maxPitch'': 72}.

The fact extraction process includes the following phases: Phase
0: Check if the score repository has new MusicXML scores since
the last fact extraction, observable if the repository has score file
names not recorded in the database. Phase I: Parse the MusicXML
of a new score into a programmatically searchable data structure.
Phase II: Search for relevant XML elements and compute facts. For
example, to find the playing pitch ranges for the instruments, the
MusicXML <pitch> elements should be analyzed. Phase III: Repeat
Phase I and II for each new score. Phase IV: Insert the new score

https://drive.google.com/file/d/1Gjg3rcKnj-UOD_xjRr2qVCR18KoVDq9V/view?
usp=sharing.
8https://www.npmjs.com/package/toscanini

SAC 19, April 8-12, 2019, Limassol, Cyprus

Figure 3: Extracted Facts Document for “Was mein Gott will,
das g’scheh allzeit,” BWV 111, by J.S. Bach

{
"_id": "bach_wasmeingott.xml",
"instrumentRanges": [
{
"minPitch": 54,
"maxPitch": 64,
"instrumentName": "soprano"

"minPitch": 33,
"maxPitch": 47,
"instrumentName": "bass"
}
Ils
"minTempo": 96,
"maxTempo": 96,
"keySignatures": [
"
IE
"timeSignatures": [
{
"beats": 4,
"beatType": 4
}

ynamics": []

]

"

Note: pitch is stored as MIDI numbers for range queries.

facts into the database. Phase V: Index the database based on score
title and the extracted facts.

Under the hood, Toscanini.js utilizes the popular elementtree
XML parser module and its support for XPATH expressions, such
as //dynamics to retrieve all dynamics tags in the score irrespective of
their relative position in the score document. Elementtree also offers
ease of deployment, as it requires no compilation or complex con-
figuration, while offering acceptable performance characteristics.
We have also experimented with event-based parsing strategies,
such as the SAX-based XML parser, xml2js; however, we found
its functionality lacking in not being able to easily determine the
relative position of MusicXML elements, an essential functionality
for our fact extraction process.

4.3 Database (“MongoDB”)

In modern database theory, there is serious debate about the range
of applicability of relational (i.e., SQL-based) vs. NoSQL databases.
Although relational databases have been dominant in enterprise
computing, emerging domains make increasing use of non-relational
databases [13]. When designing the conceptual data model for repre-
senting the score facts database, we discovered that the underlying
data representation is not inherently relational—the score facts can
be naturally represented as self-contained documents, as appears
in Figure 3. In contrast, a relational representation would lead to
the creation of numerous entities (i.e., tables). For example, instru-
ment specific information such as pitch range, would need to be
represented in separate tables, with each range value appearing in
its own table entry. As a result, performing the most rudimentary
queries would require the execution of expensive multi-table oper-
ations (i.e., joins), known to impose a heavy performance overhead.


https://drive.google.com/file/d/1Gjg3rcKnj-UOD_xjRr2qVCR18KoVDq9V/view?usp=sharing
https://drive.google.com/file/d/1Gjg3rcKnj-UOD_xjRr2qVCR18KoVDq9V/view?usp=sharing
https://www.npmjs.com/package/toscanini
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An additional requirement that needs to be fulfilled is keeping the
data model open for ease of evolution, as new types of queries
become necessary to support.

To address our aforementioned observations, our reference im-
plementation makes use of the popular document-oriented data-
base, MongoDB. MongoDB stores score data as JSON documents,
while providing all facilities one expects from a traditional database
system, including ad-hoc querying, aggregation, data persistence,
caching, and JavaScript integration. Not only does MongoDB store
JSON documents, but it also accepts JSON-formatted queries, thus
facilitating a consistent programming interface.

4.4 Parser (“PEG.js - musicQL”)

Our reference implementation uses a flexible text-based query in-
terface. This flexibility, however, comes at a steep price of the user
being able to enter any string of text, potentially erroneous or even
nonsensical. Our design goal is to help the user correct their queries
by giving them helpful hints. To that end, Ask Toscanini! features
a query parser that checks the submitted queries against a formal
grammar, while reporting back the grammar violations as help-
ful correction suggestions. By iteratively correcting the reported
errors, users can evolve their inchoate queries into sophisticated
interactions with the search engine. Upon validating a query, our
parser produces a query object for MongoDB to search the fact
documents.

We call our query parser and associated grammar rules “mu-
sicQL” It accepts structured queries (e.g., beethoven and dynamic mf
and tempo 75 150) and checks them against a grammar. The afore-
mentioned example query specifies a composer name (beethoven),
a dynamic (mf), and a tempo range (75 150), respectively. Figure
4 shows the output of this query’s execution—only one score was
returned, Beethoven’s Symphony No.4 Movement 4, whose PDF
appears as a hyperlink.

Ask Toscanini!

beethoven and dynamic mf and tempo 75 150

[ ] @)

I'm Feeling Musically Lucky

Showing results for beethoven and dynamic mf and tempo 75 150

beethoven_symphony4_mov4.pdf

Figure 4: The search engine in action

Other example queries include:

o See all scores we have by leaving the search box empty

e Query for an instrument with a specific range, ex: trumpet
F#3 D5

e Query for composer or instrument (no range), ex: “bach”,
“viola”, etc.
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e Query for tempo between range, ex: “tempo 40 130”

e Query for key signature, ex: “key Bb”

e Query for time signature, ex: “ts 2 4”

e Query for dynamic (anywhere in the score), ex: “dynamic
mf”. Currently the supported representations for dynamics
are: f, ff, fif, fiff, fifft, fififf, fp, fz, mf, mp, p, pp, ppp. pPPPP
PPPPP: PPPPPDP: I, fz, sf, sftz, sfp, stpp, stz

e Putting it all together: “Beethoven and tempo 75 150 and
flute D4 G#6 and trumpet F#3 A5 and key Bb and ts 2 4 and
dynamic mp and dynamic f”

Our parser was generated to check the syntactic correctness
of the input queries based on a formal grammar [14]. The formal
grammar of our parser extends the classic EBNF format into the
Parsing Expression Grammars (“PEGs”) model [12], which offers
superior parsing performance and ambiguity prevention . PEGs fit
our problem domain well in their ability to eliminate the ambiguity
of mistaking similar queries for each other.

start = _(clause)(_"and"_ clause)*_
clause = (musicTerm / instrumentRange / composerInstrument)

musicTerm = "ts"_ beats:([1-9][0-91?) _ beatType: ([1-9][0-91?)
/ "tempo" _ min:([0-9][0-9]1?[0-91?) _ max:([1-91[0-91?[0-9]?)
/ "key" _ key:([a-gA-G1[b|#1?)

/ "dynamic" _ dynamic:

[GRARARREVAS S SR RVAS & 3 R VAS S & BVAS S VAL T RVAS FAVAS RVAY | ]

nan

"mp" /" pppppp" /" pPPPR” /" PPPP" /" PEp" /PR /"p" /" rf 2" /
NEN NS FZ" /s ERZ" /M sFpp /" sFp" /" sF")

instrumentRange = instrument: ([a-zA-Z0-9]1)+
_ min:([a-gA-G1[b|#]1?[0-9]1) _ max:([a-gA-GI[b|#1?[0-91)

composerInstrument = ci:([a-zA-Z0-9]+)

_ "whitespace" = [ \t\n\rlx
Figure 5: musicQL’s Parsing Expression Grammar

For brevity, we show the musicQL grammar, but elide the query
object creation in Figure 5. The grammar rules are start, clause,
musicTerm, instrumentRange, and composerInstrument. We lever-
age PEGs prioritized choice operator, the “/”, which picks the first
successful match. For example, by ordering the supported dynam-
ics carefully, the query dynamic ff could never be mistaken for
dynamic f.

No results found for beethoven and dynamic m and tempo
75 150

Suggestions

e check condition dynamic m
Figure 6: Error message in response to an invalid query

Our parser aims to be semantically strict, but syntactically forgiv-
ing. We want to save the time wasted on examining scores returned
in response to a partially satisfied query with an invalid condition.
Consider the query beethoven and dynamic m and tempo 75 150.
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This query would not pass our grammar because “m” is not a valid
dynamic, so the user would see the error message in Figure 6.

4.5 Server (“Node.js”)

Node.js https://nodejs.org/en/about/ is the de facto framework for
developing server functionality in JavaScript. Its programing model
naturally supports efficient asynchronous input/output operations,
such as reading from disk, an important feature for a search engine.
Node.js offers superior performance, being powered by Google’s
highly optimized JavaScript engine V8. Due to the portability of
Node.js, our reference implementation can be deployed in many
operating environments, as long as they follow standard deploy-
ment conventions. We have seamlessly deployed Ask Toscanini! in
the Windows, OSX, Fedora, and CentOS operating environments.

4.6 UI (“Ajax, JQuery, HTML, Materialize-CSS”)

Our user interface is offered through the standard browser-based
front end. In our implementation, we follow the industry standards,
which incorporate some of the most tried and tested technologies.
All HTTP requests to the server use Ajax to avoid blocking the
browser UI thread. JQuery—the “write less, do more” JavaScript
library—handles all the interactions with the HTML DOM and
issues the Ajax requests in a structured fashion. We use the Mate-
rialize styling framework (https://materializecss.com/about.html),
which is based on principles set forth by Google to achieve consis-
tent look and feel across devices. Finally, we leverage CSS’s emedia
functionality [8] for fine-tuned control of styling across screen
sizes. Since our target audience may access the search engine from
a variety of computing devices, our user interface can flexibly adapt
to dissimilar devices.

5 PERFORMANCE EVALUATION

The goal of our performance evaluation is to validate the need
for extracting facts. To that end, we first benchmarked the latency
of executing all supported queries against the entire collection,
comprising of 35 classical pieces of different sizes and orchestrations
taking about 40MB of disk space and representing over 500 pages
of sheet music. By comparison, the extracted facts for these scores
take about 20KB of disk space to store. Our system configuration
for these benchmarks is: Macmini5.3, Intel Core i7, 2 GHz, 4 cores, 8
GB RAM. Each benchmark was repeated 10 times, with the results
averaged. Figure 7 shows the breakdown of the total time taken
by (1) reading scores from the disk (.32 sec), (2) parsing MusicXML
(33.12 sec), and (3) searching the parsed documents (1.02 sec). As
one can see, parsing dominates the processing costs, with searching
being a far second. Third-party benchmarks suggest the actual
performance of an XML parser bears only a minor impact on the
overall system performance [2].

The ability to pre-parse MusicXML files has undeniable perfor-
mance improvement benefits. However, as we discovered, search-
ing extracted facts offers additional performance improvements.
To quantify these additional improvements, consider Figure 8 that
compares the time it takes to search pre-parsed MusicXML vs. ex-
tracted facts. The obtained performance numbers shows that the
extracted facts can be searched in a fraction of the time it takes to
search even pre-parsed MusicXML documents.
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Performance of Searching Raw MusicXML
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Figure 7: Breakdown between constituent parts of a query
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Figure 8: Searching Cached MusicXML vs. Extracted Facts

6 RELATED WORK

One of the distinguishing features of Ask Toscanini! is making use of
a database engine to systematically organize and efficiently retrieve
score-related information in order to process user queries. Our ap-
proach follows on an earlier insight about the need for database
support as a means of maintaining collections of symbolic music
information [20]. Furthermore, our requirements are molded by
user expectations stemming from interacting with hypertext search
engines, which emphasize result correctness [10]. These general-
purpose search engines, however, cannot search music scores be-
yond metadata. Another feature of hypertext engines we consider
adopting is ranking the search results to supplement the current
exact matches that satisfy the user-specified search conditions.

To process queries, a search engine must first parse and extract
information from music scores in a digital format. General libraries,
frameworks, and toolkits come very handy in this context. For ex-
ample, Music21 [11] is a very powerful digital musicology toolkit
for Python programmers. In fact, this toolkit has already been used
to extract some musical content [16]. Although we could have lever-
aged Music21 in our reference implementation, we instead decided
to develop our own score processing toolchain in JavaScript to be
specifically tailored toward searching. In our implementation, the
Toscanini.js module provides the necessary functionality exposed
through a simple API for fact extraction.

One of our key design choices was using a simple text-based
query interface, through which users without any computing back-
ground can enter useful queries against collections of scores. Our
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architecture provides for a rigorous and systematic checking of the
syntactic validity of the entered queries, giving end-users helpful
correction suggestions. Prior related work has advocated the use
of the XQuery technology for extracting information from XML
documents [15, 25]. Indeed, XQuery is highly powerful and expres-
sive for its intended usage domain—querying XML documents in
enterprise applications. However, using XQuery in the context of a
search engine for scores would be inappropriate for two reasons.
First, it would be highly confusing to expose MusicXML as the
actual search media to the end user. Our approach uses this formate
strictly for internal processing, with the end user designing their
queries based on actual musical content rather than its MusicXML
representation. Second, XQuery requires certain programming ex-
pertise to use correctly. Requiring this expertise would introduce
an unnecessary obstacle to adoption for our target audience. Fi-
nally, these prior approaches left the questions of the performance
and scalability of applying XQuery unaddressed. In contrast, our
benchmarks validate our architectural and implementation choices.

Liber Usualis [6] bares some similarity with Ask Toscanini! in its
support for content based feature querying, such as pitch sequence
and text search. Although relevant for musicologists, these queries
would be unhelpful for a band director or performer trying to find
repertoire to play. The project provides no support for combining
multiple queries, using a single drop down menu UL We plan to
incorporate that engine’s ability to observe where in a score a
certain query is answered. For example, a pitch sequence query
will show the measures where said pitch sequence occurs.

As compared to retrieving scores based on a search criteria, other
related approaches enable statistical inferencing on a collection of
scores. Given a collection of jazz charts, the user can make statistical
inferences based on the probability of the presence of certain chords
and individual notes [24]. In our future work, we may consider
adding support for queries based on statistical properties of the
searched scores.

7 FUTURE WORK AND CONCLUSIONS

As an ongoing research project, our reference implementation is
being continuously evolved, optimized, and evaluated. In particular,
we are innovating in the end-user interface space and error correc-
tion suggestions to better accommodate our target audience. We are
also working on supporting querying for other elements of struc-
ture and content. Handing truly large collections would require
high scalability, with the engine running in parallel on a compute
cluster, a direction that we plan to explore. Fortunately, MongoDB
naturally supports such data parallelism through sharding and map-
reduce [3, 4, 7]. In addition to searching, parallel processing can
also speed-up our fact extraction process.

We have presented Ask Toscanini! by reflecting on our experi-
ences of architecting, designing, and implementing a search engine
for music scores beyond metadata. Key insights that we gained
include the need to preprocess MusicXML documents to ensure
high search performance as well as the necessity of systematic error
checking and correction for user queries to accommodate our target
audience. The design ideas discussed herein and our preliminary
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evaluation results can help drive efforts in creating powerful auto-
mated exploration technologies for music scores, empowering both
musicians and technologists.
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