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ABSTRACT
User-level indirection is the automatic rewriting of an application 
to interpose code that gets executed upon program actions such as 
object field access, method call, object construction, etc. Several 
useful domain-specific and domain-independent (typically called 
aspect-oriented) mechanisms employ user-level indirection 
techniques for enhancing the capabilities of applications. 
Nevertheless, the applicability of all such techniques is constrained 
due to the presence of opaque (native) code that cannot be 
indirected and can invalidate the assumptions of any indirection 
transformation. These problems are real: the native behavior of 
Java system classes, for instance, invalidates the transparency of 
several user-level indirection techniques in the recent research 
literature. In this paper, we demonstrate the problem of employing 
user-level indirection in the presence of native code. We then 
suggest reasonable assumptions on the behavior of native code and 
a simple analysis to compute the constraints they entail for the 
applicability of user-level indirection. We show that the type 
information at the native code interface is often a surprisingly 
sufficient approximation of native behavior for heuristically 
estimating when user-level indirection can be applied safely. 
Furthermore, we introduce a new user-level indirection approach 
that minimizes the constraints imposed by interactions with native 
code.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic  Programming 
—program synthesis, program transformation, program 
verification; D2.3 [Software Engineering]: Coding Tools and 
Techniques—Object-oriented programming;

General Terms
Languages.

Keywords
Program transformation, aspect-oriented programming, 
program enhancement.

1. INTRODUCTION
User-level indirection is the automatic transformation 
(instrumentation) of application and system code so that its 
execution characteristics are modified, without changing the 
underlying runtime system. Standard applications include 
transparent distributed execution [4][6][14][16][18][19], 
persistence [2][10][13], profiling [7], and logging [11]. 
Additionally, the introduction of Aspect-oriented 
Programming (AOP) [8] has led to general purpose program 
enhancement mechanisms that often rely on user-level 
indirection techniques.1 Thus, user-level indirection is a 
language-level technique for achieving systems-level 
extensibility. The approach has become even more prevalent 
with the widespread use of virtual machines, such as the Java 
VM or Microsoft’s CLR, as runtime systems for high-level 
languages. Compared to the straightforward approach of 
modifying the runtime system, user-level indirection has the 
crucial advantage of portability and ease of deployment on 
unmodified runtime systems. Running applications on 
modified versions of a platform-specific runtime system is 
hard and in some cases (e.g., embedded systems) even 
impossible. Yet, if we achieve the same effect through code 
transformation, the resulting code can run on a variety of 
platforms on standard-issue runtime systems.

User-level indirection has to be transparent relative to the 
behavior of the original code. For instance, if we transform an 
application to log its method calling actions, the resulting 
application should behave identically, except for the logging. 
Nevertheless, all user-level indirection techniques have 
transparency limitations relating to the presence of native code 
that an application can access. Native code is opaque: it cannot 
be analyzed or modified without negating the platform-
independence advantages of user-level indirection. Yet, native 
code has its own state, can hold references to user objects, can 
remember (alias) these references across invocations, and can 
use them for destructive updates of user-level state. This 
renders the code transformation incorrect (i.e., non-semantics-
preserving) for all user-level indirection techniques in the 
literature and for most purposes of user-level indirection. 

This paper discusses why different user-level indirection 
techniques are not semantics-preserving in the presence of 
native code. The problems occur in practice with common 
native code patterns, e.g., in the Java system classes. In a 
sense, this is an old problem of semantics-preserving 
transformations in the presence of opaque code. The same 
problem could be studied in the context of any language and 
runtime system. Yet, modern high-level runtime systems are a 
natural platform for user-level indirection and introduce 
unique parameters (e.g., well-typed interfaces to system code). 
We discuss the issue from the perspective of runtimes for OO 
languages, such as the JVM and the CLR. We then examine 
what weak assumptions we can make regarding native code 
and what constraints we can enforce so that disciplined use of 
user-level indirection is correct. These weak assumptions are 
practical: for instance, they hold widely in existing native code 
in the Sun JDK implementations. The assumptions are 
1 Typically, AOP mechanisms do not expose their implementation to the user. For 

instance, AspectJ [9] users are discouraged from thinking of aspect application as 
program transformation. This is compatible with our main assumption in this 
paper: program transformations may be used but need to remain user-transparent.



sufficient to enable a simple type-based analysis to guarantee 
the safety of user-level indirection for the majority of Java 
system classes. Nevertheless, since the assumptions are 
occasionally violated, our approach is heuristic and does not 
guarantee full safety. Full safety is impossible without 
analyzing the opaque native code, which is undesirable since it 
introduces platform and source-code availability dependencies.
To see the contribution of this work compared to past research, 
consider the closest comparable point in the design space: 
Factor, Schuster and Shagin’s TCH approach [5]. TCH offers a 
general way to enable user-level indirection in Java. 
Nevertheless, the limitations of the approach are not 
recognized by the TCH authors, who argue that “TCH can be 
used automatically by any general instrumentation”; “[TCH 
has] the ability [...] to instrument all system classes”; “TCH 
allows even system classes with native dependencies to be 
rewritten for distributed execution” [5]. Identifying and 
explaining the limitations in a general setting is part of the 
value of our work.
In practice, the TCH instrumentation approach leaves the user 
entirely responsible for the correctness of transformations that 
deal with native code. Users and researchers have identified 
this as a serious shortcoming. As Saff, Artzi, Perkins and Ernst 
observe [15]:

... However, [the TCH] approach does not scale. The most 
serious problem is that wrappers must be written by hand for 
each native method, of which there are a great many used by 
any realistic program.

Our work addresses these problems in a practical way. Even 
though no guarantees can be offered without analyzing the 
native implementation of the specific runtime system that the 
code runs on, we offer a heuristic analysis that we show to be 
highly accurate in practice. Thus, the user rarely needs to 
explicitly specify special-case handling of native methods.
The foremost application of the general approach described in 
this paper is our J-Orchestra system [19][20], which 
automatically rewrites Java applications for distributed 
execution, yet enforces simple constraints to ensure the 
correctness of the transformation under general assumptions on 
the native code behavior. This paper generalizes the J-
Orchestra approach in a domain-independent setting, so that it 
can be employed for other tasks, such as persistence and 
logging. Additionally, this paper refines the basic J-Orchestra 
user-level indirection technique. We show that we can remove 
some of the J-Orchestra constraints and obtain the freedom to 
use user-level indirection for many more system classes, at the 
expense of using a more complex indirection scheme.

2. USER-LEVEL INDIRECTION AND ITS 
LIMITATIONS

We first describe user-level indirection to make clear why all 
different versions of the idea converge into using the same 
general approaches. Then we discuss why there are correctness 
limitations when native code is involved. Some of these 
limitations are straightforward (e.g., native code can have its 
own state) while some others are more subtle (e.g., native code 
can change user-level state directly). We generally use Java 
(i.e., Java language syntax, Java terminology, and JNI 
conventions) as our reference system. Even though we 
demonstrate program transformations in source code for 
readability, these transformations are generally performed at 

the bytecode level. In Section 2.3 we discuss the differences 
relative to the CLR and .NET technologies.

2.1 User-Level Indirection Techniques
We use the name “user-level indirection” to describe any 
general technique that transparently interposes extra 
functionality to the execution of existing applications by using 
code transformation techniques, instead of modifying the 
underlying implementation of the runtime system. 
Applications of user-level indirection include transparent 
distributed execution [4][14][16][17][18][19], persistence 
[2][10][13], profiling [7], and logging [11]. In general, user-
level indirection aims at capturing specific events and 
performing actions whenever they occur. Such events typically 
are:
• Access to a field of an object or a static field (reading or 

modifying the field).
• Calls to a method of an object of a specific type, or calls 

to a static method.
• Object construction.
For instance, we may want to add indirection to all changes to 
the fields of an object for logging: we may want a permanent 
log of all state updates in a running system. This is possible by 
finding all field access instructions in the application and 
modifying them to log their action before taking it. The 
logging code is either included inline at the field access site, or 
a separate method can be called.
What complicates user-level indirection is the existence of 
reusable core functionality in the form of system classes (a.k.a. 
standard library classes). User-level indirection cannot afford 
to ignore system classes, even if the intended use is not 
concerned with system-level events. For instance, consider a 
user-level indirection system that performs actions every time 
a user-level method gets called. User-level methods, however, 
often get called by system-level code. For instance, system 
libraries often accept a callback object and invoke its methods 
in response to asynchronous events, or in response to system 
code actions initiated by a user-level call. Thus, the user-level 
indirection technique needs to ensure that it allows and 
correctly handles all calls, regardless of whether they occur 
inside user-level or system-level code.
In popular modern runtime systems, the majority of system 
class code is not special. Most of the Java system classes, for 
instance, are distributed in Java bytecode format. Thus, one 
can apply the same user-level indirection techniques to both 
user-level code and bytecode-only system classes. Indeed, 
several systems [5][18][19] follow this approach. The standard 
technique in this case is to create a separate, instrumented 
version of the system classes. The instrumented version co-
exists with the standard system classes in the same application. 
In this way, an application can access both the user-level 
indirected versions of system classes and the original versions 
without any conflict. This is necessary, since the system 
classes are often used inside the instrumentation code itself. In 
original application code, however, all uses of system classes 
are replaced with uses of their instrumented counterparts. 
Factor et al. [5] call this the “Twin Class Hierarchy” approach 
(TCH). As an example, imagine that the original Java 
application contains code such as:
class A { 
  public java.lang.String meth(int i, B b) {...} 
}



The rewritten class would use the instrumented class types:
class UP.A { 
  public UP.java.lang.String meth(int i, UP.B b) 
  {...} 
}

(UP in the above code stands for “user package”.)

java.lang.Object

java.lang.String somesyspackage.A

Figure 1(a): Original system classes hierarchy

java.lang.Object

UP.java.lang.Object

UP.somesyspackage.AUP.java.lang.String

somesyspackage.Ajava.lang.String

Figure 1(b): Replicating system classes in a user package (“UP”)

 Figure 1
shows the effects on the class hierarchies pictorially.

2.2 Transparency Limitations
The problems with any user-level indirection technique begin 
when a system class with native code needs to be instrumented. 
Native code (a.k.a. platform-specific binary code) is often used 
to implement system-level functionality. Some of the most 
fundamental system classes (e.g., the ones dealing with 
threading, file and network access, GUI, etc.) rely on native 
code, mainly for reasons of low-level resource access, such as 
context-switching or fast graphical operations. System classes 
with native code are, thus, a way to export runtime system 
functionality as language-level facilities.
Native code cannot be instrumented without invalidating all 
the advantages of the user-level indirection approach. 
Changing native code requires platform-specific changes and 
the creation of special versions of the runtime system (either 
the executable program or its dynamic libraries). Similarly, 
analyzing native code and relying on its implementation 
properties is a platform-specific task. Thus, dealing with native 
code is incompatible with the main motivation for user-level 
indirection: that of portability and platform independence. 
Therefore, native code is opaque for the purpose of user-level 
indirection: it can be neither modified nor analyzed.
Having an application access opaque code immediately 
introduces limitations in user-level indirection approaches. 
Even if opaque code is a small percentage of the total system 
code,2 it is likely to be used by every application and needs to 
be handled correctly. (In fact, because java.lang.Object and 
System.Object, the root classes in Java and C#, respectively, 
use native code in their implementation, one could argue that 

every program written in these languages contains opaque 
code.) Clearly, one limitation is that user-level indirection 
cannot be used to intercept actions occurring entirely inside 
native code. For instance, we cannot observe and log updates 
to program state kept inside native code: such state is invisible 
to the user-level. That is, changes to internal system state (e.g., 
the contents of a low-level window, the scheduling structure of 
threads, etc.) cannot be intercepted using user-level 
indirection. Although it may seem that such state is low-level 
and is outside the scope of user-level indirection, the 
restriction nevertheless places boundaries on what is 
achievable with user-level indirection alone. For instance, 
without reliance on implementation specifics of the Java 
system libraries, a distributed execution system that relies on 
user-level indirection (such as J-Orchestra [19], Pangaea [16], 
Addistant [18] or JavaSplit [4]) cannot hope to transparently 
migrate window or thread objects from one machine to 
another. This task can still be achieved by special-purpose 
emulation of the semantics of a thread or window at the user 
level, but not by employing general-purpose user-level 
indirection techniques on the Java system classes.

Often, however, the interactions of native code with user-level 
indirection are more subtle. In the Java system, native code can 
directly read or modify the state of object fields declared in 
bytecode. This allows for tight integration of native code and 
Java code. Essentially, the Java Native Interface (JNI) is a way 
to program using the full object model of the JVM with C or 
C++ as the host language. Direct access to fields inside native 
code complicates matters for user-level indirection. Consider 
the TCH user-level indirection approach for instrumenting 
standard Java libraries [5]. (This approach is representative of 
other user-level indirection techniques, such as the one in J-
Orchestra [19].) In this approach, if a class A has a native 
method, an instrumented version of A delegates calls to the 
2 Only about 3% of the Java system classes have native methods. (All numbers 

mentioned in the paper were measured on Sun JDK 1.4.2, unless stated otherwise.) 
Nevertheless, as we show later, these are some of the most commonly used classes 
in Java and are likely to constitute a much larger percentage of the loaded system 
code in a Java application.



native method of an internal A object. This technique is used 
because a native method implementation in Java is bound to a 
particular class name and cannot be reused for a different class. 
For instance, consider original code as follows: (This code 
does not reflect the standard Java File class but the structure 
is representative of several system classes with native 
methods.)

class File {  ... 
  public native void write(byte b); 
}

The instrumented version of this class would be:

class UP.File { 
  private File origImpl_; 
  ... 
  // delegate to native method 
  public void write(byte b) {origImpl_.write(b);} 
}

It may at first seem that the UP.File class can use arbitrary 
user-level indirection for its non-native methods. Nevertheless, 
this is not the case. Imagine that the File class also has a non-
native method newLine:

class File {  ... 
  public native void write(byte b); 
  public void newLine() { ... } 
}

It is not safe to indirect method newLine (e.g., to track its 
changes to fields of a File object) yet simply delegate method 
write. To see this, consider the re-written code:

class UP.File { 
  private File origImpl_; 
  ... 
  // delegate to native method 
  public void write(byte b) {origImpl_.write(b);} 
  public void newLine() {...} // instrumented body 
}

The problem is that any call to method write affects the 
origImpl_ object, while any call to method newLine affects 
the current object of type UP.File. Separating these two 
objects (when they were one in the original application) 
destroys the transparency of user-level indirection. Therefore, 
we see that the TCH user-level indirection approach is all-or-
nothing: any class that has even a single native method is 
impossible to instrument transparently. This limitation is not 
specific to the TCH approach: following the same reasoning 
one can see that once a class has native methods, it is not 
possible to transparently replace it with an instrumented copy 
of the class such that it implements any kind of user-level 
indirection. 

The ability of Java native system code to directly access user-
level state hinders many more user-level indirection tasks. For 
instance, consider user-level indirection approaches that 
capture all updates to fields of an object (e.g., to implement 
transparent persistence or distributed execution). In this case, 
all objects that can ever be referenced by native code cannot be 
fully indirected using user-level indirection techniques. That 
is, even if an object’s class has no native methods, if the object 
is ever referenced by some other class’s native code, then we 
cannot indirect all access to the object’s fields.3

Furthermore, often constraints on the use of user-level 
indirection have to do with restrictions derived from the 
structure of the user-level indirection scheme itself. For 
instance, consider again the above TCH rewrite. Without any 
special provisions, the limitations on the use of indirection 
propagate to all subclasses. A subclass ROFile of the original 
File class may have no native methods, yet its methods cannot 
be instrumented. If the instrumentation were performed, the 
UP.ROFile class would be a subclass of UP.File and not of 
File. Thus, UP.ROFile would not be able to access non-public 
members of File. We later discuss how to remove this 
limitation.

2.3 Beyond Java Conventions: Native Code in 
.NET

For the purposes of our discussion, the .NET and Java 
technologies are almost equivalent, with .NET being slightly 
more restrictive due to the unstructured nature of interfacing 
between managed and unmanaged code. Just like in the Java 
case, managed and unmanaged code in the CLR can operate on 
the same objects. Just like in Java, .NET unmanaged code, 
usually written in C++, provides many system services that are 
impossible to implement in a managed environment because 
they require such low-level programming techniques as direct 
memory access. Unlike the Java platform, however, which 
clearly distinguishes between bytecode and native libraries and 
provides a clean interfacing mechanism between the two in the 
form of the JNI, the C# core classes implementation consists of 
managed and unmanaged code that are binary compatible with 
each other. 

At the language level, the annotation 
[MethodImplAttribute(MethodImplOptions.InternalCal
l)] specifies external methods that are implemented natively 
in the runtime itself. These methods use standard Microsoft C 
language calling conventions (such as __stdcall and 
__cdecl). In addition, the internal member methods in C# take 
this as the first argument, which in C++ becomes just a 
regular pointer that can be used to access and modify the 
memory of the underlying C# class directly. For example, a 
brief look at the Microsoft Shared Source CLI Implementation 
reveals that the C++ native code of the runtime relies on a very 
concrete object memory layout. For example, comparing 
whether two C# references point to objects of the same type 
includes comparing the pointers to their method tables, located 
at a predefined memory offset from the base references. 
Therefore, unmanaged code in the CLR not only accesses 
fields of objects, but is allowed to make assumptions about 
how these fields are laid out in memory. Such tight coupling 
between managed and unmanaged code enables an efficient 
implementation for the runtime but also makes introducing any 
indirection into the managed code almost impossible. 
Therefore, introducing indirection by simply moving code of a 
Core Library C# class with native dependencies to a different 
package is even more unrealistic and error-prone than it is in 
Java. In the remainder of this paper, all our qualitative 
observations should apply equally well to the CLR, unless we 
explicitly note otherwise.
3 Of course, in some scenarios it is fine to instrument some actions but not others—

e.g., “all updates to field f are captured, except those performed in native code”. 
Yet in a general setting this violates the transparency of the transformation and may 
shift the correctness burden to the user.



3. PUSHING THE LIMITS WITH WEAK 
ASSUMPTIONS

To determine which program actions can be safely indirected, 
we would need to analyze the implementation of native 
methods. Since source code for the VM and its dynamic 
libraries will typically not be available, the results of the 
analysis could be exported by VM implementors together with 
the VM in a reusable form. (We briefly discuss such 
possibilities in Section 5.) Nevertheless, it is highly 
complicated and perhaps undesirable to have all VM vendors 
export information on their native implementations for the 
purpose of enabling safe user-level indirection. Thus, we 
examine a more pragmatic approach. Instead of analyzing and 
annotating the native implementations, can we use the type 
information at the native code interface as a “poor-man’s 
native code annotations”? We discuss how some well-founded 
assumptions on the behavior of native code can enable a 
conservative type-based analysis of what objects can be 
accessed by native code. It turns out that type information is 
often remarkably sufficient for determining the safety of user-
level indirection.

3.1 Type-Based Analysis + Weak 
Assumptions

Recall that the majority (~97%) of Java system classes have no 
native methods. Such classes encode useful reusable libraries 
and not system-level functionality. It is, thus, crucial to 
automatically recognize system classes that do not interact 
with native code and to support correct user-level indirection 
for them. In general, this task is impossible without making 
assumptions regarding native code behavior. For instance, all 
classes in Java are subclasses of the java.lang.Object class, 
which has native code. In theory, any native method can be 
receiving an Object-typed argument, discovering its actual 
type using reflection and performing on the object some action 
(e.g., reading fields) that would be undetected by any user-
level indirection mechanism.
In Section 2.1 we distinguished several different kinds of 
events typically captured by user-level indirection: access to 
fields, method calls, constructor calls, etc. Clearly none of 
these events can be captured if they occur entirely within 
opaque code. For instance, it is impossible to capture updates 
to state (i.e., variables) that is defined inside native code. The 
interesting case, however, is that of events concerning user-
level (i.e., non-opaque) entities and the question of whether 
these can occur inside opaque code. For instance, we may want 
to capture all updates to an object field that is declared in a 
Java system class implemented in bytecode. We need to ask if 
this field is ever accessed inside native code. In this section we 
assume the full gamut of user-level indirection events, 
including access and modification of fields. If a certain 
application is only interested in capturing method and 
constructor calls, the restrictions are typically far less severe. 
Nevertheless, most interesting applications of user-level 
indirection (esp. distributed execution and persistence) need to 
capture field accesses.
Our previous work on the J-Orchestra system used some weak 
assumptions on the behavior of native code and a simple type-
based analysis to distinguish code that is likely to safely 
employ user-level indirection. In this way, we can exploit the 
rich type information of the Java system classes API. J-
Orchestra uses user-level indirection in order to execute 
monolithic Java applications over a network of machines. 

Typically, the application is split in parts (consisting of user 
code and system classes) so that each machine handles a 
different hardware or software resource—e.g., the graphical 
input/output code may run on one machine, while the 
processing is done on a second and database access on a third. 

Here we abstract away the specifics of the J-Orchestra 
approach so that it can be generalized to different domains. 
The approach makes two main heuristic assumptions regarding 
system classes:

• Classes without native methods have no special 
semantics. (Native code never treats their objects any 
differently from user-defined objects.)

• Native methods do not use dynamic type discovery 
(reflection, downcasting, or any low-level type 
information recovery) on objects supplied through method 
arguments.

These assumptions generally hold true with few exceptions. 
The first assumption does not hold, for instance, for classes in 
the java.lang.ref package. The second assumption does not 
hold in the implementation of reflection classes themselves. 
(See Section 5 for a discussion of reflection.) In Section 4 we 
discuss a study of the Sun implementation of Java system 
classes and how it supports our assumptions.

The first assumption essentially states that the JVM is not 
allowed to handle different types of objects specially when the 
objects just use plain bytecode instructions. For instance, the 
JVM is not allowed to detect the construction of an object of a 
“special” type and keep a reference to this object that native 
code can later use for destructive state updates. This is a 
reasonable assumption, conforming to good software design 
practices. The second assumption states that native code is 
strongly typed: if a reference is declared to be of type T, it can 
never be used to access fields (method calls are fine) of a 
subclass of T. For instance, the assumption prohibits native 
methods from taking an Object-typed argument, checking if it 
is actually of a more specific type (e.g., Thread or Window), 
casting the object to that type and directly accessing fields or 
methods defined by the more specific type. This assumption 
also encodes a good design practice: code exploits the static 
type system as much as possible for correctness checking. 
Although the assumption may be violated locally, the hope is 
that it is rarely violated over the bytecode-native code 
boundary.

With the above two assumptions, we can perform a 
classification of Java system classes with respect to whether 
they can employ user-level indirection transparently or not, 
based on their usage of native code. We will use the term NUI
(for non-user-indirectible) to describe classes that cannot 
employ user-level indirection transparently. The base J-
Orchestra rules for inferring the classes that have user-level 
indirection limitations are as follows:

1) A system class with native methods is NUI.

2) A system class used as a parameter or return type for a 
method or static method in a NUI class is NUI.

3) If a system class is NUI, then all class types of its fields or 
static fields are NUI.

4) If a system class, other than java.lang.Object, is NUI, 
then its subclasses and superclasses are NUI.



(The above rules represent the essence of the analysis but not 
its entirety. For instance, we do not discuss arrays or 
exceptions—these are handled similarly to regular classes 
holding references to the array element type and method return 
types, respectively. The numbers we later report are for the full 
version of the rules, however. Note that interface access does 
not impose restrictions since an interface cannot be used to 
directly access state.) 
Rule 1 above is justified because no user-indirection technique 
can guarantee to capture all field updates of an instance of a 
class with a native method. The native method can always 
perform updates without any indirection. 
Rule 2 is justified with a similar argument: if an object can be 
passed to native code, native code can alias it and (either 
during the native method execution or during a later 
invocation) change its state. Furthermore, the rule can be 
applied transitively: if a class is NUI then we cannot replace all 
its uses with uses of an instrumented version in a user package 
UP. Then all objects used as arguments of any method (even 
non-native) may have their fields accessed directly.
Rule 3 is analogous to Rule 2 but for fields: native code can 
access any object transitively reachable from an object that 
leaks to native code.
Rule 4 is justified by the specifics of the aforementioned user-
level indirection scheme. We saw an instance of this restriction 
in Section 2.2: if a class cannot be indirected, its uses in the 
application cannot instead employ a modified copy of the class 
in a user-level package. Thus, all subclasses and superclasses 
also cannot be copied to a user level package, as they may need 
to access non-public fields of their superclass.
These rules enable user-level indirection to be used safely for 
many Java system classes. Specifically, 37% of the Java 
system classes are classified as having no dependencies to 
native code and, thus, being able to employ user-level 
indirection safely.
Still, however, these rules are too conservative, as 63% of the 
system classes are deemed non-indirectible. Nevertheless, the 
rules are a good starting point and can be weakened to be made 
practical for specific applications of user-level indirection. For 
instance, in the context of J-Orchestra one more assumption is 
made relating to the way native code in different libraries can 
share state. The extra assumption allows placing different 
pieces of native code on separate machines and placing the 
instances of opaque classes in the same machine as the relevant 
code [12][19].
Next, we show one important general-purpose weakening of 
the rules. Rules 2 and 4 can be weakened significantly if we 
are allowed to modify system packages (still without touching 
native code) and we employ a more sophisticated user-level 
indirection scheme than that of J-Orchestra or TCH.

3.2 More Sophisticated User-Level 
Indirection and Relaxed Analysis 

The rules of the previous section are conservative because they 
assume that all code in system packages (be it native or not) is 
opaque. See, for instance, Rule 2: although any object that is 
used as a parameter of a native method can have its fields 
accessed with no indirection, there is no need to recursively 
propagate this constraint to the non-native methods of this 
object as well. If the object class is in pure bytecode, we can 
edit it and introduce indirection for accesses to its parameters. 

This, however, relies on a low-level assumption: we assume 
that the user-level indirection technique can modify system 
packages in order to edit the bytecode of existing system 
classes or add a new class in a system package. This is not 
desirable in some user-level indirection settings because it 
requires control over the startup environment of the JVM. Such 
control is not always possible, e.g., for deploying applets that 
random users will download and use inside a browser, or in 
systems in which the user cannot modify or extend the system 
package for security. Nevertheless, many applications of user-
level indirection are allowed to set the parameters of the 
runtime system, and this can include a modified system 
package.
Under this assumption, we can use a weaker version of Rules 2 
and 4. 

1) A system class with native methods is NUI.

2’) A system class used as a parameter or return type for a native 
method is NUI.

3) If a system class is NUI, then all class types of its fields or 
static fields are NUI.

4’) If a system class is NUI, then its superclasses are NUI.

The weaker rules push the limits of user-level indirection much 
further: fewer than 8% of the Java system classes are classified 
as unable to employ user-level indirection (i.e., NUI). This 
means that a general-purpose user-level indirection technique 
can apply to more than 92% of the Java system classes with no 
special handling.
We already discussed how the new version of Rule 2 is a result 
of instrumenting the bytecode of bytecode-only NUI classes. 
The weakening of Rule 4 is more interesting. In the new Rule 
4, a class does not impose any restrictions on its subclasses. 
This also eliminates any special handling of the 
java.lang.Object class, which is a common singularity in 
user-level indirection schemes.
To use the weaker version of Rule 4, we need to make sure that 
every system class C that cannot employ user-level indirection 
transparently is replicated in a user-level package. The replica 
class will just delegate all method calls to the original. 
Subclasses of C that have no native dependencies will employ 
full user-level indirection: an instrumented copy will be 
created in a user package and all references to the original 
class will become references to the instrumented version. As 
discussed in Section 2.2, the problem is that the instrumented 
class will not be able to access non-public members of C, as it 
is not in the same package as C. One solution is to make public 
all non-public members of class C by editing the class 
bytecode. (Or, equivalently, to create a subclass of C that 
exports the non-public members of C—see later.) A safer 
approach would be to emulate the Java access control at run-
time using a technique such as that proposed by Bhowmik and 
Pugh [1] for the Java inner classes rewrite. At load time, class 
C creates a secret key and passes it to the instrumented version 
of its subclass. When objects of the instrumented class need to 
access C members, they call a public method that also receives 
and checks the secret key. This is a safe emulation of the Java 
access protection, yet it avoids the requirement of placing 
classes in the same package.
An example application of this technique is shown in Figure 2.
The example class File of Section 2.2 is now shown with a 



class File { 
 SomeT field1; 
 ... 
 public native void write(byte b); 
 public void newLine() {...} 
}

class TXFile extends File { 
 ... 
 public void writeString(String s) {             
  ... foo(field1) ...  
 } 
}

Figure 2(a): Original system class File (with a native 
method) and subclass TXFile (without native 

dependencies).
class File { 
 SomeT field1; 
 // Allow free access to field1 only  
 //to class UP.File (and children) 
 private static final Object key_ =  
                               new Object(); 
 static { UP.File.setKey (key_); } 
 public SomeT get_field1(Object key) { 
   if (key != key_)  
     throw new IllegalAccessException(); 
   return field1; 
 } 
 ... 
 public native void write(byte b); 
 public void newLine() {...} 
} 
 
//Just delegates to File.  
//Only used for correct subtype hierarchy. 
class UP.File { 
 protected File origImpl_; 
 protected static Object  key_; 
 public static void setKey(Object key) {  
   key_ = key;  
 } 
 ... 
 // delegate to native method 
 public void write(byte b) {                                        
  origImpl_.write(b); 
 } 
 public void newLine(){ origImpl_.newLine(); } 
}

class UP.TXFile extends UP.File { 
 ...  
 // methods of this class can employ any 
 // user-level indirection scheme 
 public void writeString(String s) { 
   ...foo(origImpl_.get_field1(key_))... 
 } 
}

Figure 2(b). Result of the user-level indirection 
transformation, with safe access to non-public fields of

non-public field field1. File has a subclass TXFile with no 
native dependencies. Figure 2(b) shows the transformed 
classes so that UP.File and UP.TXFile can correctly replace 
all uses of File and TXFile, respectively, yet UP.TXFile can 
employ fully transparent user-level indirection. (As a low-level 
note, this transformation means that the instrumented system 
package, UP, needs to be loaded by the bootstrap class loader, 
since there is a call to method UP.File.setKey inside the 
File system class. The easiest way to effect this is to put the 
UP package in the rt.jar file.)

The effects of the transformation on the example class 
hierarchy are shown pictorially in Figure 3.

java.lang.Object

somesyspackage.File

somesyspackage.TXFile

Figure 3(a): A File class hierarchy

java.lang.Object

somesyspackage.File

UP.TXFile

UP.File

Uses 
(safely)

somesyspackage.TXFile

Figure 3(b): Removing subclassing restrictions

Note that in the case of the CLR we may need to use a slightly 
more complex transformation to get the same effect. As 
pointed out in Section 2.3, native code in the .NET framework 
can make assumptions about the memory layout of objects. 
Thus, in some cases it may not be possible to introduce new 
fields in existing classes. Instead, in our example, a new 
system class, FileBridge, can be added as a subclass of File. 
This class will just serve to export through public methods the 
non-public members of its superclass, File, to instrumented 
classes.

4. VALIDATING THE ASSUMPTIONS 
AND ANALYSIS

We validate the assumptions and analysis of the previous 
section in three ways: first we measure the impact of our type 
classification for real applications: can we indeed use user-
level indirection, without any special-case handling, for a large 
number of the system classes used by realistic applications? 
Next we examine by code inspection an actual native code 
implementation of system methods and check whether it 
satisfies our assumptions. Finally, we perform a dynamic 
analysis of many Java applications and show that they do not 
violate the results of our type-based analysis during their 
execution. 



4.1 Impact on Real Applications
An interesting question is to quantify the impact of the type-
based analysis for real applications, as opposed to the set of all 
Java system classes. Although the more sophisticated version 
of our analysis allows to use indirection in 92% of the system 
classes, the remaining 8% are some of the most heavily used 
classes in practice. We demonstrate this in Table 1. The table 
shows how many of the system classes actually used by 
different Java applications are classified as NUI under our 
analysis of Section 3.2. The table also shows how many of the 
used system classes have native methods themselves—this is a 
lower bound on the number of NUI classes under any analysis. 
(We find the used classes by dynamically observing the loaded 
classes, minus JVM bootstrap classes. We then run our type-
based analysis with the set of used classes as a universe set—
any NUI dependencies introduced by classes that were not 
loaded are ignored.) 

Three of the applications (javac, jess, mpegaudio) are standard 
benchmarks from SPEC JVM’98. (The rest of the SPEC 
JVM’98 programs yield practically identical numbers.) 
Unsurprisingly, these benchmarks are old and exercise few of 
the Java system classes. Nevertheless, we still see that more 
than 62% of the system classes used can employ user-level 
indirection. The next seven applications (antlr, bloat, chart, 
hsqldb, jython, ps, xalan) are from the more modern DaCapo 
benchmark suite (version beta050224). These applications are 
more realistic, yet they still do not exercise a large part of the 
Java system libraries. We see that our analysis enables 66-85% 
of the system classes used in the DaCapo benchmark programs 
to be safely indirected. (The DaCapo suite has 3 more 
applications that we did not manage to run by paper 
submission time due to setup issues, such as library 
dependencies or unclear input files.) For applications that 
exercise more of the Java system classes, we examined the Sun 
demo application SwingSet2 and the JBits FPGA simulator by 
Xilinx. The inputs used for these two applications were 
interactive and consisted of navigating extensively through the 
application’s GUI and performing standard program actions 
(e.g., loading a simulator and an FPGA configuration and 
performing simulation steps). Both of these applications 
exercise over 1400 Java system classes. Only 21 and 16% (for 
JBits and SwingSet2, respectively) of these classes were found 
to be NUI under our analysis: the rest can employ user-level 
indirection without any special treatment. Finally, we include 
in our suite the RMIServer sample application from Sun, in 
order to exercise networking system classes.

Thus, Table 1 confirms that native code is not a negligible part 
of real applications. Additionally, although the type analysis 
assumes the most general native code behavior that respects its 
assumptions, it is still sufficient for enabling safe indirection 
for the large majority of Java system classes used in actual 
applications. (Where safety is always contingent on non-
violation of our heuristic assumptions by the native code. We 
later discuss how we confirm that our approach is indeed safe 
for these executions.)

Table 1. : Type-based analysis of used system classes

Application #classes #native %native #NUI %NUI

javac 167 21 13 62 37

jess 165 21 13 61 37

Mpeg audio 158 21 13 60 38

Antlr 209 21 10 67 32

Bloat 275 25 9 80 29

Chart 601 69 11 194 32

Hsqldb 295 26 9 83 28

Jython 263 20 8 76 29

Ps 175 18 10 60 34

Xalan 505 21 4 74 15

SwingSet2 1887 120 6 303 16

JBits 1442 124 9 306 21

RMI Server 415 37 9 109 26

4.2 Accuracy of Type Information
Recall that one of the heuristic assumptions of our type-based 
analysis is that the APIs to system functionality offer accurate 
type information. That is, we assume that native code does not 
discover type information dynamically: if a native method 
signature refers to type A, then it does not attempt to 
dynamically discover which particular subtype of A is the 
actual type of the object and to use fields or methods specific 
to that subtype. It is certainly common to pass instances of 
subtypes of A to the native method, but these should only be 
accessed using the general interface defined by the supertype 
A. This assumption is in line with good object-oriented design.

Although the assumption is soundly motivated, there are 
certainly exceptions in real code. Nevertheless, such 
exceptions are fairly rare. To validate the assumption, we 
examined part of the implementation of native methods in 
Sun’s JDK 1.4.2. We searched for the use of specific idioms 
throughout native method implementations and we examined 
in detail all native methods (109 of them) accepting as 
argument or returning as result an object with declared type 
java.lang.Object (the root of the Java inheritance 
hierarchy). In our study, we observed few violations of our 
assumptions. The most important ones are:

• reflection functionality routinely circumvents the type 
system, as expected. Reflection requires special handling 
in a user-level indirection environment, as we later 
discuss in Section 5. 

• passing primitive arrays to native code is typically 
invisible to the type system. Several native methods 
accept an Object reference but implicitly assume that 
they are really passed a Java array of bytes or integers. 
This does not affect our analysis, as we consider primitive 
types and their arrays to be non-indirectible by default.

• a handful of methods have poor type information and 
violate our type accuracy assumptions. For instance, 
method socketGetOption in class java.net. 
PlainSocketImpl takes an Object as argument, casts it 
into a java.net.InetAddress and then sets one of its 
fields. (The addr field is set when the method returns the 
bind address for its socket implementation.) Similarly, 
native method getPrivateKey in class sun.awt. 

Table 1. : Type-based analysis of used system classes

Application #classes #native %native #NUI %NUI



SunToolkit assumes that its Object argument is really a 
java.awt.Component or a java.awt.MenuComponent
and dynamically discovers its actual type.
These exceptions, however, are very rare, in our experience. 
A quick search of all native code in Java system libraries (for 
all platforms together) reveals just 69 uses of the JNI function 
IsInstanceOf, which is the main way to do dynamic type 
discovery in native code. In contrast, there are about 5900 
uses of the Java counterpart, instanceof, in plain Java code 
in the system libraries. (The total size of Java code in system 
libraries is roughly twice the size of C/C++ native code, so 
the discrepancy is not justified by the size alone.)

We, thus, feel that our heuristic assumption is well-justified. 
Even though the native implementation is free to circumvent 
the type system, we believe that in practice it is reasonable to 
assume that sufficient type information exists at the 
user/system boundary of languages like Java to allow a 
heuristic but fairly good type-based analysis. Clearly the 
analysis will not offer strict guarantees, but if it determines 
that a certain system class can employ user-level indirection, it 
is highly likely to be right. We quantify this likelihood for 
actual applications next.

4.3 Testing Correctness
Our type-based analysis attempts a heuristic solution to an 
unsolvable problem. Recall that if we treat native code as an 
adversary, there are no safe assumptions we can make, other 
than “all native code can directly access and modify all 
objects”. This assumption invalidates every kind of user-level 
indirection. Nevertheless, in practice our heuristic, type-based 
approach works well. (Our experience with J-Orchestra was 
what first suggested to us that a type-based analysis is 
sufficient for ensuring safe indirection in practice.) 
We dynamically analyzed the applications discussed in 
Section 4.1 to confirm that the results of our type-based 
analysis of Section 3.2 are rarely, if ever, violated in practice. 
We instrumented a Java VM to observe all reads and writes to 
object fields performed inside native code. Then we checked 
whether fields of a class that we did not consider NUI are ever 
read or written inside native code. Of course, this experiment 
is just a test under specific inputs. Our analysis results could 
still be violated by different program inputs. Nevertheless, 
given the amount and variety of tested code and inputs, we 
have high confidence in our observations.
Almost all applications listed in Table 1 exhibit accesses to 
Java object fields from inside native code. Some applications 
(especially the more graphics-intensive ones) have native code 
access the fields of objects of more than 40 different classes. 
Throughout all executions of the applications, we observed 
only two instances of access inside native code to objects of 
types that were not classified as NUI. Both cases represented 
native code implementation patterns in Sun’s JDK 1.4.2 that 
violated our type-accuracy assumptions. 
Specifically, the first case was that of method 
populateGlyphVector in class sun.awt.font. 
NativeFontWrapper (not a directly user-accessible class). 
The method accepts a java.awt.font.GlyphVector
parameter but implicitly assumes that the true type of the 
parameter is sun.awt.font.StandardGlyphVector and 
proceeds to set specific fields of that class. This is a classic 
case where information is not present in the type signatures of 

native methods for no apparent good reason. (Upon further 
inspection, a couple of more methods in the same class also 
circumvent the type system for GlyphVector arguments.)

The second case was that of the constructor of class 
sun.java2d.loops.MaskFill. The constructor accepts a 
java.awt.Composite parameter but assumes its real type is 
java.awt.AlphaComposite. Although this is again a bad 
practice of obscuring information from the type system, at 
least in this case there is some code economy benefit from 
doing so: the constructor is only called in native code using 
dynamic method discovery (i.e., reflection at the native level). 
Eliding the specific type information allows the constructor to 
be called by the same code as some other similar constructors.

In summary, our experience confirms that a type-based 
analysis is quite safe in practice. Although no guarantees can 
be offered (as the assumptions can be violated by the 
implementation of native methods) there is a reasonable 
expectation that the type analysis will be safe. In the absence 
of complete information on the behavior of native code, our 
analysis is a clear win. The only general-purpose alternatives 
are to either not support indirection for any system classes, or 
to leave the user with no assistance in determining the 
correctness of applying indirection.

5. DISCUSSION
In this section we discuss miscellaneous topics relating to the 
applicability of the overall approach.

Example Uses. It is perhaps useful to consider how the 
approach presented in previous sections can inform specific 
systems that employ user-level indirection. In the case of J-
Orchestra, all system classes whose instances may escape to 
the same native code are grouped together in the J-Orchestra 
GUI environment. The user can override such grouping 
decisions but rarely needs to do so. J-Orchestra rewrites the 
entire application to introduce distributed execution through its 
user-level indirection technique that adds middleware calls and 
transforms accesses to remote fields. The user-level indirection 
algorithm is aware of NUI classes and introduces distributed 
execution around them—for instance a Thread or Window 
class is classified as anchored so that its objects are limited to 
always remain on a single machine. J-Orchestra has been used 
to partition large (~8MB binary) third-party applications, 
without any knowledge of their internal structure. The type-
based analysis has been invaluable in making the system scale. 
After 5 years of use, several partitioned applications, and many 
versions of the JDK on different platforms, we have yet to 
experience a J-Orchestra partitioned application crash that is 
due to the unsafety of its type-based analysis. In addition, the 
J-Orchestra experience serves to showcase why in practice it is 
highly valuable to employ a user-level indirection technique 
instead of specializing the runtime environment. J-Orchestra 
has often been used to partition applications for execution in 
different environments (from servers to Java-enabled PDAs) 
over completely standard-issue Java virtual machines, yielding 
remarkable portability.

Correctness under Reflection. For full transparency, user-
level indirection techniques may need to replace all uses of the 
standard reflection mechanisms with uses of a special-purpose 
reflection library. The special-purpose library will emulate on 
the instrumented program the behavior of the standard 
reflection mechanisms on the original program. This is, 
however, just an engineering complication. In practice, user-



level indirection techniques typically choose to ignore 
reflection because full transparency matters only in obscure 
cases. Common uses of reflection, such as instanceof
checks, member type recovery, field access and method 
calling, are safe with standard user-level indirection 
techniques. The unsafe parts usually consist of operations that 
depend on hard-coded class names, which may be replaced by 
names in an isomorphic class hierarchy under user-level 
indirection.

Special Purpose Functionality. The discussion of reflection is 
only one example of special-purpose handling of system 
functionality in classes that cannot safely employ user-level 
indirection. As mentioned in Section 2.2, user-level indirection 
techniques can be combined with special purpose replacements 
for the system code that cannot transparently employ user-
level indirection. For instance, the thread creation and 
management (i.e., synchronization) functionality is low-level 
and employs native code. Systems that employ user-level 
indirection can have a special-purpose replacement of 
threading and synchronization code that works correctly with 
the indirection [4][20]. The same approach can be used with 
other low-level classes, such as those managing files, database 
access, network communication, GUI, etc. Thus, this paper can 
be viewed as an exploration of how far we can push general-
purpose user-level indirection before we have to resort to ad 
hoc solutions.

Aspect-Oriented Programming. A natural application 
domain for user-level indirection is that of Aspect-Oriented 
Programming (AOP) [8]. AOP advocates separating distinct 
aspects of an application’s functionality and composing them 
at the implementation level. Thus, the kinds of events captured 
by user-level indirection approaches are of particular interest 
from an AOP standpoint as join points for interposing extra 
functionality. AspectJ [9], the flagship AOP tool, concentrates 
exactly on capturing events such as field accesses, method 
calls, object construction, etc. Although newer versions of 
AspectJ compile directly to bytecode, current AspectJ 
compilers have limitations with respect to manipulating pre-
compiled classes. Accordingly, join points in system libraries 
or inside native methods cannot be instrumented with AspectJ. 
Nevertheless, it is a stated goal in the AspectJ specification to 
allow the AspectJ semantics to apply transparently to all 
classes, yet allow implementations to diverge for practical 
reasons. We believe that our work expands what an AspectJ 
implementation can do with respect to system code, while 
using general-purpose, non-VM-intrusive techniques.

Runtime specification. The ideal solution for enabling user-
level indirection in the presence of opaque code would be to 
require a model of the behavior of the opaque code. Such a 
model would typically be abstract and over-approximate, but 
capturing the essential characteristics of the native code with 
respect to aliasing, field accessing and method calling over 
native method arguments. Such a model can be automatically 
produced by analyzing the source code of the runtime system. 
Thus, VM and library vendors would most likely export the 
model, together with the native implementation, possibly in the 
form of interface annotations. As we discussed earlier, our 
approach explicitly aims to be more evolutionary, rather than 
revolutionary. Our type analysis is a heuristic substitute for 
such annotations, yet one that we believe offers the user useful 
information under current technologies. The alternative would 
be to leave the user solely responsible for ensuring when user-

level indirection can be employed on system classes, without 
any guidance at all.

6. CONCLUSIONS
In recent years, the high and growing popularity of high-level 
languages such as Java and C#, running on top of virtual 
machine-based runtime systems, has influenced the 
proliferation of user-level indirection techniques for achieving 
systems-level extensibility. The ability to transform a piece of 
software automatically and correctly by enhancing it with 
useful functionality such as logging, persistence, distribution, 
and others, relieves the programmer from the necessity of 
performing tedious and error-prone tasks by hand. However, 
the applicability of all such user-level indirection techniques is 
limited by the presence of native code. In this paper, we 
studied ways to identify these limitations, in order to enable 
user-level indirection to be applicable as widely as possible. In 
the greater scheme, we believe that our paper offers some 
interesting elements:

• we show how native code can invalidate any user-level 
indirection technique in the worst case. Although this is a 
standard observation for program analysis experts, it is a 
topic often completely ignored by implementors of user-
level indirection mechanisms.

• we show how a simple type-based heuristic analysis 
together with fairly general assumptions can help 
distinguish classes that can be safely indirected from 
those that cannot. It is interesting that the type 
information at the user/system boundary would be 
sufficient for this purpose. The type system of modern OO 
languages like Java is directly responsible for enabling 
this analysis. The analysis would be, for instance, 
impossible at the user/system boundary between C and 
Unix or Windows, where most of the arguments to system 
library calls are unstructured pointers and byte buffers.

We hope that our observations will be of value not just in the 
domain of user-indirection-based software systems but also in 
the design of future runtime systems and environments, 
making the code running on top of them easier to indirect.
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