
Transparent Program Transformations
in the Presence of Opaque Code

Eli Tilevich
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061, USA

tilevich@cs.vt.edu

Yannis Smaragdakis
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403 USA

yannis@cs.uoregon.edu
ABSTRACT
User-level indirection is the automatic rewriting of an application
to interpose code that gets executed upon program actions such as
object field access, method call, object construction, etc. Several
useful domain-specific and domain-independent (typically called
aspect-oriented) mechanisms employ user-level indirection
techniques for enhancing the capabilities of applications.
Nevertheless, the applicability of all such techniques is constrained
due to the presence of opaque (native) code that cannot be
indirected and can invalidate the assumptions of any indirection
transformation. These problems are real: the native behavior of
Java system classes, for instance, invalidates the transparency of
several user-level indirection techniques in the recent research
literature. In this paper, we demonstrate the problem of employing
user-level indirection in the presence of native code. We then
suggest reasonable assumptions on the behavior of native code and
a simple analysis to compute the constraints they entail for the
applicability of user-level indirection. We show that the type
information at the native code interface is often a surprisingly
sufficient approximation of native behavior for heuristically
estimating when user-level indirection can be applied safely.
Furthermore, we introduce a new user-level indirection approach
that minimizes the constraints imposed by interactions with native
code.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming
—program synthesis, program transformation, program
verification; D2.3 [Software Engineering]: Coding Tools and
Techniques—Object-oriented programming;

General Terms
Languages.

Keywords
Program transformation, aspect-oriented programming,
program enhancement.

1. INTRODUCTION
User-level indirection is the automatic transformation
(instrumentation) of application and system code so that its
execution characteristics are modified, without changing the
underlying runtime system. Standard applications include
transparent distributed execution [4][6][14][16][18][19],
persistence [2][10][13], profiling [7], and logging [11].
Additionally, the introduction of Aspect-oriented
Programming (AOP) [8] has led to general purpose program
enhancement mechanisms that often rely on user-level
indirection techniques.1 Thus, user-level indirection is a
language-level technique for achieving systems-level
extensibility. The approach has become even more prevalent
with the widespread use of virtual machines, such as the Java
VM or Microsoft’s CLR, as runtime systems for high-level
languages. Compared to the straightforward approach of
modifying the runtime system, user-level indirection has the
crucial advantage of portability and ease of deployment on
unmodified runtime systems. Running applications on
modified versions of a platform-specific runtime system is
hard and in some cases (e.g., embedded systems) even
impossible. Yet, if we achieve the same effect through code
transformation, the resulting code can run on a variety of
platforms on standard-issue runtime systems.

User-level indirection has to be transparent relative to the
behavior of the original code. For instance, if we transform an
application to log its method calling actions, the resulting
application should behave identically, except for the logging.
Nevertheless, all user-level indirection techniques have
transparency limitations relating to the presence of native code
that an application can access. Native code is opaque: it cannot
be analyzed or modified without negating the platform-
independence advantages of user-level indirection. Yet, native
code has its own state, can hold references to user objects, can
remember (alias) these references across invocations, and can
use them for destructive updates of user-level state. This
renders the code transformation incorrect (i.e., non-semantics-
preserving) for all user-level indirection techniques in the
literature and for most purposes of user-level indirection.

This paper discusses why different user-level indirection
techniques are not semantics-preserving in the presence of
native code. The problems occur in practice with common
native code patterns, e.g., in the Java system classes. In a
sense, this is an old problem of semantics-preserving
transformations in the presence of opaque code. The same
problem could be studied in the context of any language and
runtime system. Yet, modern high-level runtime systems are a
natural platform for user-level indirection and introduce
unique parameters (e.g., well-typed interfaces to system code).
We discuss the issue from the perspective of runtimes for OO
languages, such as the JVM and the CLR. We then examine
what weak assumptions we can make regarding native code
and what constraints we can enforce so that disciplined use of
user-level indirection is correct. These weak assumptions are
practical: for instance, they hold widely in existing native code
in the Sun JDK implementations. The assumptions are
1 Typically, AOP mechanisms do not expose their implementation to the user. For

instance, AspectJ [9] users are discouraged from thinking of aspect application as
program transformation. This is compatible with our main assumption in this
paper: program transformations may be used but need to remain user-transparent.

sufficient to enable a simple type-based analysis to guarantee
the safety of user-level indirection for the majority of Java
system classes. Nevertheless, since the assumptions are
occasionally violated, our approach is heuristic and does not
guarantee full safety. Full safety is impossible without
analyzing the opaque native code, which is undesirable since it
introduces platform and source-code availability dependencies.
To see the contribution of this work compared to past research,
consider the closest comparable point in the design space:
Factor, Schuster and Shagin’s TCH approach [5]. TCH offers a
general way to enable user-level indirection in Java.
Nevertheless, the limitations of the approach are not
recognized by the TCH authors, who argue that “TCH can be
used automatically by any general instrumentation”; “[TCH
has] the ability [...] to instrument all system classes”; “TCH
allows even system classes with native dependencies to be
rewritten for distributed execution” [5]. Identifying and
explaining the limitations in a general setting is part of the
value of our work.
In practice, the TCH instrumentation approach leaves the user
entirely responsible for the correctness of transformations that
deal with native code. Users and researchers have identified
this as a serious shortcoming. As Saff, Artzi, Perkins and Ernst
observe [15]:

... However, [the TCH] approach does not scale. The most
serious problem is that wrappers must be written by hand for
each native method, of which there are a great many used by
any realistic program.

Our work addresses these problems in a practical way. Even
though no guarantees can be offered without analyzing the
native implementation of the specific runtime system that the
code runs on, we offer a heuristic analysis that we show to be
highly accurate in practice. Thus, the user rarely needs to
explicitly specify special-case handling of native methods.
The foremost application of the general approach described in
this paper is our J-Orchestra system [19][20], which
automatically rewrites Java applications for distributed
execution, yet enforces simple constraints to ensure the
correctness of the transformation under general assumptions on
the native code behavior. This paper generalizes the J-
Orchestra approach in a domain-independent setting, so that it
can be employed for other tasks, such as persistence and
logging. Additionally, this paper refines the basic J-Orchestra
user-level indirection technique. We show that we can remove
some of the J-Orchestra constraints and obtain the freedom to
use user-level indirection for many more system classes, at the
expense of using a more complex indirection scheme.

2. USER-LEVEL INDIRECTION AND ITS
LIMITATIONS

We first describe user-level indirection to make clear why all
different versions of the idea converge into using the same
general approaches. Then we discuss why there are correctness
limitations when native code is involved. Some of these
limitations are straightforward (e.g., native code can have its
own state) while some others are more subtle (e.g., native code
can change user-level state directly). We generally use Java
(i.e., Java language syntax, Java terminology, and JNI
conventions) as our reference system. Even though we
demonstrate program transformations in source code for
readability, these transformations are generally performed at

the bytecode level. In Section 2.3 we discuss the differences
relative to the CLR and .NET technologies.

2.1 User-Level Indirection Techniques
We use the name “user-level indirection” to describe any
general technique that transparently interposes extra
functionality to the execution of existing applications by using
code transformation techniques, instead of modifying the
underlying implementation of the runtime system.
Applications of user-level indirection include transparent
distributed execution [4][14][16][17][18][19], persistence
[2][10][13], profiling [7], and logging [11]. In general, user-
level indirection aims at capturing specific events and
performing actions whenever they occur. Such events typically
are:
• Access to a field of an object or a static field (reading or

modifying the field).
• Calls to a method of an object of a specific type, or calls

to a static method.
• Object construction.
For instance, we may want to add indirection to all changes to
the fields of an object for logging: we may want a permanent
log of all state updates in a running system. This is possible by
finding all field access instructions in the application and
modifying them to log their action before taking it. The
logging code is either included inline at the field access site, or
a separate method can be called.
What complicates user-level indirection is the existence of
reusable core functionality in the form of system classes (a.k.a.
standard library classes). User-level indirection cannot afford
to ignore system classes, even if the intended use is not
concerned with system-level events. For instance, consider a
user-level indirection system that performs actions every time
a user-level method gets called. User-level methods, however,
often get called by system-level code. For instance, system
libraries often accept a callback object and invoke its methods
in response to asynchronous events, or in response to system
code actions initiated by a user-level call. Thus, the user-level
indirection technique needs to ensure that it allows and
correctly handles all calls, regardless of whether they occur
inside user-level or system-level code.
In popular modern runtime systems, the majority of system
class code is not special. Most of the Java system classes, for
instance, are distributed in Java bytecode format. Thus, one
can apply the same user-level indirection techniques to both
user-level code and bytecode-only system classes. Indeed,
several systems [5][18][19] follow this approach. The standard
technique in this case is to create a separate, instrumented
version of the system classes. The instrumented version co-
exists with the standard system classes in the same application.
In this way, an application can access both the user-level
indirected versions of system classes and the original versions
without any conflict. This is necessary, since the system
classes are often used inside the instrumentation code itself. In
original application code, however, all uses of system classes
are replaced with uses of their instrumented counterparts.
Factor et al. [5] call this the “Twin Class Hierarchy” approach
(TCH). As an example, imagine that the original Java
application contains code such as:
class A {
 public java.lang.String meth(int i, B b) {...}
}

The rewritten class would use the instrumented class types:
class UP.A {
 public UP.java.lang.String meth(int i, UP.B b)
 {...}
}

(UP in the above code stands for “user package”.)

java.lang.Object

java.lang.String somesyspackage.A

Figure 1(a): Original system classes hierarchy

java.lang.Object

UP.java.lang.Object

UP.somesyspackage.AUP.java.lang.String

somesyspackage.Ajava.lang.String

Figure 1(b): Replicating system classes in a user package (“UP”)

 Figure 1
shows the effects on the class hierarchies pictorially.

2.2 Transparency Limitations
The problems with any user-level indirection technique begin
when a system class with native code needs to be instrumented.
Native code (a.k.a. platform-specific binary code) is often used
to implement system-level functionality. Some of the most
fundamental system classes (e.g., the ones dealing with
threading, file and network access, GUI, etc.) rely on native
code, mainly for reasons of low-level resource access, such as
context-switching or fast graphical operations. System classes
with native code are, thus, a way to export runtime system
functionality as language-level facilities.
Native code cannot be instrumented without invalidating all
the advantages of the user-level indirection approach.
Changing native code requires platform-specific changes and
the creation of special versions of the runtime system (either
the executable program or its dynamic libraries). Similarly,
analyzing native code and relying on its implementation
properties is a platform-specific task. Thus, dealing with native
code is incompatible with the main motivation for user-level
indirection: that of portability and platform independence.
Therefore, native code is opaque for the purpose of user-level
indirection: it can be neither modified nor analyzed.
Having an application access opaque code immediately
introduces limitations in user-level indirection approaches.
Even if opaque code is a small percentage of the total system
code,2 it is likely to be used by every application and needs to
be handled correctly. (In fact, because java.lang.Object and
System.Object, the root classes in Java and C#, respectively,
use native code in their implementation, one could argue that

every program written in these languages contains opaque
code.) Clearly, one limitation is that user-level indirection
cannot be used to intercept actions occurring entirely inside
native code. For instance, we cannot observe and log updates
to program state kept inside native code: such state is invisible
to the user-level. That is, changes to internal system state (e.g.,
the contents of a low-level window, the scheduling structure of
threads, etc.) cannot be intercepted using user-level
indirection. Although it may seem that such state is low-level
and is outside the scope of user-level indirection, the
restriction nevertheless places boundaries on what is
achievable with user-level indirection alone. For instance,
without reliance on implementation specifics of the Java
system libraries, a distributed execution system that relies on
user-level indirection (such as J-Orchestra [19], Pangaea [16],
Addistant [18] or JavaSplit [4]) cannot hope to transparently
migrate window or thread objects from one machine to
another. This task can still be achieved by special-purpose
emulation of the semantics of a thread or window at the user
level, but not by employing general-purpose user-level
indirection techniques on the Java system classes.

Often, however, the interactions of native code with user-level
indirection are more subtle. In the Java system, native code can
directly read or modify the state of object fields declared in
bytecode. This allows for tight integration of native code and
Java code. Essentially, the Java Native Interface (JNI) is a way
to program using the full object model of the JVM with C or
C++ as the host language. Direct access to fields inside native
code complicates matters for user-level indirection. Consider
the TCH user-level indirection approach for instrumenting
standard Java libraries [5]. (This approach is representative of
other user-level indirection techniques, such as the one in J-
Orchestra [19].) In this approach, if a class A has a native
method, an instrumented version of A delegates calls to the
2 Only about 3% of the Java system classes have native methods. (All numbers

mentioned in the paper were measured on Sun JDK 1.4.2, unless stated otherwise.)
Nevertheless, as we show later, these are some of the most commonly used classes
in Java and are likely to constitute a much larger percentage of the loaded system
code in a Java application.

native method of an internal A object. This technique is used
because a native method implementation in Java is bound to a
particular class name and cannot be reused for a different class.
For instance, consider original code as follows: (This code
does not reflect the standard Java File class but the structure
is representative of several system classes with native
methods.)

class File { ...
 public native void write(byte b);
}

The instrumented version of this class would be:

class UP.File {
 private File origImpl_;
 ...
 // delegate to native method
 public void write(byte b) {origImpl_.write(b);}
}

It may at first seem that the UP.File class can use arbitrary
user-level indirection for its non-native methods. Nevertheless,
this is not the case. Imagine that the File class also has a non-
native method newLine:

class File { ...
 public native void write(byte b);
 public void newLine() { ... }
}

It is not safe to indirect method newLine (e.g., to track its
changes to fields of a File object) yet simply delegate method
write. To see this, consider the re-written code:

class UP.File {
 private File origImpl_;
 ...
 // delegate to native method
 public void write(byte b) {origImpl_.write(b);}
 public void newLine() {...} // instrumented body
}

The problem is that any call to method write affects the
origImpl_ object, while any call to method newLine affects
the current object of type UP.File. Separating these two
objects (when they were one in the original application)
destroys the transparency of user-level indirection. Therefore,
we see that the TCH user-level indirection approach is all-or-
nothing: any class that has even a single native method is
impossible to instrument transparently. This limitation is not
specific to the TCH approach: following the same reasoning
one can see that once a class has native methods, it is not
possible to transparently replace it with an instrumented copy
of the class such that it implements any kind of user-level
indirection.

The ability of Java native system code to directly access user-
level state hinders many more user-level indirection tasks. For
instance, consider user-level indirection approaches that
capture all updates to fields of an object (e.g., to implement
transparent persistence or distributed execution). In this case,
all objects that can ever be referenced by native code cannot be
fully indirected using user-level indirection techniques. That
is, even if an object’s class has no native methods, if the object
is ever referenced by some other class’s native code, then we
cannot indirect all access to the object’s fields.3

Furthermore, often constraints on the use of user-level
indirection have to do with restrictions derived from the
structure of the user-level indirection scheme itself. For
instance, consider again the above TCH rewrite. Without any
special provisions, the limitations on the use of indirection
propagate to all subclasses. A subclass ROFile of the original
File class may have no native methods, yet its methods cannot
be instrumented. If the instrumentation were performed, the
UP.ROFile class would be a subclass of UP.File and not of
File. Thus, UP.ROFile would not be able to access non-public
members of File. We later discuss how to remove this
limitation.

2.3 Beyond Java Conventions: Native Code in
.NET

For the purposes of our discussion, the .NET and Java
technologies are almost equivalent, with .NET being slightly
more restrictive due to the unstructured nature of interfacing
between managed and unmanaged code. Just like in the Java
case, managed and unmanaged code in the CLR can operate on
the same objects. Just like in Java, .NET unmanaged code,
usually written in C++, provides many system services that are
impossible to implement in a managed environment because
they require such low-level programming techniques as direct
memory access. Unlike the Java platform, however, which
clearly distinguishes between bytecode and native libraries and
provides a clean interfacing mechanism between the two in the
form of the JNI, the C# core classes implementation consists of
managed and unmanaged code that are binary compatible with
each other.

At the language level, the annotation
[MethodImplAttribute(MethodImplOptions.InternalCal
l)] specifies external methods that are implemented natively
in the runtime itself. These methods use standard Microsoft C
language calling conventions (such as __stdcall and
__cdecl). In addition, the internal member methods in C# take
this as the first argument, which in C++ becomes just a
regular pointer that can be used to access and modify the
memory of the underlying C# class directly. For example, a
brief look at the Microsoft Shared Source CLI Implementation
reveals that the C++ native code of the runtime relies on a very
concrete object memory layout. For example, comparing
whether two C# references point to objects of the same type
includes comparing the pointers to their method tables, located
at a predefined memory offset from the base references.
Therefore, unmanaged code in the CLR not only accesses
fields of objects, but is allowed to make assumptions about
how these fields are laid out in memory. Such tight coupling
between managed and unmanaged code enables an efficient
implementation for the runtime but also makes introducing any
indirection into the managed code almost impossible.
Therefore, introducing indirection by simply moving code of a
Core Library C# class with native dependencies to a different
package is even more unrealistic and error-prone than it is in
Java. In the remainder of this paper, all our qualitative
observations should apply equally well to the CLR, unless we
explicitly note otherwise.
3 Of course, in some scenarios it is fine to instrument some actions but not others—

e.g., “all updates to field f are captured, except those performed in native code”.
Yet in a general setting this violates the transparency of the transformation and may
shift the correctness burden to the user.

3. PUSHING THE LIMITS WITH WEAK
ASSUMPTIONS

To determine which program actions can be safely indirected,
we would need to analyze the implementation of native
methods. Since source code for the VM and its dynamic
libraries will typically not be available, the results of the
analysis could be exported by VM implementors together with
the VM in a reusable form. (We briefly discuss such
possibilities in Section 5.) Nevertheless, it is highly
complicated and perhaps undesirable to have all VM vendors
export information on their native implementations for the
purpose of enabling safe user-level indirection. Thus, we
examine a more pragmatic approach. Instead of analyzing and
annotating the native implementations, can we use the type
information at the native code interface as a “poor-man’s
native code annotations”? We discuss how some well-founded
assumptions on the behavior of native code can enable a
conservative type-based analysis of what objects can be
accessed by native code. It turns out that type information is
often remarkably sufficient for determining the safety of user-
level indirection.

3.1 Type-Based Analysis + Weak
Assumptions

Recall that the majority (~97%) of Java system classes have no
native methods. Such classes encode useful reusable libraries
and not system-level functionality. It is, thus, crucial to
automatically recognize system classes that do not interact
with native code and to support correct user-level indirection
for them. In general, this task is impossible without making
assumptions regarding native code behavior. For instance, all
classes in Java are subclasses of the java.lang.Object class,
which has native code. In theory, any native method can be
receiving an Object-typed argument, discovering its actual
type using reflection and performing on the object some action
(e.g., reading fields) that would be undetected by any user-
level indirection mechanism.
In Section 2.1 we distinguished several different kinds of
events typically captured by user-level indirection: access to
fields, method calls, constructor calls, etc. Clearly none of
these events can be captured if they occur entirely within
opaque code. For instance, it is impossible to capture updates
to state (i.e., variables) that is defined inside native code. The
interesting case, however, is that of events concerning user-
level (i.e., non-opaque) entities and the question of whether
these can occur inside opaque code. For instance, we may want
to capture all updates to an object field that is declared in a
Java system class implemented in bytecode. We need to ask if
this field is ever accessed inside native code. In this section we
assume the full gamut of user-level indirection events,
including access and modification of fields. If a certain
application is only interested in capturing method and
constructor calls, the restrictions are typically far less severe.
Nevertheless, most interesting applications of user-level
indirection (esp. distributed execution and persistence) need to
capture field accesses.
Our previous work on the J-Orchestra system used some weak
assumptions on the behavior of native code and a simple type-
based analysis to distinguish code that is likely to safely
employ user-level indirection. In this way, we can exploit the
rich type information of the Java system classes API. J-
Orchestra uses user-level indirection in order to execute
monolithic Java applications over a network of machines.

Typically, the application is split in parts (consisting of user
code and system classes) so that each machine handles a
different hardware or software resource—e.g., the graphical
input/output code may run on one machine, while the
processing is done on a second and database access on a third.

Here we abstract away the specifics of the J-Orchestra
approach so that it can be generalized to different domains.
The approach makes two main heuristic assumptions regarding
system classes:

• Classes without native methods have no special
semantics. (Native code never treats their objects any
differently from user-defined objects.)

• Native methods do not use dynamic type discovery
(reflection, downcasting, or any low-level type
information recovery) on objects supplied through method
arguments.

These assumptions generally hold true with few exceptions.
The first assumption does not hold, for instance, for classes in
the java.lang.ref package. The second assumption does not
hold in the implementation of reflection classes themselves.
(See Section 5 for a discussion of reflection.) In Section 4 we
discuss a study of the Sun implementation of Java system
classes and how it supports our assumptions.

The first assumption essentially states that the JVM is not
allowed to handle different types of objects specially when the
objects just use plain bytecode instructions. For instance, the
JVM is not allowed to detect the construction of an object of a
“special” type and keep a reference to this object that native
code can later use for destructive state updates. This is a
reasonable assumption, conforming to good software design
practices. The second assumption states that native code is
strongly typed: if a reference is declared to be of type T, it can
never be used to access fields (method calls are fine) of a
subclass of T. For instance, the assumption prohibits native
methods from taking an Object-typed argument, checking if it
is actually of a more specific type (e.g., Thread or Window),
casting the object to that type and directly accessing fields or
methods defined by the more specific type. This assumption
also encodes a good design practice: code exploits the static
type system as much as possible for correctness checking.
Although the assumption may be violated locally, the hope is
that it is rarely violated over the bytecode-native code
boundary.

With the above two assumptions, we can perform a
classification of Java system classes with respect to whether
they can employ user-level indirection transparently or not,
based on their usage of native code. We will use the term NUI
(for non-user-indirectible) to describe classes that cannot
employ user-level indirection transparently. The base J-
Orchestra rules for inferring the classes that have user-level
indirection limitations are as follows:

1) A system class with native methods is NUI.

2) A system class used as a parameter or return type for a
method or static method in a NUI class is NUI.

3) If a system class is NUI, then all class types of its fields or
static fields are NUI.

4) If a system class, other than java.lang.Object, is NUI,
then its subclasses and superclasses are NUI.

(The above rules represent the essence of the analysis but not
its entirety. For instance, we do not discuss arrays or
exceptions—these are handled similarly to regular classes
holding references to the array element type and method return
types, respectively. The numbers we later report are for the full
version of the rules, however. Note that interface access does
not impose restrictions since an interface cannot be used to
directly access state.)
Rule 1 above is justified because no user-indirection technique
can guarantee to capture all field updates of an instance of a
class with a native method. The native method can always
perform updates without any indirection.
Rule 2 is justified with a similar argument: if an object can be
passed to native code, native code can alias it and (either
during the native method execution or during a later
invocation) change its state. Furthermore, the rule can be
applied transitively: if a class is NUI then we cannot replace all
its uses with uses of an instrumented version in a user package
UP. Then all objects used as arguments of any method (even
non-native) may have their fields accessed directly.
Rule 3 is analogous to Rule 2 but for fields: native code can
access any object transitively reachable from an object that
leaks to native code.
Rule 4 is justified by the specifics of the aforementioned user-
level indirection scheme. We saw an instance of this restriction
in Section 2.2: if a class cannot be indirected, its uses in the
application cannot instead employ a modified copy of the class
in a user-level package. Thus, all subclasses and superclasses
also cannot be copied to a user level package, as they may need
to access non-public fields of their superclass.
These rules enable user-level indirection to be used safely for
many Java system classes. Specifically, 37% of the Java
system classes are classified as having no dependencies to
native code and, thus, being able to employ user-level
indirection safely.
Still, however, these rules are too conservative, as 63% of the
system classes are deemed non-indirectible. Nevertheless, the
rules are a good starting point and can be weakened to be made
practical for specific applications of user-level indirection. For
instance, in the context of J-Orchestra one more assumption is
made relating to the way native code in different libraries can
share state. The extra assumption allows placing different
pieces of native code on separate machines and placing the
instances of opaque classes in the same machine as the relevant
code [12][19].
Next, we show one important general-purpose weakening of
the rules. Rules 2 and 4 can be weakened significantly if we
are allowed to modify system packages (still without touching
native code) and we employ a more sophisticated user-level
indirection scheme than that of J-Orchestra or TCH.

3.2 More Sophisticated User-Level
Indirection and Relaxed Analysis

The rules of the previous section are conservative because they
assume that all code in system packages (be it native or not) is
opaque. See, for instance, Rule 2: although any object that is
used as a parameter of a native method can have its fields
accessed with no indirection, there is no need to recursively
propagate this constraint to the non-native methods of this
object as well. If the object class is in pure bytecode, we can
edit it and introduce indirection for accesses to its parameters.

This, however, relies on a low-level assumption: we assume
that the user-level indirection technique can modify system
packages in order to edit the bytecode of existing system
classes or add a new class in a system package. This is not
desirable in some user-level indirection settings because it
requires control over the startup environment of the JVM. Such
control is not always possible, e.g., for deploying applets that
random users will download and use inside a browser, or in
systems in which the user cannot modify or extend the system
package for security. Nevertheless, many applications of user-
level indirection are allowed to set the parameters of the
runtime system, and this can include a modified system
package.
Under this assumption, we can use a weaker version of Rules 2
and 4.

1) A system class with native methods is NUI.

2’) A system class used as a parameter or return type for a native
method is NUI.

3) If a system class is NUI, then all class types of its fields or
static fields are NUI.

4’) If a system class is NUI, then its superclasses are NUI.

The weaker rules push the limits of user-level indirection much
further: fewer than 8% of the Java system classes are classified
as unable to employ user-level indirection (i.e., NUI). This
means that a general-purpose user-level indirection technique
can apply to more than 92% of the Java system classes with no
special handling.
We already discussed how the new version of Rule 2 is a result
of instrumenting the bytecode of bytecode-only NUI classes.
The weakening of Rule 4 is more interesting. In the new Rule
4, a class does not impose any restrictions on its subclasses.
This also eliminates any special handling of the
java.lang.Object class, which is a common singularity in
user-level indirection schemes.
To use the weaker version of Rule 4, we need to make sure that
every system class C that cannot employ user-level indirection
transparently is replicated in a user-level package. The replica
class will just delegate all method calls to the original.
Subclasses of C that have no native dependencies will employ
full user-level indirection: an instrumented copy will be
created in a user package and all references to the original
class will become references to the instrumented version. As
discussed in Section 2.2, the problem is that the instrumented
class will not be able to access non-public members of C, as it
is not in the same package as C. One solution is to make public
all non-public members of class C by editing the class
bytecode. (Or, equivalently, to create a subclass of C that
exports the non-public members of C—see later.) A safer
approach would be to emulate the Java access control at run-
time using a technique such as that proposed by Bhowmik and
Pugh [1] for the Java inner classes rewrite. At load time, class
C creates a secret key and passes it to the instrumented version
of its subclass. When objects of the instrumented class need to
access C members, they call a public method that also receives
and checks the secret key. This is a safe emulation of the Java
access protection, yet it avoids the requirement of placing
classes in the same package.
An example application of this technique is shown in Figure 2.
The example class File of Section 2.2 is now shown with a

class File {
 SomeT field1;
 ...
 public native void write(byte b);
 public void newLine() {...}
}

class TXFile extends File {
 ...
 public void writeString(String s) {
 ... foo(field1) ...
 }
}

Figure 2(a): Original system class File (with a native
method) and subclass TXFile (without native

dependencies).
class File {
 SomeT field1;
 // Allow free access to field1 only
 //to class UP.File (and children)
 private static final Object key_ =
 new Object();
 static { UP.File.setKey (key_); }
 public SomeT get_field1(Object key) {
 if (key != key_)
 throw new IllegalAccessException();
 return field1;
 }
 ...
 public native void write(byte b);
 public void newLine() {...}
}

//Just delegates to File.
//Only used for correct subtype hierarchy.
class UP.File {
 protected File origImpl_;
 protected static Object key_;
 public static void setKey(Object key) {
 key_ = key;
 }
 ...
 // delegate to native method
 public void write(byte b) {
 origImpl_.write(b);
 }
 public void newLine(){ origImpl_.newLine(); }
}

class UP.TXFile extends UP.File {
 ...
 // methods of this class can employ any
 // user-level indirection scheme
 public void writeString(String s) {
 ...foo(origImpl_.get_field1(key_))...
 }
}

Figure 2(b). Result of the user-level indirection
transformation, with safe access to non-public fields of

non-public field field1. File has a subclass TXFile with no
native dependencies. Figure 2(b) shows the transformed
classes so that UP.File and UP.TXFile can correctly replace
all uses of File and TXFile, respectively, yet UP.TXFile can
employ fully transparent user-level indirection. (As a low-level
note, this transformation means that the instrumented system
package, UP, needs to be loaded by the bootstrap class loader,
since there is a call to method UP.File.setKey inside the
File system class. The easiest way to effect this is to put the
UP package in the rt.jar file.)

The effects of the transformation on the example class
hierarchy are shown pictorially in Figure 3.

java.lang.Object

somesyspackage.File

somesyspackage.TXFile

Figure 3(a): A File class hierarchy

java.lang.Object

somesyspackage.File

UP.TXFile

UP.File

Uses
(safely)

somesyspackage.TXFile

Figure 3(b): Removing subclassing restrictions

Note that in the case of the CLR we may need to use a slightly
more complex transformation to get the same effect. As
pointed out in Section 2.3, native code in the .NET framework
can make assumptions about the memory layout of objects.
Thus, in some cases it may not be possible to introduce new
fields in existing classes. Instead, in our example, a new
system class, FileBridge, can be added as a subclass of File.
This class will just serve to export through public methods the
non-public members of its superclass, File, to instrumented
classes.

4. VALIDATING THE ASSUMPTIONS
AND ANALYSIS

We validate the assumptions and analysis of the previous
section in three ways: first we measure the impact of our type
classification for real applications: can we indeed use user-
level indirection, without any special-case handling, for a large
number of the system classes used by realistic applications?
Next we examine by code inspection an actual native code
implementation of system methods and check whether it
satisfies our assumptions. Finally, we perform a dynamic
analysis of many Java applications and show that they do not
violate the results of our type-based analysis during their
execution.

4.1 Impact on Real Applications
An interesting question is to quantify the impact of the type-
based analysis for real applications, as opposed to the set of all
Java system classes. Although the more sophisticated version
of our analysis allows to use indirection in 92% of the system
classes, the remaining 8% are some of the most heavily used
classes in practice. We demonstrate this in Table 1. The table
shows how many of the system classes actually used by
different Java applications are classified as NUI under our
analysis of Section 3.2. The table also shows how many of the
used system classes have native methods themselves—this is a
lower bound on the number of NUI classes under any analysis.
(We find the used classes by dynamically observing the loaded
classes, minus JVM bootstrap classes. We then run our type-
based analysis with the set of used classes as a universe set—
any NUI dependencies introduced by classes that were not
loaded are ignored.)

Three of the applications (javac, jess, mpegaudio) are standard
benchmarks from SPEC JVM’98. (The rest of the SPEC
JVM’98 programs yield practically identical numbers.)
Unsurprisingly, these benchmarks are old and exercise few of
the Java system classes. Nevertheless, we still see that more
than 62% of the system classes used can employ user-level
indirection. The next seven applications (antlr, bloat, chart,
hsqldb, jython, ps, xalan) are from the more modern DaCapo
benchmark suite (version beta050224). These applications are
more realistic, yet they still do not exercise a large part of the
Java system libraries. We see that our analysis enables 66-85%
of the system classes used in the DaCapo benchmark programs
to be safely indirected. (The DaCapo suite has 3 more
applications that we did not manage to run by paper
submission time due to setup issues, such as library
dependencies or unclear input files.) For applications that
exercise more of the Java system classes, we examined the Sun
demo application SwingSet2 and the JBits FPGA simulator by
Xilinx. The inputs used for these two applications were
interactive and consisted of navigating extensively through the
application’s GUI and performing standard program actions
(e.g., loading a simulator and an FPGA configuration and
performing simulation steps). Both of these applications
exercise over 1400 Java system classes. Only 21 and 16% (for
JBits and SwingSet2, respectively) of these classes were found
to be NUI under our analysis: the rest can employ user-level
indirection without any special treatment. Finally, we include
in our suite the RMIServer sample application from Sun, in
order to exercise networking system classes.

Thus, Table 1 confirms that native code is not a negligible part
of real applications. Additionally, although the type analysis
assumes the most general native code behavior that respects its
assumptions, it is still sufficient for enabling safe indirection
for the large majority of Java system classes used in actual
applications. (Where safety is always contingent on non-
violation of our heuristic assumptions by the native code. We
later discuss how we confirm that our approach is indeed safe
for these executions.)

Table 1. : Type-based analysis of used system classes

Application #classes #native %native #NUI %NUI

javac 167 21 13 62 37

jess 165 21 13 61 37

Mpeg audio 158 21 13 60 38

Antlr 209 21 10 67 32

Bloat 275 25 9 80 29

Chart 601 69 11 194 32

Hsqldb 295 26 9 83 28

Jython 263 20 8 76 29

Ps 175 18 10 60 34

Xalan 505 21 4 74 15

SwingSet2 1887 120 6 303 16

JBits 1442 124 9 306 21

RMI Server 415 37 9 109 26

4.2 Accuracy of Type Information
Recall that one of the heuristic assumptions of our type-based
analysis is that the APIs to system functionality offer accurate
type information. That is, we assume that native code does not
discover type information dynamically: if a native method
signature refers to type A, then it does not attempt to
dynamically discover which particular subtype of A is the
actual type of the object and to use fields or methods specific
to that subtype. It is certainly common to pass instances of
subtypes of A to the native method, but these should only be
accessed using the general interface defined by the supertype
A. This assumption is in line with good object-oriented design.

Although the assumption is soundly motivated, there are
certainly exceptions in real code. Nevertheless, such
exceptions are fairly rare. To validate the assumption, we
examined part of the implementation of native methods in
Sun’s JDK 1.4.2. We searched for the use of specific idioms
throughout native method implementations and we examined
in detail all native methods (109 of them) accepting as
argument or returning as result an object with declared type
java.lang.Object (the root of the Java inheritance
hierarchy). In our study, we observed few violations of our
assumptions. The most important ones are:

• reflection functionality routinely circumvents the type
system, as expected. Reflection requires special handling
in a user-level indirection environment, as we later
discuss in Section 5.

• passing primitive arrays to native code is typically
invisible to the type system. Several native methods
accept an Object reference but implicitly assume that
they are really passed a Java array of bytes or integers.
This does not affect our analysis, as we consider primitive
types and their arrays to be non-indirectible by default.

• a handful of methods have poor type information and
violate our type accuracy assumptions. For instance,
method socketGetOption in class java.net.
PlainSocketImpl takes an Object as argument, casts it
into a java.net.InetAddress and then sets one of its
fields. (The addr field is set when the method returns the
bind address for its socket implementation.) Similarly,
native method getPrivateKey in class sun.awt.

Table 1. : Type-based analysis of used system classes

Application #classes #native %native #NUI %NUI

SunToolkit assumes that its Object argument is really a
java.awt.Component or a java.awt.MenuComponent
and dynamically discovers its actual type.
These exceptions, however, are very rare, in our experience.
A quick search of all native code in Java system libraries (for
all platforms together) reveals just 69 uses of the JNI function
IsInstanceOf, which is the main way to do dynamic type
discovery in native code. In contrast, there are about 5900
uses of the Java counterpart, instanceof, in plain Java code
in the system libraries. (The total size of Java code in system
libraries is roughly twice the size of C/C++ native code, so
the discrepancy is not justified by the size alone.)

We, thus, feel that our heuristic assumption is well-justified.
Even though the native implementation is free to circumvent
the type system, we believe that in practice it is reasonable to
assume that sufficient type information exists at the
user/system boundary of languages like Java to allow a
heuristic but fairly good type-based analysis. Clearly the
analysis will not offer strict guarantees, but if it determines
that a certain system class can employ user-level indirection, it
is highly likely to be right. We quantify this likelihood for
actual applications next.

4.3 Testing Correctness
Our type-based analysis attempts a heuristic solution to an
unsolvable problem. Recall that if we treat native code as an
adversary, there are no safe assumptions we can make, other
than “all native code can directly access and modify all
objects”. This assumption invalidates every kind of user-level
indirection. Nevertheless, in practice our heuristic, type-based
approach works well. (Our experience with J-Orchestra was
what first suggested to us that a type-based analysis is
sufficient for ensuring safe indirection in practice.)
We dynamically analyzed the applications discussed in
Section 4.1 to confirm that the results of our type-based
analysis of Section 3.2 are rarely, if ever, violated in practice.
We instrumented a Java VM to observe all reads and writes to
object fields performed inside native code. Then we checked
whether fields of a class that we did not consider NUI are ever
read or written inside native code. Of course, this experiment
is just a test under specific inputs. Our analysis results could
still be violated by different program inputs. Nevertheless,
given the amount and variety of tested code and inputs, we
have high confidence in our observations.
Almost all applications listed in Table 1 exhibit accesses to
Java object fields from inside native code. Some applications
(especially the more graphics-intensive ones) have native code
access the fields of objects of more than 40 different classes.
Throughout all executions of the applications, we observed
only two instances of access inside native code to objects of
types that were not classified as NUI. Both cases represented
native code implementation patterns in Sun’s JDK 1.4.2 that
violated our type-accuracy assumptions.
Specifically, the first case was that of method
populateGlyphVector in class sun.awt.font.
NativeFontWrapper (not a directly user-accessible class).
The method accepts a java.awt.font.GlyphVector
parameter but implicitly assumes that the true type of the
parameter is sun.awt.font.StandardGlyphVector and
proceeds to set specific fields of that class. This is a classic
case where information is not present in the type signatures of

native methods for no apparent good reason. (Upon further
inspection, a couple of more methods in the same class also
circumvent the type system for GlyphVector arguments.)

The second case was that of the constructor of class
sun.java2d.loops.MaskFill. The constructor accepts a
java.awt.Composite parameter but assumes its real type is
java.awt.AlphaComposite. Although this is again a bad
practice of obscuring information from the type system, at
least in this case there is some code economy benefit from
doing so: the constructor is only called in native code using
dynamic method discovery (i.e., reflection at the native level).
Eliding the specific type information allows the constructor to
be called by the same code as some other similar constructors.

In summary, our experience confirms that a type-based
analysis is quite safe in practice. Although no guarantees can
be offered (as the assumptions can be violated by the
implementation of native methods) there is a reasonable
expectation that the type analysis will be safe. In the absence
of complete information on the behavior of native code, our
analysis is a clear win. The only general-purpose alternatives
are to either not support indirection for any system classes, or
to leave the user with no assistance in determining the
correctness of applying indirection.

5. DISCUSSION
In this section we discuss miscellaneous topics relating to the
applicability of the overall approach.

Example Uses. It is perhaps useful to consider how the
approach presented in previous sections can inform specific
systems that employ user-level indirection. In the case of J-
Orchestra, all system classes whose instances may escape to
the same native code are grouped together in the J-Orchestra
GUI environment. The user can override such grouping
decisions but rarely needs to do so. J-Orchestra rewrites the
entire application to introduce distributed execution through its
user-level indirection technique that adds middleware calls and
transforms accesses to remote fields. The user-level indirection
algorithm is aware of NUI classes and introduces distributed
execution around them—for instance a Thread or Window
class is classified as anchored so that its objects are limited to
always remain on a single machine. J-Orchestra has been used
to partition large (~8MB binary) third-party applications,
without any knowledge of their internal structure. The type-
based analysis has been invaluable in making the system scale.
After 5 years of use, several partitioned applications, and many
versions of the JDK on different platforms, we have yet to
experience a J-Orchestra partitioned application crash that is
due to the unsafety of its type-based analysis. In addition, the
J-Orchestra experience serves to showcase why in practice it is
highly valuable to employ a user-level indirection technique
instead of specializing the runtime environment. J-Orchestra
has often been used to partition applications for execution in
different environments (from servers to Java-enabled PDAs)
over completely standard-issue Java virtual machines, yielding
remarkable portability.

Correctness under Reflection. For full transparency, user-
level indirection techniques may need to replace all uses of the
standard reflection mechanisms with uses of a special-purpose
reflection library. The special-purpose library will emulate on
the instrumented program the behavior of the standard
reflection mechanisms on the original program. This is,
however, just an engineering complication. In practice, user-

level indirection techniques typically choose to ignore
reflection because full transparency matters only in obscure
cases. Common uses of reflection, such as instanceof
checks, member type recovery, field access and method
calling, are safe with standard user-level indirection
techniques. The unsafe parts usually consist of operations that
depend on hard-coded class names, which may be replaced by
names in an isomorphic class hierarchy under user-level
indirection.

Special Purpose Functionality. The discussion of reflection is
only one example of special-purpose handling of system
functionality in classes that cannot safely employ user-level
indirection. As mentioned in Section 2.2, user-level indirection
techniques can be combined with special purpose replacements
for the system code that cannot transparently employ user-
level indirection. For instance, the thread creation and
management (i.e., synchronization) functionality is low-level
and employs native code. Systems that employ user-level
indirection can have a special-purpose replacement of
threading and synchronization code that works correctly with
the indirection [4][20]. The same approach can be used with
other low-level classes, such as those managing files, database
access, network communication, GUI, etc. Thus, this paper can
be viewed as an exploration of how far we can push general-
purpose user-level indirection before we have to resort to ad
hoc solutions.

Aspect-Oriented Programming. A natural application
domain for user-level indirection is that of Aspect-Oriented
Programming (AOP) [8]. AOP advocates separating distinct
aspects of an application’s functionality and composing them
at the implementation level. Thus, the kinds of events captured
by user-level indirection approaches are of particular interest
from an AOP standpoint as join points for interposing extra
functionality. AspectJ [9], the flagship AOP tool, concentrates
exactly on capturing events such as field accesses, method
calls, object construction, etc. Although newer versions of
AspectJ compile directly to bytecode, current AspectJ
compilers have limitations with respect to manipulating pre-
compiled classes. Accordingly, join points in system libraries
or inside native methods cannot be instrumented with AspectJ.
Nevertheless, it is a stated goal in the AspectJ specification to
allow the AspectJ semantics to apply transparently to all
classes, yet allow implementations to diverge for practical
reasons. We believe that our work expands what an AspectJ
implementation can do with respect to system code, while
using general-purpose, non-VM-intrusive techniques.

Runtime specification. The ideal solution for enabling user-
level indirection in the presence of opaque code would be to
require a model of the behavior of the opaque code. Such a
model would typically be abstract and over-approximate, but
capturing the essential characteristics of the native code with
respect to aliasing, field accessing and method calling over
native method arguments. Such a model can be automatically
produced by analyzing the source code of the runtime system.
Thus, VM and library vendors would most likely export the
model, together with the native implementation, possibly in the
form of interface annotations. As we discussed earlier, our
approach explicitly aims to be more evolutionary, rather than
revolutionary. Our type analysis is a heuristic substitute for
such annotations, yet one that we believe offers the user useful
information under current technologies. The alternative would
be to leave the user solely responsible for ensuring when user-

level indirection can be employed on system classes, without
any guidance at all.

6. CONCLUSIONS
In recent years, the high and growing popularity of high-level
languages such as Java and C#, running on top of virtual
machine-based runtime systems, has influenced the
proliferation of user-level indirection techniques for achieving
systems-level extensibility. The ability to transform a piece of
software automatically and correctly by enhancing it with
useful functionality such as logging, persistence, distribution,
and others, relieves the programmer from the necessity of
performing tedious and error-prone tasks by hand. However,
the applicability of all such user-level indirection techniques is
limited by the presence of native code. In this paper, we
studied ways to identify these limitations, in order to enable
user-level indirection to be applicable as widely as possible. In
the greater scheme, we believe that our paper offers some
interesting elements:

• we show how native code can invalidate any user-level
indirection technique in the worst case. Although this is a
standard observation for program analysis experts, it is a
topic often completely ignored by implementors of user-
level indirection mechanisms.

• we show how a simple type-based heuristic analysis
together with fairly general assumptions can help
distinguish classes that can be safely indirected from
those that cannot. It is interesting that the type
information at the user/system boundary would be
sufficient for this purpose. The type system of modern OO
languages like Java is directly responsible for enabling
this analysis. The analysis would be, for instance,
impossible at the user/system boundary between C and
Unix or Windows, where most of the arguments to system
library calls are unstructured pointers and byte buffers.

We hope that our observations will be of value not just in the
domain of user-indirection-based software systems but also in
the design of future runtime systems and environments,
making the code running on top of them easier to indirect.

Acknowledgments
Yannis Smaragdakis performed this work while at the Georgia
Institute of Technology. The work is supported by the NSF
under Grants No. CCR-0220248 and CCR-0238289.

References
[1] Anasua Bhowmik and William Pugh, “A Secure

Implementation of Java Inner Classes”, PLDI 99 poster
session.

[2] Kumar Brahnmath, Nathaniel Nystrom, Antony Hosking and
Quintin Cutts, “Swizzle Barrier Optimizations for Orthogonal
Persistence in Java”, proc. 8th International Workshop on
Persistent Object Systems (POS8) and 3rd International
Workshop on Persistence and Java (PJW3), 1998.

[3] Markus Dahm, “Byte Code Engineering”, JIT 1999.

[4] Michael Factor, Assaf Schuster and Konstantin Shagin,
“JavaSplit: A Runtime for Execution of Monolithic Java
Programs on Heterogeneous Collections of Commodity

Workstations”, 2003 International Conference on Cluster
Computing (CLUSTER’03).

[5] Michael Factor, Assaf Schuster and Konstantin Shagin,
“Instrumentation of Standard Libraries in Object-Oriented
Languages: the Twin Class Hierarchy Approach”, Object-
Oriented Programming Systems Languages and Applications
(OOPSLA), 2004.

[6] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen,
“JavaParty: A distributed companion to Java”,
http://wwwipd.ira.uka.de/JavaParty/

[7] Jarle Hulaas and Walter Binder, “Program Transformations
for Portable CPU Accounting and Control in Java”, Partial
Evaluation and Semantics-Based Program Manipulation
(PEPM), 2004.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier and John
Irwin, “Aspect-Oriented Programming”, European
Conference on Object-Oriented Programming (ECOOP),
1997.

[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm and William G. Griswold, “An Overview of
AspectJ”, European Conference on Object-Oriented
Programming (ECOOP), 2001.

[10] Gordon Landis, Charles Lamb, Tim Blackman, Sam
Haradhvala, Mark Noyes, and Dan Weinreb,
“ObjectStore/PSE: a Persistent Storage Engine for Java”,
proc. 2nd International Workshop on Persistence and Java
(PJW2), p. 129-137, 1997.

[11] Han B. Lee and Benjamin G. Zorn, “Bytecode
Instrumentation as an Aid in Understanding the Behavior of
Java Persistent Stores”, OOPSLA 1997 Workshop on
Garbage Collection and Memory Management.

[12] Nikitas Liogkas, Blair MacIntyre, Elizabeth Mynatt, Yannis
Smaragdakis, Eli Tilevich, and Stephen Voida, “Automatic
Partitioning: A Promising Approach to Prototyping
Ubiquitous Computing Applications”, IEEE Pervasive
Computing, 3(3): 40-47, July-September 2004.

[13] ObjectDesign Inc., ObjectStore PSE/PSE Pro for Java API
User Guide, 1999.

[14] Michael Philippsen and Matthias Zenger, “JavaParty -
Transparent Remote Objects in Java”, Concurrency: Practice
and Experience, 9(11):1125-1242, 1997.

[15] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst,
“Automatic Test Factoring for Java”, International
Conference on Automated Software Engineering (ASE), 2005.

[16] Andre Spiegel, “Pangaea: An Automatic Distribution Front-
End for Java”, 4th IEEE Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS
'99), San Juan, Puerto Rico, April 1999.

[17] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS
2000, Berlin, April 2000. See also http://www.inf.fu-
berlin.de/~spiegel/pangaea/

[18] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and
Kozo Itano, “A Bytecode Translator for Distributed
Execution of ‘Legacy’ Java Software”, European Conference
on Object-Oriented Programming (ECOOP), 2001.

[19] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra:
Automatic Java Application Partitioning”, European
Conference on Object-Oriented Programming (ECOOP),
2002.

[20] Eli Tilevich and Yannis Smaragdakis, “Portable and Efficient
Distributed Threads for Java”, 5th International Middleware
Conference (Middleware’04).

	Transparent Program Transformations in the Presence of Opaque Code
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. User-Level Indirection and its Limitations
	2.1 User-Level Indirection Techniques
	2.2 Transparency Limitations
	2.3 Beyond Java Conventions: Native Code in .NET

	3. Pushing the Limits with Weak Assumptions
	3.1 Type-Based Analysis + Weak Assumptions
	3.2 More Sophisticated User-Level Indirection and Relaxed Analysis

	4. Validating The Assumptions and Analysis
	4.1 Impact on Real Applications
	4.2 Accuracy of Type Information
	4.3 Testing Correctness

	5. Discussion
	6. Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

