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Abstract. A radio-frequency identification (RFID) tag is a small, inexpensive microchip that
emits an identifier in response to a query from a nearby reader. The price of these tags promises
to drop to the range of $0.05 per unit in the next several years, offering a viable and powerful
replacement for barcodes.

The challenge in providing security for low-cost RFID tags is that they are computationally
weak devices, unable to perform even basic symmetric-key cryptographic operations. Security
researchers often therefore assume that good privacy protection in RFID tags is unattainable.

In this paper, we explore a notion of minimalist cryptography suitable for RFID tags. We consider
the type of security obtainable in RFID devices with a small amount of rewritable memory, but
very limited computing capability. Our aim is to show that standard cryptography is not necessary
as a starting point for improving security of very weak RFID devices. Our contribution is threefold:

1. We propose a new formal security model for authentication and privacy in RFID tags. This
model takes into account the natural computational limitations and the likely attack sce-
narios for RFID tags in real-world settings. It represents a useful divergence from standard
cryptographic security modeling, and thus a new view of practical formalization of minimal
security requirements for low-cost RFID-tag security.

2. We describe protocol that provably achieves the properties of authentication and privacy in
RFID tags in our proposed model, and in a good practical sense. Our proposed protocol
involves no computationally intensive cryptographic operations, and relatively little storage.

3. Of particular practical interest, we describe some reduced-functionality variants of our proto-
col. We show, for instance, how static pseudonyms may considerably enhance security against
eavesdropping in low-cost RFID tags. Our most basic static-pseudonym proposals require
virtually no increase in existing RFID tag resources.
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1 Introduction

A passive radio-frequency identification (RFID) tag is a microchip that is capable of transmit-
ting a static identifier or serial number for a short distance. It is typically activated by a query
from a nearby reader, which also transmits power for the operation of the tag. Several varieties
of RFID tag are already familiar in daily life. Examples include the small plaques mounted on
car windshields for the purpose of automated toll payment, the theft-detection tags attached
in shops to consumer goods such as clothing, and the proximity cards used to control physical
access to buildings. More expensive RFID tags can execute advanced cryptographic and other
functions, but we concern ourselves in this paper with the inexpensive variety geared to serve
as a next-generation successor to barcodes.



The cost of rudimentary RFID tags promises to drop to roughly $0.05/unit in the next
several years [34], while tags as small as 0.4mm × 0.4mm, and thin enough to be embedded
in paper are already commercially available [43]. Such improvements in cost and size augur
a rapid proliferation of RFID tags into many areas of use. Indeed, Wal-Mart has issued a
directive to its top one hundred suppliers requiring deployment of RFID at the pallet level
[10], while The Gillette Company has recently placed an order for half a billion tags for use
in supply-chain and retail environments [12]. A goal of researchers in RFID tag development
is to see them serve ubiquitously as a replacement for barcodes. This change promises more
flexible and intelligent handling of consumer goods and devices. Here are just a few enticing
possibilities: Microwave ovens that can read the tags on packages and cook food without explicit
instructions, refrigerators that can recognize expired and depleted foodstuffs, and closets that
can inventory their contents (and perform a Web search for custom fashion advice).

The impending ubiquity of RFID tags, however, also poses a potentially widespread threat
to consumer privacy [27]. If RFID tags are easily readable, then tagged items will be subject to
indiscriminate physical tracking, as will their owners and bearers. Researchers have recognized
this problem for some time [21, 35], and have yet to propose a truly satisfactory remedy.
The issue has also seen recent attention in the popular press, whose negative news coverage
forced the clothing retailer Benetton to withdraw plans for embedding RFID tags in its items of
apparel [6, 37]. Corporate privacy is similarly problematic, as RFID tags can facilitate corporate
espionage by revealing information about the operation of supply chains.

Auto-ID Labs and EPC Global (together formerly known as the Auto-ID Center) have
been leading institutions in the development and standardization of RFID tags. Their initial
RFID-chip designs are geared toward general corporate and consumer use. So as to permit
inexpensive manufacture, they carry only the most basic functionality, emitting a static, 96-to-
256-bit identifier on receiving a reader query [34]. Auto-ID Center chip designs give recognition
to importance of privacy by permitting an RFID tag to be “killed,” i.e., rendered permanently
inoperable on receiving a short, specially designated key [35]. Other design proposals propose
a pair of complementary “sleep” and “wake” commands that allow a chip to be rendered
inoperable on a temporary basis. Thus, for example, a supermarket might deploy RFID tags
to facilitate tracking of shipments and monitoring of shelf stocks. To protect the privacy of
customers, checkout clerks might “kill” the tags of purchased goods. Alternatively, to permit
tag use in the home, a consumer might furnish a secret “sleep” key at the time of checkout.
This key could be used to put tags to sleep when the consumer leaves the supermarket, and
to reawaken them for later use.

There are many environments, however, in which simple measures like use of “kill” or
“sleep” commands are unworkable or undesirable for privacy enforcement. Consumers may wish
RFID tags in their possession to remain active, or may simply find it inconvenient to manage
their wake/sleep patterns. Businesses may have concerns about unauthorized monitoring of
tags before they are “killed.” We enumerate a few examples here of important uses and privacy
concerns for which “kill” or “sleep” commands are unsatisfactory:

– Access delegation: A consumer may wish certain tags in her possession to be permanently
active so as to enable reading by other parties. For example, a consumer might wish to use



RFID tags for effortless physical access control,1 for theft-protection of belongings, for
wireless cash and fidelity cards, and so forth. New and clever consumer applications are
already beginning to emerge. For example, a Prada store in New York City tracks the RFID
tags of items held by customers in order to display related accessories on nearby screens [2].
Function creep promises to result in many more uses unimagined or unimaginable today.

– Consumer use: As mentioned above, RFID readers may eventually be inexpensive enough
and RFID tags prevalent enough to make a range of smart appliances practical in the home.
In the shorter term, there are other consumer benefits, like the ability of consumers to return
RFID-tags items to shops without the need for a receipt.

– Industrial espionage: Industrial espionage is a likely concern prior to the “killing” of tags.
This is true, for example, in a retail environment, where a competitor capable of reading
tags in shops or warehouses may gather business intelligence regarding the turnover rate
of stocks, the shopping patterns of customers, and so forth.

– Banknote tracking: If tags are embedded in banknotes, then they must be permanently
accessible to law enforcement agencies. One straightforward approach to enforcing privacy
would be to distribute banknotes in a “sleep” state, and to assign a “waking” key to law
enforcement. This is problematic in that to awaken banknote tags, a law enforcement reader
must transmit the key, rendering it easily vulnerable to capture. Keys cannot be assigned
on a fixed per-banknote basis, because in that case a banknote would have to emit a unique
identifier in order to enable law enforcement to determine the correct key for that banknote.
Thus a given awakening key would potentially have to be associated with a wide batch of
banknotes, in which case one would expect privacy to be swiftly and broadly compromised.

RFID tags that promiscuously emit static serial numbers pose another serious problem,
namely that of authentication. Such tags may be easily cloned by an attacker that has read
access: The attacker need merely read the RFID tags of passersby to harvest their identifiers for
later re-use. This is highly problematic for a number of the current and projected uses of RFID
tags, most notably physical access to buildings via passive RFID tokens, and inventory track-
ing (especially with an eye to protection against counterfeiting). Privacy protection and the
problem of authentication are thus intimately related, a fact highlighted by our investigations
in this paper.

One of the most advanced of the current generation of small, inexpensive RFID tags is the
Atmel TK5552 [11]. This tag has 992 bits of storage and a data transmission rate of about
100kB / sec. It permits both reading and writing to the contents of its memory. The Atmel
TK5552, however, costs as much as $1.00 per unit. Projections on the likely resources in several
years of RFID tags with cost in the vicinity of $0.05 include several hundred bits of memory
and somewhere between 5,000 and 10,000 logical gates [33], of which a considerable fraction
will be required for basic tag functions. Such RFID tags may be expected to perform some
basic computational operations, but not conventional cryptographic ones. At best, they may
include security functions involving static keys, such as keyed reads and keyed writes, i.e.,
essentially just PIN-controlled data accesses.
Remark: One might take the view that Moore’s law will ensure greater processing power on
tags in the coming years, and thus that cryptographic functionality will eventually be available
1 Smartcards with RF-enabled chips are in fact in use for this purpose today, but generally only function in

very close proximity to readers.



in five-cent tags. There is a competing phenomenon in this case, though: Users of low-end
RFID tags are more concerned to see prices drop and RFID tags become more widespread
than to see functionality increase. This means that cryptographic functionality in basic tags
may be some time in coming.

1.1 Our work: minimalist cryptography

Our goal in this paper is to elaborate for RFID tags a notion of minimalist cryptography. We
first seek to characterize common adversarial capabilities in the special security environment
that RFID tags present. As a complementary endeavor, we investigate security designs and
key management involving severely restricted computing resources. Our main goal is to show
that standard cryptographic functionality is not needed to achieve stronger security in RFID
tags.

To begin with, we present a security model for an adversary that we consider representative
of real-world attack scenarios for RFID. This is an important new contribution of our work.
As we show, despite the limited capabilities of RFID tags, RFID systems offer the security
architect a special advantage. Like normal users, adversaries in an RFID-system are physically
constrained: They must have physical proximity to RFID tags in order to read (and therefore
attack) them. Such adversaries are necessarily weaker than in a traditional cryptographic
setting. They also have more complex restrictions on their palette of attacks. The model we
propose aims to capture these distinct adversarial characteristics. This model may not be
perfect, but it aims to undercut some of the standard cryptographic assumptions that may not
be appropriate for real-world deployments.

A fortunate feature of our security model is the fact that it is possible to design protocols
without reliance on traditional cryptographic primitives. This turns out to be essential in
the setting we consider. As explained above, low-cost RFID tags in particular are incapable
of performing the most basic cryptographic operations – even those involving symmetric-key
primitives. Such RFID tags cannot in fact withstand strong adversarial attacks of the kind
usually considered in cryptographic security models, where an adversary has general “oracle”
access, i.e., a largely unrestricted ability to interact with participating entities.

Given the features of our proposed model, we show how privacy and authentication may
be considerably improved in low-cost RFID tags with only a small enhancement of their ca-
pabilities – which we refer to as minimalist cryptography. We propose a scheme that may be
implemented in RFID tags with just several hundred bits of memory and read/write enable-
ment, that is, in tags roughly comparable to the Atmel TK5552 or to the $0.05-per-unit tags
anticipated in the near future. We refer to this scheme as pseudonym throttling.

Pseudonym throttling is conceptually simple approach to RFID-tag authentication in which
an RFID tag stores a short list of random identifiers or pseudonyms (known by authorized
verifiers to be equivalent). Each time the tag is queried, it emits the next pseudonym in the list,
cycling to the beginning when the list is exhausted. Combined with this feature is the physical
imposition of a low query-response rate in the tag. By using hardware-based delays, tags may be
made to emit identifiers at a relatively low prescribed rate. (Indeed, delay-based throttling has
already seen practical demonstration: Alien Technologies incorporates a throttling mechanism
into its current generation of inexpensive RFID tags to prevent guessing of “kill” codes, i.e.,
the PINs used to disable tags in retail environments [32].)



Alternatively, in higher-end RFID tags that permit user involvement, a user might need
to press a button to initiate reading of the tag: This would constitute a different form of
throttling. Given the presence of a throttling mechanism, an attacker can only track an RFID
tag with a high likelihood of success if she has access to it for a long, continuous period of
time, or at many different times. In the latter case, moreover, the ability of the attacker to link
pseudonyms is limited, as the tag continually changes appearance.

Pseudonym throttling is simple and practical, but has a shortcoming: The small storage
capacity of RFID tags permits only a small list of pseudonyms, and hence only limited privacy
protection. Our full protocol allows pseudonyms in an RFID tag to be refreshed by authorized
verifiers. In consequence, an additional feature required of our pseudonym-throttling scheme is
authentication between tags and verifiers. Our proposed protocol provides such authentication
with carefully conceived properties. This is a useful contribution of our work, and interrelated
with our exploration of privacy. Given its range of security features, our full pseudonym-
throttling protocol necessarily involves multiple flows, and is thus more complex than mere
identifier emission. Adhering to the design principle of minimalist cryptography, our protocol
involves operations no more computationally intensive than rudimentary memory management,
string comparisons, and a basic XOR. To achieve privacy, we propose a special scheme involving
composition of one-time pads across protocol sessions.

We emphasize that writeable memory of the type needed for our full-blown protocol may
or may not ultimately be more expensive than the logic required to perform standard crypto-
graphic operations. Our main goal here is to demonstrate how a different allocation of resources
– namely a shift in favor of memory rather than computation – can subserve important security
goals in a new way. This is particularly true as resource costs change on a regular basis. Given
emerging breakthroughs in non-organic storage media, re-writeable memory may ultimately
prove very inexpensive [?]

There is also some practical offshoot of our investigations with more immediate potential.
We describe a few reduced-functionality variants of our basic pseudonym scheme that require
very little supplementation of existing tag resources. These simple variants help offer security
against the real-world threat of passive eavesdropping. Although the effective read distance of
RFID tags is fairly short, the readers themselves broadcast tag identifiers for long distances –
indeed, up to as much as a kilometer. Our simple techniques help address this problem.

1.2 Related work in data security

There is a considerable body of research on the design of lightweight public-key encryption
and digital-signing algorithms – largely intended for use in smart cards and similarly small
computational devices. These algorithms include identification or digital-signature schemes
such as the classic Guillou-Quisquater algorithm [18] and also newer algorithms like the NTRU
cryptosystem [19]. Even the most lightweight of these many schemes, e.g., [41], is likely to be
well beyond the capabilities of small RFID tags for quite some time to come.

A related line of research considers the use of symmetric-key algorithms as a lightweight
mechanism for authentication, again with the aim of enhancing security functionality on small
devices. Perrig [30], for example, shows how hash chains may be used in conjunction with
time-synchronization to achieve much the same functionality as that offered by public-key
authentication techniques. RSA SecurIDTM is a popular device for remote authentication that



relies on time-synchronization and use of a hash function to process a secret key shared with a
server [23]. Remote keyless entry (RKE) systems are the protocols used to enabling consumers
to unlock automobiles remotely using small fobs. (See [15] for a concise description.) Generally
proprietary, these algorithms typically rely on the use of pseudo-random number generation
to produce authentication codes that change from session to session. As already explained,
however, even compact symmetric-key algorithms are in general too resource-intensive for
incorporation into the current generation of low-cost RFID tags.

The use of pseudonyms as a privacy-preserving tool has seen wide ranging theoretical
and practical application in computing environments. Cryptographic treatment of pseudonyms
has focused on an early concept due to Chaum [9,26], in which an entity presents different
pseudonymous credentials to different verifiers and is capable of proving statements about
these credentials in a privacy-preserving manner. Such pseudonymous and anonymous systems
exploit the full flexibility of public-key cryptography, and as such tend to be rather heavyweight.

The pseudonym schemes in actual use are much more rudimentary. Pseudonyms are in
common use in subscription-based systems on the Internet. For example, users can easily ob-
tain e-mail accounts bearing pseudonymous identifiers. More strongly enforced pseudonymous
network interfaces are achievable with the use of mix networks [8]. The now-defunct Freedom
service of Zero Knowledge Systems, for example, permitted users to adopt any of a range of
pseudonyms for Internet transactions [16]. A characteristic of such systems is their context de-
pendence. In other words, users select from among a small set of persistent pseudonyms so as
to achieve a consistent persona in a particular environment. Thus, in contrast with many other
pseudonym systems, there are three important points of distinction in our approach to RFID-
tag privacy: (1) The need for protocols that involve consistent rotation of pseudonyms without
reference to external information, since RFID tags have only minimal awareness of transac-
tional context; (2) The need for external generation of pseudonyms. Without access to crypto-
graphic functions or a source of randomness, RFID tags cannot select their own pseudonyms,
while most privacy-preserving systems have the benefit of direct selection of pseudonyms by
pseudonymous entities; and (3) The fact that pseudonyms on an RFID tag must be linkable by
an authorized verifier, a feature more common in public-key-based cryptographic pseudonym
systems than in the lightweight pseudonym systems in practical use.

The threat of invasive physical tracking of people by means of remotely-readable device
identifiers has already begun to manifest itself in everyday life. For example, users of EZPass,
a system for toll payment employing RFID transponders in cars, may have their records sub-
poened in divorce cases in New York State for the purpose of proving claims of marital infidelity
[42]. Jakobsson and Wetzel have pointed out a similar, but potentially much more pervasive
threat to privacy in the authentication protocol for Bluetooth, a communication scheme that
promises to proliferate into a wide range of electronic devices [20]. They propose frequent
rotation of pseudonyms as a countermeasure.

The problem of security modeling for RFID-tag systems may be viewed as similar in flavor
to that for ad-hoc wireless networks. This is true both in terms of the restricted power of
participating devices and in terms of the rapid changes in their physical and therefore log-
ical relationships. There is little formal work on security modeling particular to the special
characteristics of ad-hoc networks, although it is an emerging area of interest. Of particular
note is the “resurrecting duckling” idea of Stajano and Anderson [40], who consider secure



authentication between devices in ad-hoc networks. As we do here, they examine the way that
physical proximity may be treated as an element in security modeling.

1.3 Related work on RFID

Researchers have from the outset recognized the possibility of privacy threats from physical
tracking in the deployment of RFID tags [35]. Several recent papers have proposed ways of ad-
dressing the problem. Juels and Pappu [21] consider a purported plan by the European Central
Bank to embed RFID tags in Euro banknotes [1]. They propose a privacy-protecting scheme
in which RFID tags carry ciphertexts on the serial numbers of banknotes. These ciphertexts
are subject to re-encryption by computational devices in shops, thereby rendering multiple
appearances of a given RFID tag unlinkable. The Juels/Pappu scheme, however, assumes a
single verifying entity – namely a law-enforcement organization – and is not obviously exten-
sible to the multi-verifier systems likely in commercial and consumer environments. A scheme
of Golle, Jakobsson, Juels, and Syverson [17] builds on this idea with a primitive known as
universal encryption, essentially a special extension of the El Gamal cryptosystem [13] in which
re-encryption is possible without knowledge of public keys. The Golle et al. approach is geared
toward general consumer use, as it does not require a centralized verifying entity. It has the
drawback, though, of requiring an infrastructure of agents capable of performing public-key-
based re-encryption for privacy protection of RFID tags.

Weis, Sarma, Rivest, and Engels [45] also propose a collection of privacy-enforcement ideas
for RFID tags in general environments. First, they identify the problem of attacks based on
eavesdropping rather than active tag queries. Recognizing that transmission on the tag-to-
reader channel is much weaker than that on the reader-to-tag channel, they propose protocols
in which tag-identifying information is concealed on the stronger channel. They also propose
privacy-preserving schemes for active attacks. One scheme involves the use of a hash function
to protect the key used for read-access to the tag. Another includes use of a pseudo-random
number generator to protect tag identities. In a nutshell, their idea is for the tag to output
the pair (r, PRNG(ID, r)), where r is a counter, ID is the secret tag identifier and PRNG
denotes a pseudo-random number generator. A verifier must perform an expensive brute-force
lookup in order to extract the ID from such an output. The authors note that this drawback
probably limits applicability of the idea to small systems. They also note that it is unclear how
and when adequate pseudo-random number generators can be deployed on inexpensive RFID
tags.

Juels, Rivest, and Szydlo [22] describe a privacy-protection tool they call a “blocker” tag.
This is an RFID tag that can obstruct reading of tag identifiers within a certain numerical
range by simulating the presence of RFID tags bearing all identifiers in that range. This is
accomplished through non-standard interaction with the “tree-walking” or ALOHA protocols
employed in current tag-reading standards [24, 34]. So as not to serve as a purely disruptive
mechanism, the blocker may be accompanied by a form of privacy “zoning,” according to
which only the reading of a certain subset of identifiers is disrupted. Thus, tag identifiers
may be “zoned” while in the possession of manufacturers and retailers such that their reading
may take place without impediment. Before tags are placed in the hands of consumers, their
“zoning” may be changed so that identifiers cannot be read in the presence of a “blocker,”
thereby enforcing the privacy of consumers. At the same time, the “blocker” concept offers more



flexible privacy options than tag disablement: By deactivating a “blocker” or removing it from
the vicinity of her tags, a consumer can still make use of tags. While a practical and attractive
proposal for businesses and consumers alike, the “blocker” tag has limited applicability. For
example, it does not address the problem of industrial espionage: In most portions of the
supply chain, it is impractical to block tags, because they must be readable for industrial use.
In contrast, the privacy protection of our proposal functions under general conditions, and
requires no special action on the part of the user. Our proposal has a slightly different aim
than the blocker, however: It permits reading of a tag by an authorized verifier, while the
blocker prohibits reading categorically within the limits of its policy.

A rather different, complementary perspective on privacy for RFID tags is that of Garfinkel
[14], who elaborates a policy for consumer privacy-protection in the form of a proposed “RFID
Bill of Rights.” Proposed there are: The right of the consumer to know what items possess
RFID tags and the right to have tags removed or deactivated upon purchase of these items, the
right of the consumer to access of the data associated with an RFID tag, the right to access of
services without mandatory use of RFID tags, and finally the right to know to when, where,
and why the data in RFID tags is used.

1.4 Organization

In section 2, we outline our security model for privacy and authentication in RFID tags (rel-
egating formal details to the appendices). We describe our scheme for RFID-tag privacy in
section 3. In section 4, we discuss practical deployment issues and introduce some reduced-
functionality variants of our scheme with potential for short-term, real-world application. We
conclude in section 5 with some discussion of future research directions. In appendix A, we
present our formal security model. We provide formal security definitions in appendix B, fol-
lowed by statements and proofs of concrete security bounds in appendix C. Finally, in ap-
pendix D we briefly discuss extensions of our protocols assuming the availability of on-board
pseudo-random number generation.

2 A Security Model for RFID Tags

Given the very basic functionality of RFID tags, it is natural to consider an adversary in an
RFID-tag system whose capabilities are quite limited. In most cryptographic security defini-
tions, as for IND-CCA security on public-key encryption schemes [4], an adversary is presumed
to be able to experiment extensively with elements of the system in the course of mounting
an attack. In particular, the adversary is regarded as capable of submitting a large number
of “oracle” queries, that is, exploratory inputs to the cryptographic operations composing the
system. (In asymptotic analyses, the number of such oracle queries is polynomially bounded
in the security parameters for the system; in concrete analyses, the bound on queries aims
to reflect the limits of current computing ability, and may be on the order of, say, 280 for
local computation. Smaller bounds, e.g., 230 may be imposed for practical modeling where
interaction with, e.g., an actual signing or decrypting party is involved.)

In modeling an RFID system, it is natural to treat both tags and tag-verifiers as oracles.
Given the limited computing ability of tags, however, a practical system cannot feasibly with-
stand an adversary that can submit a large number of arbitrarily ordered queries to all oracles



in the system. Moreover, a high degree of adversarial power would not accurately reflect the
physical characteristics of an RFID-tag system. Both readers and tags operate only at short
range, and tags may in many cases be highly mobile. Thus, the collection of “oracles” available
to an adversary at a given time is likely to be small in practice.

We seek to model the limitations on adversarial power in an RFID-tag system by the
following key assumption: An adversary may only interact with a given tag on a limited basis
before that tag is able in turn to interact in a protected manner with a valid verifier. We refer
to this protected interaction as a refresh. In particular, a refresh is a privacy and integrity-
protected session between a verifier and tag in which the verifier may update keying data in
the tag. A refresh models the use of a tag with a legitimate reader outside the range of the
adversary. In our security model, we impose two restrictions on adversarial interaction with
tags between refreshes:

Limited successive tag queries: We assume that an adversary may interact with targeted
RFID tags only a relatively small number of times in rapid succession prior to a refresh.
This restriction would follow naturally from use of the throttling mechanism that we propose.
Suppose, for example, that an RFID tag only permits reading once every several seconds. Given
that an RFID-tag typically has a read range of at most a few meters, a rogue reader would
have difficulty in harvesting more than, say, one or two pseudonyms from most passersby; tags
might easily store half-a-dozen or so pseudonyms, however.2 An attacker bringing a reader into
a monitored environment like a shop or warehouse might similarly face difficulties in attempting
prolonged intelligence gathering.

We rely on this assumption to help enforce privacy protection in our proposed protocol.

Limited interleaving: We assume a restriction on the ability of an adversary to mount
man-in-the-middle attacks between tags and legitimate readers. This assumption reflects the
following adversarial constraints in real-world scenarios:

– Stationary attacker: A sophisticated adversary has the potential to mount a full-blown man-
in-the-middle attack. Such an adversary might, for example, maintain a physical presence
in proximity to a legitimate reader and alter, eavesdrop on, or inject messages to and from
tags. There are two complementary impediments to such an attacker, one innate to many
RFID-tag environments, another part of our proposal in this paper:

1. Mobility of tags: In many cases, it is operationally inconvenient for an adversary to
interact for an extended period of time with tags in the vicinity of legitimate readers.
For example, if a reader were stationed so as to regulate physical access to a building
or to permit automated checkout at a supermarket, then the mobility of users (and
consequently of tags) would help ensure only a limited number of protocol flows for
attack by the adversary.

2. Throttling: Part of our proposal in this paper, throttling helps restrict the number of
successive adversarial queries. It may be thought of as a defensive measure exercised

2 Other throttling schemes are possible of course. For example, a tag might permit the reading of two
pseudonyms a few seconds apart (in case of an initial read failure), but restrict access to others for a number of
minutes. This would render attack even more difficult. Care is required to minimize the risk of denial-of-service
attacks. We do not explore the issue of delay scheduling in detail here.



by stationary or lightly mobile tags against a persistent attacker. (In a sense, throttling
boosts or simulates the natural security properties of mobile tags.) Moreover, in the
face of a passive attack, a reader can help implement its own throttling policy by, e.g.,
refusing to initiate sessions with a particular tag in rapid succession.3

– Mobile attacker: An attacker might scan RFID tags and then use harvested information
to interact with readers. Such an attacker, however, has only a limited ability to perform
a man-in-the-middle attack, since this requires shuttling back and forth between tags and
legitimate readers. (Indeed, our proposed scheme achieves secure authentication against an
attacker of this kind irrespective of the amount of interleaving.)

We rely on the assumption of limited interleaving to help enforce both privacy and authen-
tication properties in our proposed protocol.

We reiterate that our assumptions do not characterize the strongest possible type of adver-
sary. One can easily envisage a sophisticated adversary violating these assumptions to a greater
or lesser degree – particularly if targeting a single or small number of RFID tags or individu-
als. Our goal in this paper is to achieve good, practical security by defending against a broad,
real-world class of attacks. Viewed another way, we try to minimize security vulnerabilities in
this constrained environment, but do not expect to eliminate them.

Remark: Our model does not explicitly capture one important feature of RFID systems. While
tags may be feasibly read at only a short distance, it is possible to eavesdrop on readers from a
considerably larger distance, as they are powered broadcast devices. Thus, a passive attacker
can in principle harvest reader-to-tag data more easily than tag-to-reader data. Our model does
characterize this situation if it is assumed that an adversary eavesdrops only intermittently –
or, more realistically, that tags are read by different readers at different times, and therefore
not always near readers monitored by the adversary. More importantly, in the protocol we
propose here, an eavesdropper on reader-to-tag transmissions does not receive tag identifiers.
Therefore, such an eavesdropper has no way of determining which data correspond to which
tags.

3 Our Proposed Scheme

As explained above, our proposed protocol relies upon rotation by a tag through multiple
pseudonyms, which we denote by α1, α2, . . . , αk. These pseudonyms, however, do not themselves
serve as the sole means of authentication for tags. If a tag authenticated itself to a verifier merely
by releasing a key αi, then an adversary could clone a tag very simply as follows. The adversary
would query the target tag, obtaining αi; the adversary would then separately interact with
the verifier, using the key αi to simulate a valid tag. Indeed, this is precisely the type of cloning
attack to which standard RFID tags with static identifiers are vulnerable, e.g., current EPC
designs [34]. Any single-flow protocol is necessarily vulnerable to such an attack.
3 A more sophisticated adversary might make use of two communicating devices: One simulating a valid tag

near a reader, and another simulating a reader near a valid tag. This type of adversary can straightfor-
wardly perform a full man-in-the-middle attack on any type of RF system that does not involve explicit user
participation. Even a system employing sophisticated cryptography cannot defend against such an attack.



To prevent this type of attack in our protocol, a tag only authenticates to a verifier after
the verifier has itself authenticated to the tag. The verifier authenticates to a tag by releasing
a key βi; this key βi is unique to a given pseudonym αi. Once the verifier has authenticated to
the tag, the tag authenticates itself to the verifier by releasing an authentication key γi. Like
βi, this authentication key γi is unique to an identifier αi. Briefly stated, we propose a kind of
challenge-response protocol, but one that is carefully interwoven with pseudonym rotation.

In order to maintain the integrity of a tag over an extended period of time and in the
face of multiple probing attacks by an adversary, we take the approach in our protocol of
having the verifier update the {αi}, {βi}, and {γi} values in an RFID tag after successful
mutual authentication between tag and verifier. This introduces a new problem, however: An
adversary can eavesdrop on or tamper with the secrets used in this update process. Our strategy
for addressing this problem is to update values using one-time pads that have been transmitted
across multiple authentication protocols. Thus an adversary that only eavesdrops periodically
is unlikely to learn the updated {αi}, {βi}, and {γi} values.

Updating tag values in this way provides integrity protection as an important side-benefit.
An adversary without knowledge of the one-time pads used during a update cannot, for in-
stance, mount a swapping attack involving the substitution of keys from one compromised tag
into another tag.

3.1 One-time pads in our scheme

The one-time pad is, of course, a simple, classical form of encryption. (See, e.g., [28] for discus-
sion.) We briefly recall the underlying idea. If two parties share a secret one-time pad δ, namely
a random bitstring of length l, then one party may transmit an l-bit message M secretly to
the other via the ciphertext M ⊕ δ, where ⊕ denotes the XOR operation. It is well known that
this form of encryption provides information-theoretic secrecy.

In our scheme, the verifier transmits one-time padding data that the tag uses to update
its shared {αi}, {βi}, and {γi} values. Provided that an eavesdropper does not obtain the
padding data, she achieves no knowledge of the updated tag values. Although this procedure
does not explicitly involve encryption by means of one-time pads, it is essentially equivalent
to encryption. We may think of the pads as keys used to “encrypt” and thereby update the
{αi}, {βi}, and {γi} values.

Additionally, we introduce a special twist into our use of the one-time pad. Our scheme
involves composition of one-time pads across multiple verifier-tag sessions. This has the effect
of retaining secrecy in the face of partial adversarial eavesdropping (or tampering). Suppose,
for instance, that pads from two different verifier-tag sessions are XORed with a given tag
value κ in order to update it. Then even if the adversary intecepts the pad used in one session,
it may be seen that she will learn no information about the updated value of κ.

Application of a one-time pad requires only the lightweight computational process of XOR-
ing. Like encryption based on the one-time pad, updating tag values via one-time padding also
provides information-theoretic security. While this latter property renders security proofs for
our system somewhat simpler, it is not a motivation for our choice. Indeed, one-time padding
results in less communications efficiency than that achievable with standard cryptographic
encryption tools like block or stream ciphers. The problem, as we have already explained, is



that standard cryptographic primitives require more computational power than is available in
a low-cost RFID tag. This is the real motivation behind our use of one-time pads.

As explained above, we employ a strategy of updating tag values using pads from multiple
authentication sessions. Let κ be some value stored in a tag, i.e., κ ∈ {αi}

⋃
{βi}

⋃
{γi}. Let

m be a parameter governing the resistance of the protocol to adversarial eavesdropping (the
protocol analog of the value r in our security model in the appendix). For every value κ, we
maintain in the tag a vector ∆κ = {δ(1)

κ , δ
(2)
κ , . . . , δ

(m)
κ } of one-time pads. The pad δ

(1)
κ , which

we refer to as the live pad, is used to update the tag value κ. In particular, to update κ, the
tag computes κ← κ ⊕ δ

(1)
κ .

Prior to update of κ, the pads in ∆κ are updated with new padding material received
from the verifier. Let ∆̃κ = {δ̃(1)

κ , δ̃
(2)
κ , . . . , δ̃

(m)
κ } be a vector of newly generated one-time pads

received from the verifier in our protocol. The vector ∆κ is updated as follows. The live pad
δ
(1)
κ is discarded – as it has already been used to update κ. The indices of all other pads in ∆

are then shifted downward, i.e., in increasing index order, we set δ
(i)
κ = δ

(i+1)
κ for 1 ≤ i ≤ n−1.

We set δ
(m)
κ = 0l, i.e., we fill the last, missing element in the vector with a ‘0’ bitstring.

(Alternatively, it is possible to rotate the discarded, previously live pad to the last position in
the vector.4) Finally, we “overlay” the newly received vector ∆̃κ on the existing vector ∆κ, by
performing an element-wise XOR. That is, we let δ

(i)
κ = δ

(i)
κ ⊕ δ̃

(i)
κ .

As a result of these manipulations, the vector ∆κ consists of a set of m one-time pads with
decreasing levels of backward secrecy. After the completion of a session, the live pad δ

(1)
κ , for

instance, consists of the XOR of independent pads from the previous m successfully completed
sessions. At the other end of the spectrum, the value δ

(m)
κ is constituted of only a single pad,

namely the one just transmitted in the most recent session. This is why we update κ using the
strongest pad in ∆κ, namely the live one, and then strengthen and “promote” the other pads
in ∆κ by overlaying a vector of newly transmitted ones.

This approach provides information-theoretic security guarantees. In particular, an adver-
sary that has knowledge of only m − 1 of the last m pad-transmissions from the verifier has
no knowledge at all about δ

(1)
κ . Thus, when the live pad is employed to update κ, such an

adversary learns no information whatever about the new value of κ.
The drawback to this approach is that the transmission cost to maintain pads is lm bits

per session. In other words, the communications costs in our protocol are linear in the length
of individual tag values and in the number of consecutive authentication sessions relative to
which we wish to achieve security against the adversary. Given that there are 3k tag values,
this translates into a total cost of 3klm. This cost is less than ideal, but still permits a range
of practical parameterizations, as we discuss below in section 4.

We use the notation update(∆κ, ∆̃κ) to denote the function that updates ∆κ and “overlays”
it with ∆̃κ. We let pad(κ, ∆κ) denote the update of κ using the live pad δ

(1)
κ – again, the one

with the strongest backward security. For brevity of notation, we let ABC denote the set of
values {αi}

⋃
{βi}

⋃
{γi}. We let ∆ABC denote padding vectors for all values κ in the set

ABC.

4 This option is probably easier to implement. It also has the (slight) advantage of not causing a newly initialized
tag to discard one of its original, secret values.



3.2 The protocol

As above, let k be a parameter denoting the number of pseudonyms stored in a given tag and
let m denote the number of authentication sessions over which one-time pads are constructed;
in other words, the higher the value of m, the stronger the eavesdropping-resistance of the
system. For visual clarity in our protocol figure, we omit variable ranges and tag subscripts
on variables for keys. The variables i and j, however, always span the ranges {1, 2, . . . , k} and
{1, 2, . . . , m} respectively. We use ∈R here and elsewhere to denote uniform random selection.
In case of a message-delivery failure, we assume the input of a special symbol ⊥ (leading to
protocol termination). We assume initialization of all entities by a trusted party, who generates
a key set ABC for every tag and distributes this to both the tag and the verifier. All counters
are initialized at 0. Details of our protocol are provided in Figure 1.

Tag Verifier

d← (c mod k) + 1
c← c + 1

α′ ← αd
α′
−→ if α′ is valid αi for some tag Tx then

tag ← x
β′ ← βi

γ ← γi

mark αi as invalid for Tx

else
output(“reject”) and abort

β′
←−

if β′ 6= βd then
output(“reject”) and abort

γ′ ← γd
γ′
−→

if γ′ 6= γ or γ′ =⊥ then
output(“reject”) and abort

∆̃ABC ∈R {{0, 1}l}3km

∆̃ABC←−
output(tag, “accept”)

{update(∆κ, ∆̃κ)}κ∈ABC {update(∆κ, ∆̃κ)}κ∈ABC

{κ← pad(κ,∆κ)}κ∈ABC {κ← pad(κ,∆κ)}κ∈ABC

Fig. 1. Full RFID-tag authentication protocol

Remarks: We assume no collisions among tag identifiers here – a property that can be enforced
during tag initialization and updates with only a very slight skew from a uniform random
distribution over identifiers.

Due to space limitations, we are forced to relegate formal security definitions and proofs for
our proposed protocol to the paper appendices.



4 Practical Deployment

4.1 Pruning our scheme

The full-blown scheme we have proposed is practical for very low-cost tags only with the
use of small security parameters. There are a number of strategies, however, for reducing the
functionality of scheme while still retaining important properties.

To begin with, in real-world deployments, the moderate security afforded by relatively short
keys {βi} and perhaps also short {γi} keys would be acceptable in many cases. For example,
if βi and γi keys are a mere twenty bits each, then an adversary would have roughly a one-
in-a-million chance of defeating the authentication protocol in a single try. Tag pseudonyms,
i.e., the {αi} keys, must be considerably longer to permit unique identification of tags and to
avoid pseudonym collisions. We believe that 100-bit α values would suffice for this purpose in
most environments. (It should be noted, however, that if a pseudonym collision occurs in the
naming of a new tag, then different pseudonyms may be selected by the verifier. Such a naming
strategy would probably permit a reduction in the lengths of αi tags to around 80 bits.) In
any event, large values of m or k are unlikely to be practical. Indeed, m = 0 (no updates via
refresh) or 1 and k = 4 or 5 might be a reasonable choice for a real-world system.

A range of truncated versions of the protocol itself is also interesting. One example is a
scheme that excludes the fourth flow from our protocol. In other words, the ABC values in the
tag may remain the same throughout its lifetime. A much reduced variant might involve only
the first flow in our protocol. This would mean that a tag merely cycles through a static set
of pseudonyms, preferably with the benefit of throttling. This approach offers better privacy
assurances than a system using static identifiers, but does not protect against cloning. (Such a
degenerate case of our protocol also does not meet our security definitions unless the process
of tag refresh in our model is replaced with elimination of a tag from the system.) Simple
approaches like this might be especially attractive as a low-cost way of realizing privacy pro-
tection for RFID-enabled banknotes, weaker in some respects but involving much less overhead
than the scheme proposed in [21]. Another, similarly useful truncation is one in which multiple
identifiers {αi} are stored in a tag, but only a single key β and single key γ for common use
with all identifiers.

These and kindred approaches have the advantage of backward compatibility with existing
RFID systems employing just a static identifier or challenge-response. In other words, a reader
does not have to have awareness of the fact than an identifier is in fact a pseudonym: Only
the verifying application on the back-end needs to. Such systems would merely have to include
some application-level support for linkage of pseudonyms, but would not necessarily require
any software or firmware adjustments at the level of the reader.

Another interesting, restricted case is that involving just one identifier, but with the
challenge-response and pseudonym replacement protocols intact. This limited variant would
be useful for cases in which consumers are borrowing RFID-tagged books from libraries or
renting RFID-tagged videos. Use of a single pseudonym like this would not prevent physical
tracking. But authenticated rotation of the pseudonym would help prevent the bigger problem
of passersby being scanned to determine what books or videos they are carrying. Given plans
by the San Francisco public library to implant RFID tags in books, and the resistance of civil



libertarians in reaction to the USA Patriot Act [31], this seems like a potentially attractive
solution.

4.2 Systems integration

As deployed by EPCglobal, RFID tags will carry what is known as “electronic product codes”
or EPCs [34]. In addition to information about the product type, manufacturer, and so forth,
EPCs will include unique item identifiers. These could be replaced with pseudonyms so as to
support our proposed protocols. This would have the effect of providing privacy at the level
of unique identifiers, and would therefore be useful in protecting against corporate espionage.
(The approach would also be compatible with existing standards inasmuch as it would involve
an extension to such standards, rather than a modification.) This would not solve problems
of privacy invasion due to, e.g., identification of the types of objects carried by individual
consumers. It may be worth instantiating pseudonyms into other fields as well, e.g., item type
– or indeed into all fields other than those required for directing database lookups. This problem
requires further study.

Although we consider only a single, centralized verifier in our model, it is easy to see that
multiple verifiers – like multiple EPC systems – can co-exist side-by-side without real detriment
to the privacy and authentication properties. Thus, for example, Shop X and Shop Y can each
issue their own tags. Without explicit cooperation, neither will be able to track or otherwise
interact with the tags of the other. Shop X will fail to recognize the pseudonyms in the tags
generated by Shop Y, and may simply ignore them (and vice versa).

It is important to note that the verifier for our protocol need not store any data for a given
tag Tx apart from its static identifier idx and a counter value on the number of successful
authentications for the tag. The αi values for Tx may be obtained, for example, by encrypting
Tx ‖ zx under a universal symmetric key Kα for the verifier, where zx is a counter value on
the number of pseudonyms issued for the tag Tx. When the verifier receives a pseudonym, it
may decrypt it using Kα to obtain the corresponding static identifier. The βi and γi keys may
be similarly derived. For example, the verifier might compute βi and γi as the encryption of
αi under universal secret keys Kβ and Kγ respectively.

We offer one important caveat on our proposed protocol. The use of multiple flows, as we
have pointed out, is essential to forestall cloning attacks. It is very likely, however, to diminish
the effectiveness with which RFID tags may be read. It is not immediately clear how much
of this performance degradation would occur, but we point out the existence of practical,
moderate-cost RFID tags that already perform challenge-response protocols, such as those
available from Texas Instruments and employed in the popular ExxonMobil Speedpass system
[39,44].

4.3 Denial-of-service and service failures

When an identifier αi for a given tag is submitted in a protocol session, it is subsequently
treated as invalid for the tag (except in the unlikely case that it recurs in a later refresh).
This feature of the protocol is essential for preventing cloning: Once an attacker harvests the
corresponding βi and γi values for a tag, they are no longer valid for future sessions. Thus the
attacker cannot use these values to clone the tag.



On the other hand, invalidation of αi values opens up the possibility of a denial-of-service
attack. An attacker that is able to harvest and submit all such values for a given tag to the
verifier may render the tag inoperable. This is where our use of multiple pseudonyms is valuable,
in that it increases the difficulty for an attacker in harvesting and maliciously submitting valid
αi values.

Another avenue for denial-of-service attacks arises from the refresh procedure. By tampering
with data in the fourth flow of our protocol, an adversary can render a tag incapable of
authenticating successfully, and thereby disable it. We do not consider this issue of active (and
relatively sophisticated) denial-of-service attacks here. That is because there are more simple
and effective physical means of achieving comparable denial-of-service attacks. An adversary
with an electromagnetic weapon, for example, need not resort to cryptographic machinations
in order to disable tags.

The reason why we propose loop-around in the rotation through pseudonyms in our protocol
is to prevent failures resulting from benign reading of tags. It is to be expected that in normal
use, tags will often be scanned by readers that are not associated with their designated verifier.
(E.g., as it scans tags on its premises, Shop Y will inadvertently read tags of patrons carrying
objects from Shop X.) Without indefinitely permissible rotation through pseudonyms, such
benign scanning might cause a tag to exhaust its set of valid pseudonyms.

Finally, we note that because RFID tags are likely to undergo a great deal of wear and tear
in the course of ordinary use, some of them are likely to fail in the field. Any RFID system
must be equipped to handle such failures. Thus, denial-of-service attacks on small sets of tags
are unlikely to pose a serious problem (and may not even be noticeable as such).

4.4 Variant schemes for pseudonym changes

In our main proposal above, a tag switches to a new pseudonym every time it is queried by
a reader. There are a number of useful variant ideas for determining tag rotation through
pseudonyms. We briefly consider three here:

1. Per-scan pseudonym specification: In this proposal, the reader specifies at the begin-
ning of the scanning protocol an index i specifying which pseudonym αi it would like the
tag to emit. This obviously provides little protection against an active adversary, i.e., one
that aims to gather information by surreptitiously scanning tags. It offers good protection
against passive adversaries, however, as we explain. It also has the advantage of eliminating
the need for tags to maintain state, e.g., a counter indicating which pseudonym to transmit.
As mentioned above, the broadcast range of the reader in an RFID system is considerably
greater than that of a tag – on the order of hundreds of meters, rather than several meters.
Moreover, in the tree-walking singulation protocol, the reader transmission completely re-
veals tag identifiers. (ALOHA protocols typically reveal less information.) As a result, an
attacker does not have to scan tags surreptitously to learn their identifiers. Instead, she may
passively eavesdrop on a reader at a distance. This is an attractive avenue for corporate
espionage, and thus a critical security risk.
Per-scan pseudonym specification provides a defense against such passive eavesdropping.
Let us consider a simple example in which tags contain two pseudonyms and in which
challenge-response is not employed. Consider an adversary that eavesdrops on the RFID



readers at Warehouse A and Retailer B. Suppose the aim of the adversary is to learn whether
there is a flow of items from A to B (and also, ideally, how large a flow). If Warehouse A’s
readers always direct tags to emit pseudonym α1 and Retailer B’s readers always direct
tags to emit pseudonym α2, then the eavesdropper cannot tell whether tags originating at
A are in fact scanned at B, and will fail in her goal.
In fact, in this and related scenarios, per-scan pseudonym specification can provide stronger
guarantees than simple pseudonym rotation. Suppose that tags do not include pseudonym
refresh capability (as rewritable memory is expensive), but otherwise rotate through a small,
static set of pseudonyms as in our initial proposal. If Warehouse A scans tags frequently,
then the adversary may be able to harvest all tag pseudonyms α1, α2, . . . , αk. The adversary
may not be able to link pseudonyms, i.e., may not be able to determine which pseudonyms
reside on the same tag. The adversary will, however, be able to determine whether tags are
shipped from A to B, as it will be able to recognize identifiers originating from A.
It is possible to treat the full concatenated set of pseudonyms α = α1 ‖ α2 ‖ . . . ‖ αk

as a single, long identifier. Per-scan pseudonym specification, in this view, simply involves
selective reading of portions of a tag identifier. In this view, one can see how to perform
per-scan pseudonym specification in a manner that is backward compatible with existing
tree-walking singulation protocols. Suppose we express α for a given tag as a concatenated
pair of l-bit pseudonyms, i.e., α = α1 ‖ α2. To return to our example above, Warehouse A
might extract identifier α1 from tags by executing the tree-walking protocol so as to traverse
only half the depth of the corresponding identifier tree, i.e., down to depth l. Retailer B
might extact identifier α2 by singulating on only the lower half of the tree, i.e., at depth
greater than l. Singulation on the lower half of the tree is supported in Auto-ID standards,
e.g., [25], by the availability of a pointer to specify a starting position in identifiers where
commands involve string matching. (A number of variants are possible in which, α1 and
α2, for example, overlap slightly, resulting in slight leakage of linkage data, in which α1 and
α2 represent tag data other than identifiers, etc.)

2. Reader setting of pseudonym counters: As a twist on our first idea, rather than spec-
ifying the pseudonym to be emitted by a tag, a reader might explicitly set the pseudonym
counter in a tag. As a variant on our two-pseudonym example above, for instance, tags
might contain a single, write-once bit b, which is set to b = 0 by default. When b = 0, the
tag emits pseudonym α1. When b = 1, the tag emits pseudonym α2. To enforce privacy
against a passive eavesdropper, then, Warehouse A may simply set b = 1 on the tags of
items it is about to ship. The consequence will be that A reads α1, while B reads α2 for
any given tag.
One small advantage of this approach over per-scan pseudonym specification is that it
eliminates the need for A and B to coordinate the determination of which pseudonyms they
will read. This may be particularly useful in cases where tags have multiple pseudonyms
that are read by multiple entities. Of course, b may be a full-blown counter, and may be
re-writeable, rather than just write-once.

3. Time-elapsed pseudonym changes: Another possibility is to incorporate timing infor-
mation into the determination of when to change pseudonyms. For example, a tag may
increment its counter only if a certain minimum amount of time has elapsed since the
previous reading has taken place. (This timing may be inexpensively enforced using the
same hardware mechanisms as pseudonym throttling.) Suppose that Warehouse A scans



items frequently on its premises, but items are not scanned for some time while in tran-
sit. Timing-based pseudonym changes will ensure that Warehouse A always sees the same
pseudonym for a given tag. The tag counter will be incremented, however, when the tag is
scanned by Retailer B, with the result that Retailer B sees a new pseudonym.
This approach has the same advantage as per-scan pseudonym specification of not requiring
tag state (apart from the simple and cheap hardware required to perform the timing). At
the same time, it has the advantageous feature, like reader setting of counters, of not requir-
ing coordination by entities of which pseudonyms they will scan, as pseudonym changes are
automatically executed by the tag. Indeed, for this reason, timing approaches to pseudonym
changes provide a useful defense against active, and not just passive adversaries. Addition-
ally, timing information may be combined with information about the number of times
a tag has been scanned in order to create relatively sophisticated policies governing the
changing of pseudonyms. For example, a tag might implement a policy like the following:
On either being scanned ten times or not having been scanned in the past hour, the tag
rotates to its next pseudonym; otherwise it continues to emit the same pseudonym.

5 Conclusion: Further Research

Our investigation here has proceeded under the assumption that even standard symmetric-key
cryptographic algorithms lie beyond the computational reach of RFID tags. Such algorithms
still deserve investigation along the lines of [45]. We may, after all, anticipate greater future
capabilities in RFID tags, as well as a broadening of the varieties and pervasiveness of compu-
tational devices in everyday surroundings.

One hardware-related problem is that of distributing pseudonyms efficiently to both tags
and software applications. Pseudonyms might be determined at the time of manufacture, but
it might also be convenient to make a master key for the pseudonyms of a particular tag
readable via an optically or physically enabled channel, by analogy with [21,40]. This would
make registration and transfer of ownership more fluid. A comprehensive perspective on key
management is thus important in RFID-tag system development.

Finally, security modeling is another line of research that deserves further attention. We
feel that the model proposed here captures a range of the special characteristics of RFID-tag
environments in an effective way. This model can no doubt benefit from refinement, however,
particularly as real-world experience with RFID-tag systems evolves, and as it becomes pos-
sible to draw on analogous experience and results from the field of ad-hoc networking. The
centralized verifier model that we work with in this paper, for instance, is valuable as a first
step toward RFID-system characterization. Further development and understanding of RFID
systems will certainly yield other useful models involving varying degrees and forms of decen-
tralization.
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A Formal Security Model

We describe here the formal model underlying our security definitions. We first lay out a broad
but not fully specified description, and then fill in missing details in section A.1.

We consider a single, centralized verifier, denoted by V , and a set of n tags, denoted by
T1, T2, . . . , Tn. All entities possess state. V communicates with tags by means of an authenti-
cation protocol AP that comprises a fixed number of flows. For convenient notation, tags are
presumed to initiate the protocol. (Indeed, readers or verifiers may indeed be thought of as
always transmitting, with actual protocol initiation exercized by tags.)

In our security model, we let V and Tx denote oracles for V and Tx respectively. While
tag oracles engage in sessions sequentially, V may maintain an arbitrary number of concurrent
sessions. Let j be a unique session identifier; in practice, j might correspond to a session
identifier determined by the verifier; it need not be explicitly employed in protocol flows, and



is primarily useful here for modeling. An oracle query of the form V(j, f low, ·) denotes a query
to be input to V (in general the output of some tag oracle Tx); here, flow indicates the protocol-
flow number in AP to which the message corresponds, while · represents a protocol message.
Similarly, an oracle query Tx(j, f low, ·) represents input to Tx (output by V) , with values
analogously defined. Any query representing an out-of-order flow is ignored by the receiving
oracle.

On conclusion of a session, the oracle V outputs either (ID, “accept”, j) to indicate suc-
cessful authentication of a tag carrying identifier ID in session j, or else outputs (“reject”, j)
to indicate a failed authentication attempt in session j. Similarly, the tag may be viewed for
purposes of security modeling as outputting either (“reject”, j) or (“accept”, j). (In practice,
a tag does not output messages of this kind.)

We assume a global initialization phase in which a trusted party – e.g., V – may set all
oracle states privately, i.e., without adversarial eavesdropping. In practice, this represents the
programming of devices by manufacturers or system administrators.

A session between V and a given tag Tx may be (prematurely) terminated in our model. In
this case, a special query ⊥(j) may be input to either V and Tx; V and Tx are assumed on such
input to abort the session immediately. (A terminated session models a break in contact, i.e., a
message-delivery failure between a tag and verifier in the real world.) A refresh in our model is
formally defined as a complete, integrity and privacy-protected invocation of the authentication
protocol AP between V and some tag oracle Tx.

We denote the adversary in our model by A. The adversary may submit oracle queries in
an arbitary order and may initiate concurrent protocol sessions, but we assume for simplicity
that A may not make multiple simultaneous oracle queries. In addition to oracle queries, the
adversary may cause any tag to initiate a new session, via an initalization query; in this case
the tag terminates any previously active session and outputs a first flow for the new one.

Two security parameters, q and r, govern adversarial and oracle interaction as follows.
After A has submitted q initialization queries to an oracle Tx, for a security parameter q, the
oracle Tx terminates any existing session and engages in a refresh with V (which we assume
is completed instantaneously). Thus, the parameter q effectively determines the rate at which
an adversary may be presumed to query tags in immediate succession. (Note that if there are
more than q pseudonyms contained in tag memory, then the tag is presumed not to have to
reuse pseudonyms in our model.)

The security parameter r represents a cap on the interleaving of tag and verifier queries
by the adversary, i.e., the ability of the adversary to mount man-in-the-middle attacks. In
particular, for each Tx, we may view a counter as being maintained that records the number of
queries have been sent to Tx and V in alternation. This counter is never incremented more than
r times prior to a refresh. In particular, if this counter has been incremented by r subsequent
to the last system initialization or the last refresh with V , then any active session for Tx
is terminated and a refresh performed between Tx and V . Note that although refreshes are
assumed to be integrity and privacy protected, they may nonetheless result in an authentication
failure if the adversary has tampered with previous communications between the tag and
verifier, and thereby corrupted the keys they use during the refresh process.

It is useful to observe that if r is greater than the number of flows in the protocol AP ,
then the adversary is capable of simulating the ability to eavesdrop and actively tamper with



at least one full session in AP entirely as desired. Thus, our security definitions are capable
of capturing a broad range of natural and powerful adversarial behaviors. We let T [q,r]

x denote
a tag oracle with the described query parameters. We let s in our experiments denote the
total number of adversarial queries to all oracles. Excluding refreshes, in all cases in these
experiments A is responsible for delivering all messages. In other words, the adversary actually
is the communications medium. This is similarly the case in standard cryptographic models
for key exchange, e.g., [3, 5, 38].

What is rather different about our security model is the nature of the security parameters
q and r. In standard cryptographic security definitions, the probability of adversarial success
is typically expressed as a function of the security parameters; in our model here, the security
parameters determine a system reaction to adversarial queries.

A.1 Further details

We now provide a more succinct and precise specification of our security model. We let the
symbol · here denote a protocol-specific value that lies outside the model. The session identifiers
used throughout are for notational convenience, and need not figure directly in an actual
protocol. A global value counter J , initially set to 0, records the total number of initiated
sessions.

Recall that q and r are oracle parameters denoting the number of successive tag queries
and tag / verifier interleavings permitted to an adversary prior to invocation of a refresh.
Recall that s is the total number of adversarial queries to all oracles. The value l is a security
parameter governing key lengths in the system. The variable n denotes the number of tag
oracles in the system. The values k and m parameters specific to our proposed protocol: k
is the number of pseudonyms in a tag, while m is the number of one-time pads used for key
updates (corresponding to the level of backward secrecy).

A tag oracle Tx in our model maintains state (jx, fx, χx), denoting a session identifier, flow
identifier, and input-query count respectively for the tag. The notation fx =` here indicates
that no session is currently active.
Tx takes as input three possible queries:

– init: This query initializes a new session and terminates any previously active one. If fx 6=`
(there is a session in progress), then Tx outputs (“reject”, jx). Otherwise, J ← J + 1, and
Tx sets jx ← J , fx ← 1, and χx ← χx + 1. Tx then outputs V(jx, 1, ·).

– Tx′(j ′, f ′, ·): This query represents a protocol input. If j ′ 6= jx or x′ 6= x or f ′ 6= fx + 1,
then the query is ignored. Otherwise, Tx sets fx ← fx + 2 and yields one of three possible
outputs: V(jx, fx, ·) or (“reject”, jx) or (“accept”, jx). In the latter two cases Tx sets fx ←`.

– ⊥(j): This symbol denotes (premature) termination of session j. If j = jx, then Tx sets
fx ←`.

V maintains a counter gj of the current protocol flow for session j (in addition to any other
session state); we assume gj = 0 for all j at initialization. The oracle V takes as input three
basic forms of query:

– V(j ′, 1, ·): This query represents a session initialization by a tag. If gj′ 6= 0, then the query
is ignored. Otherwise, V sets gj′ ← 1.



– V(j ′, g′, ·) for g′ > 1: If j ′ > J or g′ 6= gj′ + 1 then the query is ignored. Otherwise V sets
gj ← gj + 2 and yields one of three possible outputs: Tx(j, gj′, ·) for some x or (“reject”, j ′)
or (ID, “accept”, j ′) for some identifier ID. In the latter two cases V sets gj′ ←`.

– ⊥(j): This symbol denotes (premature) termination of session j. If j ≤ J , then V sets
gj ←`.

For each tag Tx, a global counter ρx is maintained. The counter records the number of
interleaved queries sent to Tx and V . In particular, if Tx receives a query and ρx was last
incremented in response to a query to V , then ρx is incremented. Likewise, if V receives a
query and ρx was last incremented in response to a query to Tx, then ρx is incremented. If
ρx = r, or χx = q then a refresh is invoked between Tx and V . This may be viewed as a global
command of the following form:

– refresh(x): A full, privacy-protected protocol invocation is performed. The query init is sent
to Tx. All queries generated by Tx and all queries generated by V of the form Tx(j, ·, ·) are
then faithfully delivered via a private channel until counters fx =` and gj =`, i.e., until
both Tx and V have reached an “accept” or “reject” state. The counters ρx and χx are set
to 0. The adversary remains inactive during a refresh.

As explained above, the adversary A in our model may submit queries to any oracles
in an arbitrary order and may invoke refresh at any time. We assume a temporal ordering
on queries, i.e., A may not make simultaneous queries. All oracle outputs are passed to the
adversary, rather than to another oracle. In consequence, A can modify, withhold, reorder, or
replay messages at will. In other words, refreshes aside, the adversary has complete control of
the communications medium among oracles.

B Security Definitions

Authentication security: Our definition of authentication security for protocol AP charac-
terizes the ability of A to clone valid-looking tags in an RFID system. We define security here
in terms of an experiment Expauth in which A interacts with the verifier and with tags for an
arbitrary period of time determined by A, but with a total number of oracle queries bounded
by a parameter s. In this initial “test” phase, the adversary may interact with all oracles, with
refreshes taking place according to the security parameters q and r. On the conclusion of the
“test” phase, all sessions are terminated, and A interacts with V in a new session. In this
subsequent “cloning” phase, during which the adversary has no oracle access to tags, the goal
of A is to cause V to accept. Acceptance in the “cloning” phase denotes a successfully mounted
adversarial attack against the authentication protocol. In particular, a successful adversary is
capable of creating a freestanding tag that can cause the verifier to accept at least once. Let l
be a security parameter governing protocol key lengths. Formally, then:

Experiment Expauth
A (AP ); [q, r, s, l, n]

initialize {Tx}ni=x and V ;
while state = “test”

state ← A{access to all oracles {Tx[q,r]}n
x=1 and V}(“test”);



A(“clone”) queries V until V yields some output γ;
if γ = (ID, “accept”, j) for any ID then

output ‘1’;
else

output ‘0’;

Our concrete definition of authentication security is given by the expression:
Advauth

A (AP ); [q, r, s, l, n] = pr[Expauth
A (AP ); [q, r, s, l, n] = ‘1’].

Remark: According to our definition, a system may in fact provide strong authentication
security and yet still permit the adversary to spoof the verifier into accepting adversarial
authentication requests during the “test” phase of the experiment Expauth. This models the
ability of an adversary to mount a strong attack prior to attempting to clone a tag.

Privacy: The privacy of AP may be defined by an experiment Exppriv involving the same
pattern of oracle accesses on the part of A as in our experiment Expauth. There is in fact
a strong interrelationship between authentication and privacy in AP . This is reflected in the
following observation. If verifier interaction with tags is unauthenticated, and AP supports
verifier updates of pseudonyms, then A can pose as the verifier and update pseudonyms as
desired. In this case, A can violate any natural privacy definition, as it knows the pseudonyms
of tags. Attacks of this kind are captured by our characterization of privacy in the following
definition.

Briefly stated, the experiment is as follows: The adversary interacts as desired with all
system elements during the initial “test” phase. All active sessions are then terminated. During
the subsequent portion of the experiment, the adversary attempts to break the privacy of the
underlying protocol. The adversary chooses a pair of target tag oracles, which it specifies
according to their identifiers. The selected tag oracles are presented to the adversary in a
random order. The task of the adversary is to determine this order with probability significantly
better than a random guess.

Experiment Exppriv
A (AP ); [q, r, s, l, n]

initialize {Tx}nx=1 and V ;
while state = “test”

state ← A{access to all oracles {Tx[q,r]}n
x=1 and V}(“test”);

(τ0, τ1)← A(“select target tags”);
b ∈U {0, 1};
b′ ← A{access to oracles T [q,r]

τb
,T [q,r]

τ1−b
}(“guess tag”);

if b = b′ and τ0, τ1 ∈ {1, 2, . . . , n} then
output ‘1’;

else
output ‘0’;

Our concrete characterization of the privacy level of AP is given by the expression:
Advpriv

A (AP ); [q, r, s, l, n] = | pr[Exppriv
A (AP ); [q, r, s, l, n] = ‘1’]− 1/2 |. (We subtract 1/2 here

as the adversary can trivially guess bit b successfully with probability 1/2.)



C Security Analysis

We are now ready to give concrete bounds on Advauth
A (AP ) and Advpriv

A (AP ). As we see, the
security of our system depends most critically on the key-length parameter l. This parameter
determines the probability with which an adversary may guess unknown keys in the system.
The number of tags in the system n and the number of valid tag identifiers k play lesser
but similar roles in system security, as they determine the density of the overall space of tag
identifiers. The bounds we present here are good, but not tight. To simplify our proofs, we
assume that successful guessing of any key by the adversary results in defeat of the security
properties of our protocol. This is not of course always the case; for example, the adversary
may successfully guess an identifier αi but still be unable to falsify a successful authentication
for lack of knowledge of the corresponding key γi. Thus, it is possible that the bounds we prove
may be tightened somewhat. Our aim is to prove the following two theorems.

Theorem 1. Suppose that m > br/2c. Then for any parameter set q, r, s, l, n, we have Advauth
A (AP ); [q, r, s, l, n]

skn
2l .

Theorem 2. Suppose that m > br/2c and k > q. For any parameter set q, r, s, l, n such that
n ≥ 2, we have Advpriv

A (AP ); [q, r, s, l, n]≤ skn
2l .

For the proofs of these two theorems, we begin by defining a special adversary A∗ with
restricted capabilities. This adversary must deliver all tag-to-verifier and verifier-to-tag mes-
sages faithfully, that is, to the correct recipient and without any modification. A∗ must deliver
messages corresponding to a specific tag in their correct order. A∗ may, however, substitute the
termination message ⊥(j) for a given message of the form Tx(j, ·, ·) or V(j, ·, ·) in session j, i.e.,
A∗ may indicate a refusal to deliver the correct message. Like A, the adversary A∗ may cause
a tag to initiate a session, i.e., yield a first-flow output at any time that the tag is not already
engaged in an active session. Thus, A∗ may be regarded essentially as an honest-but-curious
adversary with the added ability to cause explicitly designated delivery failures. Our proof
strategy is to show that a real-world adversary A can effectively do little more than the special
adversary A∗.

Recall that we assume a temporal ordering on oracle queries (and thus on oracle outputs).
Thus the full behavior of A∗ in our model may be specified by a transcript σ∗ consisting of a se-
quence of triples {M∗

1 , M∗
2 , . . . , M∗

u} of the following form: M∗
v = (type ∈ {query, output}, ID ∈

{Tx}nx=1

⋃
{V}, msg). Here type specifies whether the message msg is an oracle query or ora-

cle output, while ID specifies the oracle from which the message originates or to which it is
transmitted.5

A transcript σ for A assumes essentially the same form, except that a “query” transcript
entry assumes the form Mv = (query, ID, msg, status), where status is a bit indicating whether
or not the query is accepted by the oracle ID. We regard a query as accepted if it does not
result in the oracle outputting a “reject”.

We say that a transcript σ∗ for A∗ is a simulation of transcript σ for A if the following
process renders the two transcripts identical:

5 Note that ID is the identity of the oracle to which the message was actually delivered. While msg carries an
oracle identifier, A may choose to misdeliver msg.



1. Every (rejected) transcript entry Mv = (query, ID, msg, 0) in σ is replaced with M∗
v =

(query, ID,⊥(j)), where j is the session identifier in msg. This is because a rejected query
may be simulated by A∗ in the form of a termination message, i.e., a termination message
induces the same state in oracles as the rejected query.

2. Every transcript entry Mv = (query, ID, msg, 1) in σ is replaced with M∗
v = (query, ID, msg).

The ‘1’ – indicating query acceptance – is simply removed to harmonize notation.
3. Every transcript entry Mv = (query, ID, msg, 1) or M∗

v = (query, ID, msg) where msg =
(·, 4, ·) is replaced with the symbol ‘*’. Since fourth-flow messages are key updates, and
never rejected in our proposed protocol, they may always be successfully tampered with by
A in a real protocol execution. Thus we do not treat them as simulable by A∗, and remove
them from transcripts.

Our first lemma aims to show that with high probability in either experiment Expauth

or Exppriv, an arbitrary adversary A can only produce a transcript that is simulable by A∗.
Briefly stated, we show that for an adversary A to deliver an invalid message in any of the first
three flows such that the message is accepted, A must effectively guess a protocol key. Thanks
to the use of one-time pads, these keys are randomly distributed in the view of the adversary.
Hence the probability that the adversary can guess a key successfully is small. Since a query
by A consisting of an incorrectly guessed key can be simulated by a termination message ⊥(j)
in a transcript generated by A∗, we conclude that A∗ can simulate a transcript for A.

Lemma 1. Suppose that m > br/2c. For any such parameter set q, r, s, l, n, the following
holds for our proposed protocol AP . Let σ be a transcript generated by A in experiment
ExpE

A(AP ); [q, r, s, l, n] for E ∈ {auth, priv}. The probability over coin-flips of V that σ is
not simulable by A∗ in experiment ExpE

A∗(AP ); [q, r, s, l, n] is bounded above by skn
2l .

Proof: Let σv = {M1, M2, . . . , Mv} define a partial transcript produced by A. We prove the
lemma by induction over v, with the inductive assumption that σv is simulable. (This is clearly
true for v = 0.) We consider the probability that A is capable of generating a transcript entry
Mv+1 such that σv+1 = {M1, M2, . . . , Mv+1} is non-simulable.

An entry of the form Mv+1 = (·, ·, ·, 0) is always simulable by some termination message
⊥ (j); similarly an entry of the form Mv+1 = (output, ·, ·, ·) is always simulable under the
inductive assumption: As Mv is simulable, it induces a valid oracle output that corresponds
to Mv+1. Thus we may assume that Mv+1 = (query, ID, msg, 1) for some session identifier j,
oracle ID, and message msg.

Case 1 : Suppose that msg = V(j, 1, α), i.e., represents the first-flow output of a tag in
response to the init command. Since we assume that the associated query is accepted, α must
be a currently valid identifier for some tag Tx. If α was emitted as output by Tx, then it must
already have been delivered to V as a query; otherwise Mv+1 would not be simulable. On the
other hand, α could not have been delivered since the last refresh by V of {αi} values for tag
Tx; if it had been, then α would have been marked as invalid.

Let us consider a given valid identifier α′ for Tx. W.l.o.g., let us assume that the initialization
procedure for tags in our experiments is immediately followed by m refreshes for each tag (as
this does change the initial distribution over keys), i.e., we represent α as the composition of
a collection of one-time pads. Let us also assume that a newly initialized tag does not discard



the live pad on its first update.6 Then it must be the case that α′ = ∆′
1⊕∆′

2⊕ . . .⊕∆′
m for a

sequence of one-time pads successively selected uniformly and independently at random by V
for Tx.

We will now prove by contradiction that at least one of these one-time pads, ∆′
z , must

have been transmitted to Tx during the course of a refresh. Suppose not. Then V must have
computed all of these one-time pads in response to some accepted third-flow query V(j, 3, γ) for
Tx in our protocol AP . All of these queries must, under our inductive assumption, have been
faithfully transmitted outputs of Tx. Each such query is therefore accompanied by at least two
interleaved protocol flows between V and Tx, i.e., is part of an invocation of AP that results
in ρx being incremented by 2. Thus ρx ≥ 2m. Since m > br/2c, it follows that ρx > r. This,
however, is a contradiction, as ρx = r results in the invocation of a refresh. Hence, for at least
one ∆′

z of the one-time pads composing α, it must be that ∆′
z was transmitted to Tx during a

refresh.
Since ∆′

z is selected by V uniformly at random and assumed to be transmitted to Tx over
a private, integrity-protected channel, it follows that α′ is distributed uniformly at random in
the view of A. Thus the probability that A can compute Mv+1 for msg = V(j, 1, α) is at most
the probability that A can guess one of the currently valid identifiers for the full family of tags
{Tx}nx=1. Since each tag has at most k valid identifiers at a given time, the success probability
of A for Case 1 may be straightforwardly bounded above by nk/2l.

Case 2: Suppose that msg = Tx(j, 2, β) or msg = V(j, 3, γ) i.e., represents a second-flow or
third-flow message in AP . Our analysis in this case is very much like that for Case 1. The
difference lies in the fact that in a given session, a tag will accept only a single second-flow
value β; similarly V will accept only a single third-flow value γ. (This is due to the fact that
after the first flow, both oracles participating in a given session work on the basis of a fixed
tag identity.) Thus, based on an argument analogous to that in Case 1, the probability that A
can compute an entry Mv+1 yielding a non-simulable transcript is at most 1/2l.

Note that termination of sessions at the end of the “test” phase in our experiments is
equivalent to the transmission of a termination symbol ⊥(j) to all oracles for all active sessions,
and does not change the above analysis.

As the number of oracle queries made by A is assumed to be bounded above by s, the
lemma follows straightforwardly ut

We now present theorems characterizing the authentication and privacy characteristics of
our proposed protocol AP . In fact, the theorems go farther than this, and provide concrete
bounds on Advauth

A (AP ); [q, r, s, l, n] and Advpriv
A (AP ); [q, r, s, l, n]. These derive directly from

and are identical to that in Lemma 1.

Theorem 1. Suppose that m > br/2c. For any parameter set q, r, s, l, n, we have Advauth
A (AP ); [q, r, s, l, n]≤

skn
2l .

6 This requirement is essentially to correct an awkward boundary condition. We do not want to discard a secret
value that has not yet been used. An alternative is to assume that a tag does not discard the old live pad
during an update, but instead rotates it into the last position of the vector.



Proof: Under the bound of Lemma 1, let us assume that the behavior of A yields a transcript
simulable by A∗. At the conclusion of the “test” phase of the experiment Expauth, all active
sessions are terminated.

If a session for a given tag Tx was terminated immediately subsequent to the first flow
α, then V will not have received α. In this case, A may deliver message α to V and have it
accepted. A may not, however, deliver the resulting challenge β to Tx, because tags are not
active during the “cloning” part of the experiment. Hence, since the behavior of A is simulable,
A cannot obtain the correct corresponding third flow γ, and may not cause V to accept the
session.

If some given session between a tag Tx and verifer was terminated after the first flow, or if
no session was in progress, then A is incapable of delivering a first flow α that will be accepted
for Tx. Hence A cannot cause V to output an “accept” message. ut

Theorem 2. Suppose that m > br/2c and k > q. For any such parameter set q, r, s, l, n such
that n ≥ 2, we have Advpriv

A (AP ); [q, r, s, l, n]≤ skn
2l .

Proof: By the same reasoning as in the proof of Lemma 1, we see that any key αi, βi, or γi

not yet emitted by a tag subsequent to a refresh is distributed uniformly at random in the
view of the adversary. It therefore suffices to show that a tag never emits the same key twice
prior to update of the key during a refresh.

Let us consider a given key triple (αi, βi, γi) for some tag Tx. As all sessions are terminated
on conclusion of the “test” phase, A must initiate new sessions in the “guess tag” phase.
Therefore, Tx will only emit βi or γi in a session where it emits αi as the identifier. Hence, it
suffices to show that no identifier is emitted twice prior to update during a refresh.

Now, Tx emits αd for the counter d = (c mod k) + 1. Since c can only be incremented in
response to an init query, it follows that Tx can only emit αd twice after receiving k init queries.
Given the condition k > q, however, this cannot happen without a refresh occurring – at which
point αd is updated. ut

Remark: In the experiment Exppriv
A (AP ), the adversary is not permitted to query V during

the second, “guess tag” phase. If the adversary were indeed able to do so, then the adversary
could break the privacy of AP as follows. During the “test” phase, for a target tag Tx, the
adversary replaces the one-time pads in the fourth flow of the protocol with random pads.
This renders Tx incapable of successful protocol completion: With overwhelming probability,
the tag will abort upon receipt of a β value. The adversary is then able to distinguish Tx in the
“guess tag” phase of the experiment, as the tag will abort the protocol. On the other hand, if
A is passive, then Exppriv

A (AP ) may be modified to permit queries to V during the “guess tag”
phase with no loss in privacy. As part of this modification, naturally the value x in messages
of the form Tx(j, f, ·) must be suppressed.

D RFID Tags with Pseudorandom Number Generation

In this appendix, we briefly consider how our proposed scheme might be adapted – and
strengthened – for RFID tags capable of performing symmetric-key cryptography. Even if
a tag cannot perform a full-blown primitive of this kind, symmetric-key crypto might still be



deployable in some form. Time-sharing might provide one avenue for more rapid adoption of
symmetric-key crypto. For example, an RFID tag might execute one or several rounds of a
cipher on every query, storing partial results and releasing output only when all rounds of the
cipher have been fully computed. The resource requirements of cipher implementation would
then be significantly reduced. Alternatively, given the small number of outputs yielded by an
RFID tag over a normal lifetime, a weak PRNG might be acceptable for some of the uses we
propose here.

We focus in particular here on the possibility of on-chip pseudorandom number generation,
the most likely first deployment of strong cryptography in RFID tags [45]. Let us suppose that
fκx(i) represents the (suitably long) output of a pseudorandom number generator for index i,
where κx is a secret, random seed unique to Tx.

In this case, an RFID tag could of course generate its own pseudonyms α1 = f(1), α2

= f(2), . . . , αk= f(k), rather than storing them. The tag could generate β and γ values
analogously. In principle, then, there need be no bound on k. If the verifier and tag are perfectly
synchronized, then they may maintain a common value counter dx unique to Tx, and may share
the seed κx. To determine which tag an incoming value α corresponds to, the verifier could
simply perform a lookup in a list of current α values for all tags, namely {fκx(dx)}.

Desynchronization, however, would very likely be concern in real applications (and might
provide a mechanism for denial-of-service attacks). One possible approach to preventing de-
synchronization would be for the verifier to maintain a list not just of current α values, but
also of values from several future timesteps.

This proposal is similar in flavor to that of Weis et al. [45] involving tag release of (r, PRNG(ID, r)).
An advantage of our proposal as just described, however, is that it would permit a certain
amount of synchronization, but would still not leak any counter values. (Counter values them-
selves may serve as identifiers permitting privacy infringement.)

A more comprehensive approach would be to establish a bound of moderate size on k,
e.g., k = 100. Given storage of the full set of k pseudonyms for each tag the verifier could
feasibly search through the full list of possible pseudonyms.7 Upon successful verifier-to-tag
authentication, refresh would be quite straightforward. Suppose that for counter value d, an
RFID tag computes αd = f(bk + d), where b is a “base” value. The last flow from the verifier
might simply be an “ack” indicating that b should be incremented.

It is worth noting that registration of a tag Tx by a verifier or transfer of ownership to a
new verifier would require transfer of κx and preferably also of counter values. Alternatively, as
mentioned in the body of the paper and in [21, 45] these values might be transferred with the
aid of an optical or contact channel. For example, κx might be printed in scannable optical form
on the RFID tag. On receiving κx – or after some other appropriate form of authentication –
a tag might release its current counter value. A new owner might presumably also provide a
new seed value κx to a tag through a process involving authentication via the old one.

Finally, we remark that f here may be a stream cipher for the schemes we describe here, and
need not be directly indexable. A tag would only have to store state permitting computation
of f(bk + 0) in our scheme involving rotation through pseudonyms.
7 For this and the previous approach, a simple efficiency enhancement is possible: The verifier can store a small

set of pseudonyms corresponding to the counter value dx (and a few successors) in a primary list, and other
pseudonyms in a secondary list. This permits a form of “optimistic” search, in which it may be expected that
search in the primary list will generally yield a successful result.


