
Serverless Search and
Authentication Protocols for RFID

Chiu C. Tan, Bo Sheng and Qun Li
Department of Computer Science

College of William and Mary

2

What is RFID?
ID #:12345678
Name: Fischer, B

3

Using RFID

Query

Data
Tag

Reader

4

Basic Requirements for RFID
● Authentication

– We want reader to distinguish a fake RFID tag
from a real RFID tag.

● Privacy
– We want the information from the RFID tag to

be read only by authorized RFID readers.
– This also includes location information about the

tag .
Why authentication and privacy?

5

No Authentication
Query

Fisher, B

Accept

Query

Fisher, B

Accept ???Fake Tag

Real Tag

6

No Privacy

Paparazzi

Query

Law Enforcement
Fisher, B

Query

Fisher, B ??

7

Location Privacy

Query Query

Fisher, B Fisher, B

8

Using a Server (adapted Dimitriou 2005)

Query

h IDi  , N ,h IDi
N 

1.Find ID that matches h IDi

2.Verify h IDi
Nmatches.

3. Returns information to reader.

h IDi  , N ,h IDi
N 

Fake tagdoes not know IDi

hIDinot found in server
Unauthorized reader will not
get any data fromserver.

Tag usesa different N each time
Cannot track movement of tag.

9

Our paper
● Serverless solution, while still providing

authentication and privacy.
– Server solutions requires constant connection

between reader and server. Not always possible !
● Ability to search,i.e. how to find 1 tag from a

larger group of tags.
– Authentication. Reader can detect a fake tag.
– Privacy. Unauthorized reader cannot get back

useful information from searching for a tag

10

Remainder of this talk
● Introduce our serverless solution.
● Introduce the problem of searching RFID

tags.
● Conclude.

11

First dig at the problem...

Query

Secret t

Secret
t1 ⇔
⋮ ⇔
tn ⇔

ID
ID1
⋮
IDn

Access List

For every entry inside access list
Apply h t   to N
Do ID⊕h t N⊕h t N to get ID
Check against ID in access list

N , ID⊕ht N 

(adapted from Weis et. al. 2003)

12

Checking Authentication

Query

Secret x

N , ID⊕hx N 

Secret x not in access list.
Reader rejects tag !

FAKE

Access List

Reader checks access list

Secret
t1 ⇔
⋮ ⇔
tn ⇔

ID
ID1
⋮
IDn

13

Checking Privacy

Query

Secret t

Access List

N , ID⊕ht N Unauthorized

Blank

Unauthorized reader does
not have secret t.
Cannot obtain ID !

Every tag reply uses a different
random N.
Cannot track movements of the tag!

14

However, do not lose the reader

Query

Secret t, ID

N , ID⊕ht N 

 FAKE

FAKE

Secret t, ID
Fools legitimate reader !

Access List

Secret
t1 ⇔
⋮ ⇔
tn ⇔

ID
ID1
⋮
IDn

15

If you first don't succeed
● Problem: Reader knows tag secret t
● Idea : Let the reader check if tag knows

secret t, without telling reader t.
● Use 1-way hash function.
● Create reader id for each reader, r.
● Instead of telling reader t, use f(r,t) . f() is

a 1-way hash function.

16

If you first don't succeed

Query, r

ID,t, f()

f r , t ⊕ID

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

Access List

For every entry inside access list
Do f r , t ⊕ID⊕f  r , t  to get ID
Check against ID in access list

17

Stealing the reader

Query, s

Secret f(r,t)

FAKE

FAKE

Secret f(r,t)

f r , t ⊕ID

f  s , t ⇔ ID
Access List

Reader s expects f(s,t).
Reader not fooled !

Access List

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

18

However

Query, r

ID,t, f()

f r , t ⊕ID

f r , t ⊕ID

Fake

Access List

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

19

When reader queries again ...

Query, r

f r , t ⊕ID

f r , t ⊕ID

Fake tag fools legitimate
reader r !

Fake

Checks access list

Access List

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

20

Third times a charm ...
● Problem:

– Reader always issues same query, susceptible to
replay attack.

– Tag response always the same, vulnerable against
tracking.

● Idea: Use random numbers to differentiate
query and response.

21

Third times a charm ...

ID,t, f(),h()

Access List

h f r , t  , nr , nt ⊕ ID

Query
nt
r , nr

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

Check against access list.

22

Eavesdropping now gets

ID,t, f(),h()

Access List

h f r , t  , nr , nt ⊕ ID

Query
nt
r , nr

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

h f r , t  , nr , nt ⊕ ID

Fake

23

When reader queries again

Access List

h f r , t  , nr , nt ⊕ ID

Query
nt
r , nr2

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

h  f r , t  , nr , nt ⊕ ID

Fake

Reader will pick a different random
number each time.

Reader not fooled !

When checked against access list,
reader will not get back ID.

24

When unauthorized reader queries

ID,t, f(),h()

h f r , t  , nr , nt2⊕ID

Query
nt2
r , nr

Unauthorized

Tag uses a different random number each time
Unauthorized reader repeats the same query at different places
Gets back a different reply.
No tracking !

25

A little bit faster

h f r , t m ,
h f r , t  , nr , nt ⊕ ID

Problem : Access list could have many entries. Slow.

ID,t, f(),h()

Tag returns the first m bits of h(f(r,t))
Reader can pre-compute this value
ahead of time. Not affected by random
numbers.

Access List

Return the first m bits of h(f(r,t))

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

26

Onto searching
● RFID search problem:

– Find 1 particular tag from a collection of tags,
while still providing authentication and privacy.

● Simple solution:
– Collect IDs from every tag, using technique

presented earlier.
– Find the tag you want.

● Not efficient.

27

Needle in a haystack

ID4

Keep silent

Reader cannot distinguish fake tag.
An unauthorized reader can still query.
No protection against eavesdropper.

ID4 ?

ID4

28

Use the same trick as before

ID4

h f r , t4 , nr⊕ID4
nr , r

Verify own IDbyderiving
hf r , t  , n r , then XOR toget ID4

h f r , t4 , nt , nr⊕ID4,nt

Access List

Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

29

Seems to work
● We basically invert the same techniques

presented earlier on.
● One major exception

30

What went wrong?
h f r , t4 , nr⊕ID4
nr , r

h f r , t4 , nt , nr ⊕ID4,nt

h f r , t4 , nr⊕ID4, nr , r

h f r , t4 , nt , nr ⊕ID4,nt

31

What went wrong?
h f r , t4 , nr ⊕ID4
nr , r

h f r , t4 , nt2 , nr ⊕ ID4,nt

Does not matter if tag changes random number

Still able to track, since only 1 tag will reply !

32

What went wrong?
● Basic nature of search. We expect to find 1

tag from a group of tags.
● In other words, always have 1 tag replying.

The very act of replying identifies the tag !

33

Possible techniques

1. Try to prevent readers from repeatedly
using the same random number.

2. Try to create a query that can be satisfied
by more than 1 tag.

3. Try to generate noise to mask reply.

34

Possible solution

ID4

Check the first m bits

ID4m , r , nr

h f r , t4 , nr , nt ⊕ID4, nt

Reader obtains ID using access list
and checks.

Reader receives more than 1 tag reply

Access List

h f r , t5 , nr , nt2⊕ID5,nt2
Secret
f r , t1 ⇔

⋮ ⇔
f r , tn ⇔

ID
ID1
⋮
IDn

35

Under this scheme

h f r , t4 , nt2 , nr ⊕ ID4,nt

ID4m , r , nr

Eavesdropper receives multiple replies.
Each tag chooses a different random number
Cannot perform tracking !

36

To summarize ...
● Provide authentication and privacy

protections for RFID.
● Done without need for persistent

connections with central server.
● Examined security considerations when

searching for RFID tags.
● Suggested solutions for secure RFID search

37

Acknowledgments
● We like to thank reviewers for their helpful

comments.

Questions ?

