
TrueLink: A Practical Countermeasure to the
Wormhole Attack in Wireless Networks

Jakob Eriksson, Srikanth V. Krishnamurthy, Michalis Faloutsos
University of California, Riverside

Abstract— In a wormhole attack, wireless transmissions are
recorded at one location and replayed at another, creating a
virtual link under attacker control. Proposed countermeasures to
this attack use tight clock synchronization, specialized hardware,
or overhearing, making them difficult to realize in practice.

TrueLink is a timing based countermeasure to the wormhole
attack. Using TrueLink, a node i can verify the existence of
a direct link to an apparent neighbor, j. Verification of a link
i ↔ j operates in two phases. In the rendezvous phase, the
nodes exchange nonces αj and βi. This is done with tight timing
constraints, within which it is impossible for attackers to forward
the exchange between distant nodes. In the authentication phase, i
and j transmit a signed message (αj , βi), mutually authenticating
themselves as the originator of their respective nonce.

TrueLink does not rely on precise clock synchronization, GPS
coordinates, overhearing, geometric inconsistencies, or statistical
methods. It can be implemented using only standard IEEE 802.11
hardware with a minor backwards compatible firmware update.
TrueLink is meant to be used together with a secure routing
protocol. Such protocols require an authentication mechanism,
which will also be used by TrueLink. TrueLink is virtually
independent of the routing protocol used. Our performance
evaluation shows that TrueLink provides effective protection
against potentially devastating wormhole attacks. 1

I. INTRODUCTION

Security is a crucial component of any wireless routing
protocol to be used outside the laboratory. A wireless network
can be attacked at all layers of the protocol stack. A particu-
larly difficult attack to counter is the wormhole attack. In the
wormhole attack [1], [2], [3], an attacker, or potentially multi-
ple colluding attackers, surreptitiously relay packets between
distant locations. This can give a node the impression that it
is the neighbor of a node that is far away. By faking links
between distant nodes, attackers may be able to manipulate
nodes to send traffic through them, where the attackers can
drop, modify or record such traffic. We define an attacker
node as a node brought in by the attacker, and a compromised
node as a node that was once a legitimate member of the
network, but has been taken over or infiltrated by the attacker.
The wormhole attack is particularly dangerous in that it can be
mounted without compromising any nodes, and without any
knowledge of the protocols used. Furthermore, the attackers
can mount the attack without revealing their identities: the fake
edge appears between two distant legitimate nodes.

1Prepared partially through collaborative participation in the Communi-
cations and Networks Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Coopera-
tive Agreement DAAD19-01-2-0011. The U. S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

The wormhole attack was independently introduced in [1],
[2] and [3]. Most secure and non-secure ad hoc routing proto-
cols proposed (for example [4], [5], [6], [7]), are vulnerable to
the wormhole attack. Previous countermeasures to the worm-
hole attack have relied on specialized hardware; employing
such hardware may not be feasible in typical wireless network
scenarios. In [1], techniques that make use of tight clock
synchronization or GPS information to stop wormhole attacks
are proposed. In [8], a distance bound on each link is acquired
through a fast exchange of bits between sender and receiver.
Other approaches toward thwarting the wormhole attack [9]
rely on overhearing and statistical inference to detect the
presence of a wormhole.

We propose TrueLink a practical countermeasure to the
wormhole attack, presented here as an extension to the IEEE
802.11 MAC layer. TrueLink enables a node to verify the
adjacency of an apparent neighbor, using a combination of
timing and authentication. TrueLink is meant to be used
together with a secure routing protocol. Authentication is an
essential component of such protocols, and TrueLink can use
any such mechanism for its own authentication needs.

TrueLink performs link verification between two nodes i
and j in two phases: the rendezvous phase, and the authen-
tication phase. In the rendezvous phase, i and j exchange
nonces αj and βi, where the subscript indicates the node
that generated the nonce. This exchange proves the adjacency
of the responding node through the use of strict timing
constraints; only a direct neighbor is able to respond in time.
In the authentication phase, i and j each sign and transmit
the message (αj , βi), mutually authenticating themselves as
the originator of their respective nonce. The timing constraints
of the rendezvous phase makes TrueLink immune to capture-
and-replay style wormhole attacks, and strictly limits the range
of attacks based on bit-by-bit or “cut-through” forwarding.
TrueLink combines many attractive features, which make it a
good candidate for practical deployment:
A. Deployability with minimal requirements: TrueLink does
not rely on precise clock synchronization, GPS coordinates,
overhearing, or geometric or statistical methods.
B. Backwards compatibility with IEEE 802.11: TrueLink
can be implemented using standard IEEE 802.11 hardware
with a minor, backwards compatible, firmware update. We
show how a nonce can be included in each CTS frame without
changing the frame format in Sec. VII. TrueLink-enabled
terminals continue to interoperate with non-enhanced 802.11
hardware, albeit without TrueLink protection.
C. Compatible with most authentication methods: TrueLink

751-4244-0593-9/06/$20.00 ©2006 IEEE

can be used equally well with asymmetric, symmetric, hash-
based or other authentication mechanisms.
D. Widely applicable: TrueLink is independent of the routing
protocol used, and improves the security of both proactive and
reactive routing protocols.

We conduct analysis and simulations to show that a worm-
hole attack can potentially have a devastating effect on an
unprotected network. We analyze a 100-node grid topology
and we find that 4 attackers are enough to make 80% of
the node pairs select paths that pass through a wormhole
where, potentially, all payload packets could get dropped by
the attackers. The potentially devastating effects of the worm-
hole attack are verified in our simulation results. TrueLink
effectively protects the network against such attacks and the
cost of protection with TrueLink is small.

Our work in perspective: TrueLink is a countermeasure to
the classical wormhole attack. Several secure routing protocols
have been proposed that safeguard wireless networks against
other attacks, but that are vulnerable to the wormhole attack.
In combination with a secure routing protocol, TrueLink can
provide protection against a wide range of attacks possible on
a wireless network. However, we acknowledge that in some
scenarios, a strictly limited form of physical-layer wormhole
attack may still be possible. We discuss the scope of this attack
further in Sec. V.

In the next section, we discuss background and related work
including secure routing protocols and previously proposed
countermeasures to the wormhole attack. Sec. III describes
TrueLink in detail. Sec. IV provides a security analysis, and
V separately addresses the issue of physical layer wormholes.
Sec. VI describes several ways in which TrueLink may be
applied, depending on the scenario considered and the routing
protocol in use. Sec. VII describes our proposed modification
to the IEEE 802.11 standard. Performance evaluation results
are provided in Sec. VIII, and Sec. IX concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the problem of secure routing.
In particular, we discuss the wormhole attack and a number of
previously proposed countermeasures that combat this attack.

Routing may be subject to a variety of attacks; to handle
these, a wide variety of secure routing protocols and attack
countermeasures have been proposed. The attacks can be
divided into two major categories: attacks on the control plane,
and attacks on payload traffic. Attacks on the control plane
typically announce the presence of non-existent links or routes.
Attacks on payload traffic, such as the Black Hole, Gray
Hole, or Jellyfish attacks, are typically mounted by attackers
that participate normally in routing control traffic, but drop,
delay, modify or reorder some or all data packets that pass
through them. Payload attacks can be particularly powerful
in combination with a control-plane attack that is mounted to
increase the amount of traffic routed through attacker nodes.

Many attacks can be countered using cryptography. This
can help isolate all nodes that do not have the necessary
credentials. Using cryptography is an attractive solution in
many scenarios, as long as attackers are unable to compromise

a node with the proper credentials. The wormhole attack,
however, can be mounted without compromising the security
of any node, and cannot be countered with cryptography alone.

A. The Wormhole Attack

In this paper, we study the wormhole attack; this is an
attack on the routing control plane. The wormhole attack was
introduced independently in [1], [2] and [3]. With this attack,
one or more potentially colluding attackers record packets at
one location, and replay them at another location, using either
in-band (tunneling) or out-of-band communication to transfer
the packets between these locations. This can give nodes that
are in the neighborhood of the attackers the impression that
links exist between them and other nodes that are in reality
far outside of transmission range. The attacker does not need
to compromise any node, or have any knowledge of the
routing protocol in use. Since a wormhole attack involves
recording and retransmitting packets verbatim, this attack can
be mounted using only hardware introduced by the attacker.

By creating the illusion of a link, attackers may be able
to manipulate nodes to send more traffic through them; this
traffic may then be dropped, modified or recorded. In [1], Hu
et al. describe how a wormhole attack can be used to disrupt
routing in a wide variety of routing protocols, including DSR
[5], AODV [4], DSDV [6] and OLSR [10]. In addition, most
previously published secure routing protocols, such as [3],
[11], [12], [7], are susceptible to this attack. For a survey of
secure routing protocols, see [13].

In ODSBR [7], a reputation based scheme is used to rank
all links in the network, and routes are selected based on link
rankings. In this protocol, a wormhole would be treated as one
or more links, which would be ranked with other links in the
network. Awerbuch et al. claim that these links will be avoided
if they exhibit byzantine behavior. However, they define the
byzantine attack behavior in terms of packet drops only.
This makes ODSBR vulnerable to the Jellyfish attack [14]
in combination with a wormhole attack. In addition, a single
wormhole could potentially fake a large number of links. With
an average node degree of D, each wormhole could result in
D2 fake links, each of which would have to be individually
detected by ODSBR before successful communication can be
established.

B. Previous Wormhole Countermeasures

TrueLink improves the state of the art in wormhole coun-
termeasures, being widely applicable and light-weight. In [1],
two countermeasures are presented: geographical and temporal
packet leashes. Leashes prevent wormhole attacks by letting
the receiver of a packet determine if a packet has traveled
further than the leash allows.

For geographical packet leashes, each packet is stamped,
upon transmission, with the current geographical location of
the sending node, and signed by the sender. The receiver of
the packet compares the location of the sender to its own
location, and is thus able to determine whether the sender
is close enough to be a neighbor. Geographical packet leashes
require accurate and verifiable location information.

76

With temporal leashes, all nodes have tightly synchronized
clocks. The sender stamps the packet with the current time,
and signs it for later authentication. The receiver compares
the time in the packet with its local clock. If the difference
exceeds some small value, determined by the maximum trans-
mission range of the radio in use, the packet is discarded.
Temporal packet leashes require extremely tight global clock
synchronization, making it infeasible for many applications.

LiteWorp [9] relies on overhearing by selected nodes, called
Guards, distributed throughout the network. The guards mon-
itor local control traffic to detect wormhole attacks. LiteWorp
assumes overhearing, omnidirectional antennas, and a static
topology, making it infeasible for large classes of networks.
Moreover, the reliance on overhearing may introduce a sus-
ceptibility to blackmail attacks through impersonation.

In [8], [15], the maximum distance between two neigh-
boring nodes is bounded through a series of fast one-bit ex-
changes. These schemes use specialized hardware for accurate
time measurement and fast switching between the send and
receive modes. In [16], the Echo protocol is proposed, in which
one or more nodes collaborate and use ultrasound to verify
a node’s claimed location. Directional antennas are used to
prevent wormhole attacks in [17]. In [18], broadcast messages
are protected by local broadcast keys, ensuring that remote
nodes cannot decrypt packets that have traversed a wormhole.
Here, the existence of special purpose guard nodes, with GPS
and longer-range transmission capabilities are assumed. For a
survey of location verification protocols, see [19].

IEEE 802.11 authentication. Existing techniques in IEEE
802.11 are not sufficient to protect against the wormhole
attack. The IEEE 802.11 standard includes techniques (WEP,
IEEE 802.11i) for node authentication. However, these tech-
niques do not include strict timing requirements, making them
highly vulnerable to the wormhole attack.

Byzantine Wormhole Attacks. Although the name sounds
similar, the so-called “byzantine wormhole” attack belongs to
an entirely different class of attacks than the classic wormhole
attack. In a “byzantine wormhole” attack, the attacker has
compromised one or more nodes, and uses the credentials
from such nodes to create the appearance of, or announce
the presence of, non-existing links. “Byzantine wormhole”
attacks, or any other attacks involving compromised nodes,
are best handled at the routing layer. Clearly, if nodes have
been compromised, link verification cannot stop these from
announcing non-existent links between themselves. Like Tru-
eLink, previous work such as Packet Leashes [1], does not
address the byzantine wormhole attack. In [20], forward error
correction and multi-path routing are used to introduce path
redundancy and improve delivery probability under adversarial
conditions. On-Demand Secure Byzantine Routing (ODBSR)
[21] has been shown to be highly resilient to variants of
the byzantine wormhole attack. Other techniques, such as
intrusion detection or tamper-proof hardware, have also been
proposed to address the issue of compromised nodes.

1. RTS
2. CTSR,αj

i j

5. (αj, ßi)j

3. ßi

6. (αj, ßi)i

RE
ND

EV
O

US
AU

TH
EN

TI
CA

TI
O

N

4. ACK

Fig. 1. Secure Link Verification. Node i is verifying that a direct link exists
to node j. Non-essential transmissions excluded from figure.

III. TRUELINK: OUR PROTOCOL

TrueLink verifies the adjacency of any neighbor, using a
combination of timing and authentication. We present Tru-
eLink as an extension to the IEEE 802.11 MAC layer. A Tru-
eLink verification between two nodes i and j operates in two
phases. In the rendezvous phase, i and j exchange nonces,
randomly generated numbers. This phase is completed as a sin-
gle RTS-CTS-DATA-ACK exchange. Here, timing constraints
in the IEEE 802.11 standard make it extremely difficult for an
attacker to successfully relay these frames (see Sec. V for more
details). In the authentication phase, i and j each transmit a
signed message (αj , βi), mutually authenticating themselves
as the originator of their respective nonces.

Having established the adjacency of a neighbor, a routing
protocol using TrueLink may use this information to constrain
the reception and transmission of control and payload packets
to links that have been verified to exist. Sec. VI discusses
how to use TrueLink in combination with previously proposed
routing protocols, and Sec. IV provides a security analysis of
the TrueLink protocol.

Algorithm 1 (α, β) Init()
sendRTS();
recvCTS() times out after ttimeout = SIFS

3: α=recvCTS();
if α != nil then

β ← nonce();
6: # success = true if ACK received

success=sendPacket([VerifyLink, β]);
if success == true then

9: return (α, β);
end if

end if
12: return nil;

We now describe the operation of TrueLink in more detail.
To verify the existence of a link, i initiates a link verification
exchange, illustrated in Fig. 1. The exchange can be divided
into a rendezvous phase, and an authentication phase.

Rendezvous Phase. The rendezvous phase is governed by
strict timing constraints, making it extremely difficult for an

77

Algorithm 2 (packet, α) HandleRTS()
if channelIsAvailable() then

α ← nonce();
3: sendCTS(α);

recvPacket times out after ttimeout = SIFS
packet = recvPacket()

6: if packet != nil then
returns packet together with α
return (packet, α);

9: end if
end if
return nil;

attacker to fake a link. When using the IEEE 802.11 MAC
protocol as a basis, the rendezvous phase is implemented
as a single RTS-CTS-DATA-ACK exchange. We describe the
operation of the protocol for each of these frames. Pseudocode
for the rendezvous operation is provided in Alg. 1 and 2.

1. RTS: Node i, the initiator of the link verification ex-
change, calls Init(). Node i sends an RTS to node j.

2. CTS, αj: After receiving the RTS, node j calls
HandleRTS(). A locally generated nonce αj is included in
the CTS, which is sent after a delay of one SIFS.

3. DATA, βi: Having received the CTS, i generates nonce
βi. After a SIFS delay, the nonce is sent as the packet payload,
together with a header identifying the packet as a rendezvous
packet.

4. ACK: When node j receives the payload packet con-
taining nonce βi, the HandleRTS() function sends the ACK
frame, after a SIFS delay. The received packet and the locally
generated nonce αj are handed to the upper layer for process-
ing. When node i receives the ACK, the Init() function at i
returns the pair (αj , βi) to its caller.

Authentication. The authentication phase does not have
any strong timing constraints. Nodes send the authentication
messages as soon as they have finished computing the crypto-
graphic signature. Node i sends the message (αj , βi)i (signed
by i) to j, thereby proving that it was the one sending the
nonce βi and that it received the correct αj . This proves the
existence of the link i ↔ j to node j. Similarly, node j sends
the message (αj , βi)j to i. This proves the existence of the
link to node i.

IV. SECURITY ANALYSIS

Previous sections provided a description and an intuitive
argument as to how TrueLink protects against the wormhole
attack. In this section, we more formally show that no MAC
layer wormhole attack is possible. The next section separately
addresses physical layer wormhole attacks. For ease of dis-
cussion, we will treat all colluding attacker nodes as a single
entity. That is, attacker M consists of one or more nodes,
spread throughout the network. M has the power to capture
a frame from one legitimate node, say i, transfer the frame
(in-band or out-of-band) to the vicinity of another legitimate
node, say j, and replay it there.

In a classic wormhole attack, M will try to make it appear as
if nodes i and j are neighbors, even though they are in reality
out of range. We enumerate the ways in which M could attempt

to do this. In a forwarding attack, M attempts to forward each
frame, without modification, between i and j. This category
also includes any delayed replay attacks. There are also two
TrueLink-specific attacks. In a masquerade attack, M mas-
querades as j while responding to a link verification request
initiated by i. M then initiates a link verification exchange with
j while masquerading as i. Finally, in a double masquerade
attack, M simultaneously initiates link verification exchanges
with both nodes, while masquerading to each node as the other
node, using the nonce received in the exchange with one node
in its response in the other node. We will now show how
TrueLink counters each of these attacks.
A. Forwarding attack. Let us first take a closer look at the
forwarding attack, where M captures frames at one end, and
replays them at the other. Without loss of generality, let us
assume that i initiates the exchange. We will also assume that
M does not know in advance the exact moment at which this
exchange will be initiated.

M can decide to send an RTS to j after it hears the RTS
from i. In this case, M does not have sufficient time to receive
the CTS from j before Init() on i times out. Alternatively,
M could send an RTS to j before it hears the RTS from i.
In this case, recvCTS on j will time out while M is waiting
for βi from i. This is under the assumption that M does not
know in advance the exact moment at which i will send its
RTS. By default, functions recvCTS and recvPacket both
time out after one SIFS interval (16 µs for IEEE 802.11b).
By comparison, the shortest frames in the IEEE 802.11b
standard, the CTS and ACK frames, take a minimum of 112
µs to transmit fully, not accounting for the physical preamble.
Therefore, TrueLink is immune to store-and-forward attacks.
Theoretically, there exists the possibility of a physical layer
attack, where forwarding of a packet is done bit by bit, without
first decoding the frame. We discuss this possibility in Sec V,
and show how this attack can be countered as well. However,
let us assume for now that this is outside of the attackers
capabilities, and that 16 µs does not leave sufficient time for
an attacker to synchronously rendezvous with j while i is
waiting.

RTS RTS
CTS, αM

CTS, αj
ßi ßi
ACK

ACK

i jM
RTS

CTS, αj

αi

ACK

i jM
RTS

CTS, αi

αj

ACK

MASQUERADE
DOUBLE

MASQUERADE
(αM,ßi) (αj,ßi) (αi,αj) (αj,αi)

RENDEZVO
US

Fig. 2. Versions of the masquerade attack. Nonce pairs on i and j do not
agree following the attack.

B. Masquerade attack. Fig. 2 illustrates the masquerade
attack. Here, M instantly responds to the RTS from i by
masquerading as j and generating its own nonce αM . It then

78

initiates a second rendezvous with j, this time masquerading
as i. At the end of the rendezvous phase, nodes i and j are
using the nonce pairs (αM , βi), and (αj , βi) respectively. As
these pairs are not equal, the verification exchange will be
aborted in the authentication phase.
C. Double masquerade. In a double masquerade attack,
M initiates link verification exchange between i and j. It
accomplishes this by simultaneously masquerading as i when
initiating the exchange with j, and as j when initiating the
exchange with i. This method fails as well, as illustrated in
Fig. 2 Neither i nor j actually initiated the exchange, and thus
all nonces generated are α nonces. Even assuming α nonces
are indistinguishable from β nonces, the resulting nonce pairs
do not match, as shown in Fig. 2, and the exchange is aborted
in the authentication phase.

A. Issues with Automatic Retransmission

A practical issue that must be addressed is the fact that most
IEEE 802.11 cards will automatically retransmit DATA pack-
ets if a corresponding ACK is not successfully received. For
TrueLink to remain secure, this feature must be temporarily
turned off during the TrueLink rendezvous phase. The reason
for this is that by sending the same nonce α or β in the
CTS or DATA frame several times, a node potentially exposes
its current value for α or β long before the actual TrueLink
validation takes place. Doing so would introduce a security
risk, where an attacker may capture the nonce the first time,
and use this information to mount a wormhole attack.

V. COUNTERING PHYSICAL LAYER WORMHOLES

TrueLink is immune to conventional forwarding and tunnel-
ing. However, a physical layer repeater, which does not decode
the signal, but merely replays the bits, or even the waveform
received, may still be able to circumvent TrueLink. In this
section, we address the theoretical limits on such an attack,
and argue that with sufficiently small clock skew, the impact
of a physical layer wormhole can be drastically reduced.

The IEEE 802.11 standard specifies that each frame in
a RTS-CTS-DATA-ACK exchange be separated by a SIFS
interval. This interval is either 10 or 16 microseconds, de-
pending on the version of 802.11 used. The SIFS is inserted to
provide transceivers sufficient time to switch between sending
and receiving mode. If an expected frame is not received
within a SIFS, the entire exchange is aborted. However, due
to differences in hardware aspects, such as timer accuracy and
switching times, and due to some variation in propagation
delay stemming from the distance between sender and receiver,
some allowance is made for variability in the duration of
a SIFS. This slack, together with other weaknesses, can be
exploited by a physical layer attacker to circumvent TrueLink.

We define slack time as an interval during which an attacker
may have the opportunity to surreptitiously transfer a packet
between wormhole end-points. An attacker has a number of
techniques at his disposal for acquiring slack time. We will
first outline the vulnerabilities, and then discuss in some detail
how these are best addressed.

SIFS Slack Time. Nodes are allowed to start transmitting
the next frame slightly before the full SIFS has passed, and
the next frame can start arriving at the receiver a short time
after a SIFS interval has passed without triggering a timeout.

Symbol Rate Attack. For similar reasons, some variation
in the actual symbol rate of a sender is also allowed. Since
the clock in the sender may run slightly faster or slower than
the clock in the receiver, implementations sometimes accept
up to a 10% variation in symbol rates [22].

Preamble Length. The purpose of a physical preamble
is to allow the receiver to acquire the signal and achieve
synchronization before frame transmission begins. As such,
the receiver may sometimes not be able to decode the entire
preamble of a frame. Instead, it will lock on to the signal
some time during the preamble, with the end of the physical
preamble indicated by the “start of frame” sequence.

The IEEE 802.11 standard postulates that transmission of
a CTS, DATA or ACK frame must start within 1 SIFS of
the completed reception of the preceding frame. This presents
a wormhole vulnerability, as the attacker could conceivably
transmit a shorter physical preamble than the standard requires,
thereby creating a window of time in which the packet could
be forwarded from a distant location.

A. Physical Layer Countermeasures

SIFS, 10 µs

RTS

CTS

t ti
m

eo
ut

delayprop

delayprop

ATTACKERS
CHALLENGER RESPONDER

DRAWING NOT
TO SCALE

Fig. 3. The physical distance covered by a wormhole is limited by the
timeout interval on the challenger side.

We address all three vulnerabilities with two enhancements
to the standard operation of the protocol. First, we do not
require clock synchronization. However, we do require clocks
with a maximum skew of tε per bit-time, where a bit-time
is the time required to transfer a bit of data at the basic
transmission rate. Second, we redefine the timeout interval,
after which a frame exchange is considered invalid.

The IEEE 802.11 standard incorporates slack time to allow
for variation in clock speed, as well as in the distance between
sender and receiver. With a maximum skew of tε per bit, a
loose upper bound on the slack time available to an attacker
can be expressed as

tε · sCTS + spre/rate + rmax/c, (1)

where rmax is the maximum allowed transmission range,
sCTS is the length of a CTS frame (including the preamble)
in bits, spre is the length of a preamble in bits, and c is the

79

speed of light. Here, the first term represents the SIFS slack
time, the second term represents the maximum time by which
the preamble could be shortened, and the third term is the
maximum propagation time.

FRAMEPREAMBLE
ST
AR
T

FRAMEPREAMBLE

ST
AR
TSIFS

ttimeout

Fig. 4. The interval ttimeout is re-defined as the time between the end of
one transmission, and the beginning of the frame of the next. This counters
the shortened preamble attack.

Using appropriate clocks [15], the first term of Eq. 1 can
be made arbitrarily small. The second term allows the attacker
to gain slack time by using a shorter physical preamble. This
vulnerability arises from the manner in which the inter-frame
timing constraints of the IEEE 802.11 protocol are defined.
The time between the end of one frame and the beginning of
the preamble of the next is defined to be one SIFS interval,
as illustrated in Fig. 4.

We maintain identical timing constraints, but define the
timeout interval to include the preamble, as indicated by
ttimeout in Fig. 4. With the redefined timing constraints, short-
ening the preamble does not gain the attacker any additional
slack time.

We have now reduced Eq. 1 to rmax/c. This third term is
unavoidable with TrueLink. Due to this, there exist circum-
stances under which a physical layer attacker (a sophisticated
mode of attack in itself) may be able to create a wormhole
despite TrueLink. Specifically, if two nodes are within the
nominal transmission range, but still do not have a direct
connection, due multipath or fading effects, these nodes may
be vulnerable to attack. More formally, denoting the distance
between nodes i, j as d(i, j), the possibility of a successful
wormhole attack exists when

d(nc, wh1) + d(wh1, wh2) + d(wh2, nr) < rmax, (2)

where wh1, wh2 are the two endpoints of the wormhole, nc, nr

are the challenger and responder nodes respectively, and where
nc and nr do not have a direct connection. Recall that this
attack requires sophisticated special purpose hardware and
somewhat precise positioning of attacker nodes. In addition,
even if the attack should succeed, the number of fake links
created is limited by how many node pairs fulfill the criterion
in Eq. 2.

VI. LINK VERIFICATION MAINTENANCE AND ROUTING

Verifying the existence of a link is important in itself, but
in a dynamic network, this knowledge needs to be maintained
and properly updated as the topology changes. We present two
methods of link verification maintenance with TrueLink.

Proactive Link Verification. With this method, a node
periodically transmits beacon messages to find its current
apparent neighbor set. It maintains knowledge about the
actual neighbor set by periodically probing each neighbor with

a link verification exchange. The proactive method is well
suited to proactive routing protocols, or reactive protocols with
local hello-messages. With these protocols, periodic beaconing
maintains a consistent record of the apparent neighbors of a
node, and it requires moderate extra effort to verify the links
to each of these neighbors.

When a new neighbor is found, a link verification exchange
is initiated before the routing layer is notified of the neighbor
discovery. Moreover, after an expiry period texp has passed,
each link is re-verified, to ensure that it still exists. The value
of texp is flexible, but should not be smaller than the beaconing
interval.

verify

verify

ver
ify

verify

ve
rif
y

ver
ify

verify

ver
ify

RREQ

RREQ

RREQ

STEP I STEP II STEP III

Fig. 5. Reactive link verification during a DSR Route Request phase.
Receivers verify link existence after receiving a new route request over a
previously unverified link.

Reactive link verification. Nodes using this method per-
form no link verification until the use of a link is needed. The
reactive method is best suited to reactive routing protocols. As
in the proactive case, a cache of recently verified neighbors is
maintained, with an expiry interval texp. Figure 5 illustrates the
reactive link-verification process for a broadcast route request.
A node waits until it receives a broadcast packet across a
previously unverified link. At this time, it initiates a link
verification exchange with the sender of the packet. To avoid
a potential “implosion” effect, where many receivers try to
initiate an exchange at the same time, the receiver waits for
a small randomly selected time interval before initiating the
link verification exchange.

Overhead vs. Security Tradeoff. During the time interval
texp, a node may believe that it has a link with a neighbor,
when in fact the neighbor has moved away. This provides a
window of opportunity for a wormhole attack faking the previ-
ously existing link. Thus, the value of texp provides a tradeoff
between high overhead due to frequent verifications and attack
vulnerability, due to potentially obsolete information. In our
simulations, we use texp values between 10 and 120 seconds,
with 30 seconds being the standard choice.

VII. MAC LAYER IMPLEMENTATION

We propose to use 32 bits in each CTS frame to carry the
nonce required by TrueLink. We describe below how this can
be done without changing the size of the CTS frame, while at
the same time preserving backward compatibility.

80

RTS
bits

Control
16

Duration
16

RA
48

TA
48

CRC
32

CTS
bits

Control
16

Duration
16

RA
48

CRC
32

1
1

ID
15

magic
32

1
1

ID
15

ns
32

TrueLink
Extension

Fig. 6. The format of IEEE 802.11 RTS/CTS frames, and the modifications
made to accomodate TrueLink.

Format of IEEE 802.11 RTS/CTS frames. Fig. 6 specifies
the format of the IEEE 802.11 RTS/CTS frames. For the
remainder of this discussion, we will denote a field X of a
frame Y as Y:X. The RA and TA fields contain the MAC
address of the receiver and transmitter, respectively. In the
standard implementation, the value of CTS:RA is copied from
the RTS:TA field of the immediately preceding RTS frame.
The purpose of RTS:RA is to identify the intended recipient.
This is necessary for the correct operation of the protocol.

B C DA
RTSRTS

B C DA
CTSCTS

B C DA
RTS DRTS B

B C DA
CTS ACTS A

WITHOUT IDENTIFIERS: CONFLICT

WITH IDENTIFIERS: RESOLUTION

Fig. 7. The purpose of the CTS:RA field is to disambiguate between
transmitters. This does not require 48-bit precision.

Revisiting CTS:RA. The main purpose of CTS:RA is to
disambiguate between transmitters that happened to send their
RTS frames simultaneously. For example, in Fig. 7, two nodes
(A, C) are transmitting send requests simultaneously. Without
CTS:RA to disambiguate, sender C may interpret the CTS
B → A, as a response from D.

However, we claim that CTS:RA does not require 6 byte
precision for successful disambiguation. We reason as follows:
First, it is somewhat unlikely that the situation described in
Fig. 7 would occur in the first place. Second, using an n-
bit random number for disambiguation instead of a 6-byte
address, we can disambiguate between the two simultaneous
RTS frames with a probability 1− 1/2n.

Thus, some of the bits in the CTS:RA and RTS:TA fields
can be freed up for other purposes. For the purpose of this
discussion, we will set the most significant bit, MSB=1, to
indicate a locally administered MAC address (per the Ethernet
address standard), use 15 bits for disambiguation purposes, and
the remaining 32 bits of the CTS:RA field for storing a nonce,
as shown in Fig. 6.

Stations implementing TrueLink need to change the contents
of their outgoing RTS:TA fields. Specifically, MSB=1 to
indicate a locally administered MAC address, the 15 following
bits contain a randomly generated number, and the remaining
32 bits contain a special magic bit sequence recognized by all

TrueLink implementations.

A. Coexistence with IEEE 802.11

The modification to the CTS frame that we have proposed is
compatible with the IEEE 802.11 MAC standard. Specifically,
we require sender and receiver to both implement our modifi-
cations. However, the modifications will not interfere with the
operation of devices not implementing our modification.

The standard specifies the content of the CTS:RA header
to be the MAC address of the receiver. However, only the
intended recipient of the frame needs to recognize that the
packet is intended for it. Other nodes use only the duration
field of RTS/CTS frames for “virtual carrier sensing”. Here,
nodes wait for the duration specified before attempting a new
transmission. It follows that nodes implementing TrueLink can
peacefully coexist with standard IEEE 802.11 terminals.

TrueLink nodes can identify other TrueLink nodes without
incurring any additional messaging overhead.

Recognizing TrueLink sender stations. The receiver
station quickly identifies TrueLink senders by inspecting
RTS:TA. If the sender implements TrueLink, MSB=1 and the
lower 32-bits will contain the magic bit sequence.

Recognizing TrueLink receiver stations. As specified
earlier, a receiver implementing our extension will copy the
16 most significant bits from RTS:TA to its CTS:RA, and
set the remaining 4 bytes of CTS:RA to a nonce generated
locally. By contrast, an IEEE standard implementation will
respond with CTS:RA = RTS:TA. When the sender receives
a CTS, it inspects CTS:RA. If the lower order 32 bits are still
set to the magic bit sequence, the sender can determine that
other receiver station does not implement TrueLink, and act
accordingly. Note that TrueLink cannot protect communication
with standard IEEE 802.11 devices against wormhole attacks.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate various aspects of the perfor-
mance of TrueLink. Results from an actual implementation
of TrueLink would have been a valuable addition to this sec-
tion. Unfortunately, the firmware for readily available 802.11
hardware is proprietary, and we have not been able to acquire
the necessary source code. However, while an implementation
would have provided strong evidence as to the feasibility of
TrueLink, the performance and security of TrueLink are better
evaluated through other means.

A. On the strength of the Wormhole Attack

We discuss the strength of a wormhole attack in terms of
the number of node pairs it covers. By cover, we mean that
during a wormhole attack, the shortest perceived path between
the two nodes will always go through the attackers.

Let us assume we have a network containing nodes va

and vb that are trying to establish a connection, and attackers
m0 . . .mmax. Further, let us denote the distance between any
two nodes i, j as d(i, j). For these calculations, we will
assume that wormholes have been established between all pairs
of attackers.

81

Under a wormhole attack, nodes va and vb will pick a
working path, for any pair of attackers mi and mj ,

dist(va,mi) + dist(vb,mj)− 1 > d(va, vb). (3)

To see why, consider that dist(mi,mj) = −1 under a
wormhole attack. How many node pairs are d hops apart?
For ease of analysis, we will assume a grid topology, and use
the manhattan distance. In the one-dimensional case, with a
string of length W , we have (W − d) possible pairs that are
a distance d apart.

In the two-dimensional case, with a grid of size (W,H),
we divide the distance d into a horizontal component x, and
a vertical component d − x. For each x there are 2(W −
x) possible locations for the first node, and there are another
2(H−(d−x)) possible locations for the second node. Dividing
by 2 to get the number of unordered pairs, we obtain the
number of pairs that are d hops distant in an (W,H) grid as

4
2

d∑
x=1

(W − x)(H − d + x)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pair Distance

N
u

m
b

e
r
 o

f
 P

a
ir

s

Fig. 8. Distribution of distances between all pairs in a 10x10 grid.

Hops (x) p(x)
1 1/6
2 1/3
3 1/3
4 1/6

TABLE I
PROBABILITY OF A GIVEN NODE BEING X HOPS AWAY FROM AN

ATTACKER. 10X10 GRID, 4 ATTACKERS.

Hops (x) p(x) cumulative
1 1/18 1/18
2 1/9 3/18
3 2/9 7/18
4 2/9 11/18
5 2/9 15/18
6 1/9 17/18
7 1/18 1

TABLE II
PROBABILITY THAT FOR A GIVEN PAIR OF NODES, THE SUM OF THEIR

RESPECTIVE DISTANCES TO AN ATTACKER EQUALS X, IN A 10X10 GRID

NETWORK WITH 4 ATTACKERS.

Network Size 100 nodes
Network Dimensions 1400x1400 m

Radio Range 250 m
Channel Capacity 1 mbit/s

Packet Size 512 b
Offered Load (total) 200 pkts/sec

Number of Flows 1-50
TrueLink Cache Timeout 5-120 s

Traffic Type CBR / UDP
Routing Protocol AODV

Max Rate of Mobility 1-20 m/s
Mobility Model Random Waypoint
Warmup Period 3000 s

TABLE III
PARAMETERS USED IN SIMULATION EXPERIMENTS.

Figure 8 shows the distance between all pairs in a 10x10
grid, using the equation above. With 4 well-placed attackers,
the probability of a given node being x hops away from
an attacker, p(x), is shown in Tab. I. Given that pairs are
independently sampled, we can calculate the probability of
Eq. 3 being true for all d < 8. The results are shown in Tab.
II.

We can now calculate the estimated number of pairs failing
to find a route due to the wormhole attack, using Eq. 3.
Solving numerically for a 10x10 grid with 4 attackers, we
find that 79.5% of all pairs fail to find a path that does not
pass through a wormhole. Clearly, the wormhole attack is a
significant concern. Most pairs fail to find a working path, and
all pairs with a distance > 7 will invariably fail to find a good
path in this scenario.

B. Simulation Results

We now provide simulation results to substantiate the anal-
ysis above. For our simulation work, we used the ns-2.29
simulation environment. Tab. 3 shows the parameters used in
our experiments. For these experiments, we used the existing
AODV implementation in ns-2.29, extended to support Tru-
eLink. The code for the TrueLink extension, as well as the
code for simulating a wormhole attack, is available at [23].
UDP/CBR flows were used in all the presented simulation
work. TCP/FTP flows yield similar results. However, the
adaptive nature of such flows introduce additional factors, such
as shorter flows receiving better throughput, that make the
results difficult to interpret. Reactive TrueLink link verification
(see Sec. VI) was employed for every received AODV packet.
Each verification was simulated as a rendezvous exchange
followed by two separate signed messages, as described in Sec.
III. Received AODV packets were buffered until the TrueLink
exchange had been completed, and then processed as usual.
Any key exchange protocol or other cryptographic messaging
in addition to the signatures used was not modeled. We assume
the use of elliptic curve cryptography for signatures, with 160-
bit keys (equivalent crypto strength to 1024-bit RSA keys [24],
or 80-bit keys using symmetric techniques).

C. Link Verification Overhead

Protecting a routing protocol with TrueLink incurs some
amount of overhead. As described in Sec. III, each link

82

verification exchange requires one rendezvous packet and two
authentication packets. The extra packets transmitted may
result in additional interference, packet drops and consequently
route breakage. This may in turn set off additional route
requests and increase AODV control traffic. We are interested
in determining the additional overhead incurred by TrueLink,
both in terms of link verification exchanges, and in terms of
these secondary effects on AODV from the delays incurred and
the extra load on the network. For these results, no wormhole
attacks were simulated.

0

50

100

150

200

250

300

1 3 5 10 15 20

Max Speed (m/s)

O
v
e
r
h

e
a
d

 (
k
b

it
/

s
)

TrueLink AODV Plain AODV

Fig. 9. Overhead vs. Maximum Node Speed. TrueLink overhead is relatively
small (< 10%), and largely independent of mobility.

TrueLink incurs low overhead. Figure 9 shows the
overhead incurred for varying rates of mobility, for Plain
AODV and TrueLink AODV. As mobility increases, TrueLink
AODV experiences a slightly higher increase in overhead as
compared to Plain AODV. This is likely due to a somewhat
increased number of neighbors encountered for each node
participating in a route lookup. We also evaluated TrueLink
performance with respect to the number of flows, and the texp

timeout value. In short, TrueLink was not significantly affected
by flow count, and TrueLink overhead exhibited a significant
linear drop as the expiry time was increased. Due to space
limitations, we cannot include the result plots.

D. Performance During Attack

1400 m

1400 m

WORMHOLE 1

WORMHOLE 2

250 m

Fig. 10. Typical wormhole attack scenario. Attacks were simulated with 0,
1 or 2 wormholes in the shown configuration.

Here we demonstrate the benefit of TrueLink when the
network is besieged by a wormhole attack. The purpose of
these experiments is to further evaluate the strength of the
wormhole attack, and to verify that the overhead incurred by
TrueLink results in a significant improvement. As we shall see,

TrueLink improves average throughput in many scenarios, and
drastically improves overall network reliability.

We implemented the wormhole attack in ns-2.29 through
modifications to the MAC and LL components. In the link-
layer component, packets are forwarded out-of-band through
to the other end of the wormhole. To simulate a black-hole
attack, all payload packets were dropped by the attackers. The
MAC layer was modified to allow the reception of packets
with a destination MAC address equal to any neighbor of the
attacker at the other end of the wormhole and to respond
appropriately to RTS frames addressed to such nodes. All
other simulation parameters were kept the same as in previous
experiments. We chose to simulate 3 different attack scenarios,
denoted (0), for no wormholes, (1), for a single wormhole,
and (2) for two wormholes in a cross configuration. Figure
10 illustrates the attack scenarios. Wormhole nodes were
sufficiently separated that any given frame would be received
by at most one wormhole node. These scenarios simulate up
to 2 wormholes with up to 4 attackers. Note that 4 attackers
could potentially form up to 6 wormholes, by establishing one
wormhole for every pair of attackers. Such an attack may even
further degrade the performance of an unprotected network.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.08 2.5 2.86 2.89 3.18 3.66 4.71 4.96 5.74 6.93

Flows (avg. path length)

P
a
c
k
e
t

D
e
li
v
e
r
y
 R

a
ti

o

Plain AODV TrueLink AODV

Fig. 11. Packet Delivery Ratio vs. Average Path Length of each flow. Flows
with longer paths tend to be susceptible to the wormhole attack.

Distant source-destination pairs suffer with Plain AODV.
Plain AODV consistently loses all or almost all packets of one
or more flows. Fig. 11 shows a detailed, per-flow graph for a 2-
wormhole scenario with an 80 kbps/s total offered load across
10 flows. Packet delivery ratios for the flows using longer paths
are highly affected by the wormhole attack. However, when
TrueLink is employed, the effect of the wormhole attack is
removed entirely. Note that due to mobility, several flows are
only partially affected by the wormhole attack (as evidenced
by the difference between Plain AODV and TrueLink AODV).

Average throughput increases with TrueLink. In Fig. 12,
the scenario consisted of 100 nodes and 10 flows. Mobility
speed was 1 m/s. Each group of bars represents a set of
experiments, at a given offered load. Each bar represents
a single simulation experiment, each with a given routing
protocol and attack scenario. The bracket overlaid on top of the
bar shows the minimum and maximum throughput achieved
by any given flow in that specific experiment.

For the lowest offered load, 40 kbps, we note that the entire
load (10 * 4 kbps) is delivered by TrueLink AODV in all cases,

83

0

2

4

6

8

10

12

14

16

40 80 160

Total Load (kbps)

F
lo

w
 T

p
u

t
m

a
x
-m

e
a
n

-m
in

 (
k
b

p
s
)

Plain AODV(0) Plain AODV(1) Plain AODV(2)

TrueLink AODV(0) TrueLink AODV(1) TrueLink AODV(2)

Plain Plain Plain TrueLink TrueLink TrueLink

Fig. 12. Flow Throughput vs. Send Rate. Brackets show max and min flow
throughput, revealing the weakness of unprotected AODV.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 5 10

Max Node Speed (m/s)

F
lo

w
 T

p
u

t
m

a
x
-m

e
a
n

-m
in

 (
k
b

p
s
)

Plain AODV(0) Plain AODV(1) Plain AODV(2)

TrueLink AODV(0) TrueLink AODV(1) TrueLink AODV(2)

Plain TrueLink Plain TrueLink Plain TrueLink

Fig. 13. Packet Delivery Ratio vs. Node Mobility. Wormhole attack has less
severe effects with high node mobility.

whereas Plain AODV did so only for the 0-attacker case. For
the larger loads, neither protocol achieves a 100% delivery
ratio, with delivery ratio decreasing as load increases. This
is simply an effect of the 1 mbps channel being saturated,
keeping in mind that most connections span more than a
single hop. As shown earlier in this section, TrueLink AODV
consistently achieves marginally lower throughput than Plain
AODV for the 0-attacker case. In cases with 1 or 2 attackers,
however, AODV with TrueLink is clearly the better choice,
with higher throughput in all but one scenario.

Mobility distributes attack consequences over more
pairs. Figure 13 contrasts packet delivery ratio and node
mobility. Even though average throughput does vary to some
degree, a more interesting result is to be found in the max-
min brackets. As node mobility increases, the effect of the
wormhole attack is spread more evenly across the nodes in
the network. At a maximum speed of 10 m/s, throughput
variability is similar for Plain AODV and TrueLink AODV,
however, TrueLink AODV achieves twice the throughput.

IX. CONCLUSION

We propose TrueLink, a countermeasure to the wormhole
attack, which can be implemented now on IEEE 802.11
networks with a minor firmware update to existing commercial
hardware. Wormhole protection is essential to a secure routing
protocol, and we believe TrueLink is good candidate for this.
Specifically, TrueLink has the following attractive properties.

Ready to be deployed. It has minimal support require-
ments. TrueLink does not rely on precise clock synchroniza-
tion, GPS coordinates, overhearing, or statistical methods.

Backwards compatible with IEEE 802.11. We design
TrueLink to be interoperable with IEEE 802.11. Thus, it can
be used with the current commercial hardware with only a
minor, backwards compatible, firmware modification.

Applicable to most routing protocols. TrueLink can be
integrated into virtually any routing protocol.

The wormhole attack is an important attack that has yet to
see a general purpose solution. With TrueLink, we hope to
remedy this situation. TrueLink is well suited for integration
in most existing secure routing protocols, and combined with
the state of the art in secure routing, promises to bring secure
wireless networks one step closer to reality.

REFERENCES

[1] Y. Hu, A. Perrig, and D. Johnson, “Packet leashes: A defense against
wormhole attacks in wireless networks.,” in INFOCOM, 2003.

[2] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc
networks,” in Proc. SCS Communication Networks and Distributed
Systems Modeling and Simulation, 2002.

[3] K. Sanzgiri, B. Dahill, B. Levine, C Shields, and E. Belding-Royer, “A
secure routing protocol for ad hoc networks,” in ICNP, 2002, pp. 78–89.

[4] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Proc. IEEE Workshop on Mobile Computing Systems, 1999.

[5] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad-hoc
wireless networks,” in Mobile Computing. Kluwer Academic, 1996.

[6] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance vector routing (dsdv) for mobile computeres,” in Proc. ACM
SIGCOMM, Sep. 1994.

[7] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-
demand secure routing protocol resilient to byzantine failures,” in WiSE
’02, 2002.

[8] Srdjan Capkun, Levente Buttyn, and Jean-Pierre Hubaux, “Sector: secure
tracking of node encounters in multi-hop wireless networks,” 2003.

[9] Issa Khalil, Saurabh Bagchi, and Ness B. Shroff, “Liteworp: A
lightweight countermeasure for the wormhole attack in multihop wire-
less networks.,” in DSN, 2005, pp. 612–621.

[10] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,”
in IEEE INMIC, 2001.

[11] Y. Hu, A. Perrig, and D Johnson, “Ariadne: A secure on-demand routing
protocol for ad hoc networks,” in ACM MobiCom, 2002.

[12] Y. Hu, D. Johnson, and A. Perrig, “Sead: Secure efficient distance vector
routing in mobile wireless ad hoc networks,” in WMCSA ’02, 2002.

[13] Yih-Chun Hu and Adrian Perrig, “A survey of secure wireless ad hoc
routing.,” IEEE Security & Privacy, special issue on Making Wireless
Work, May/June 2004.

[14] Imad Aad, Jean-Pierre Hubaux, and Edward W. Knightly, “Denial of
service resilience in ad hoc networks,” in MOBICOM, 2004.

[15] Stefan Brands and David Chaum, “Distance-bounding protocols,” in
Advances in Cryptology – EUROCRYPT ’ 93.

[16] Naveen Sastry, Umesh Shankar, and David Wagner, “Secure verification
of location claims.,” in Workshop on Wireless Security, 2003.

[17] Lingxuan Hu and David Evans, “Using directional antennas to prevent
wormhole attacks.,” in NDSS, 2004.

[18] Radha Poovendran and Loukas Lazos, “A graph theoretic framework
for preventing the wormhole attack in wireless ad hoc networks,” ACM
Journal on Wireless Networks (WINET), 2005.

[19] I. Broustis, M. Faloutsos, and S. Krishnamurthy, “How does topology
affect security in wireless network?,” in eSCo-Wi, 2006.

[20] Panagiotis Papadimitratos and Zygmunt J. Haas, “Secure data transmis-
sion in mobile ad hoc networks,” in WiSe ’03, New York, NY, USA,
2003, pp. 41–50, ACM Press.

[21] B. Awerbuch, R. Curtmola, D. Holmer, H. Rubens, and C. Nita-Rotaru,
“On the survivability of routing protocols in ad hoc wireless networks,”
in SecureComm, 2005.

[22] Mart Molle, “Private correspondence,” 2005.
[23] J. Eriksson, “Source code for truelink and wormhole attack in ns-2,”

http;//www.cs.ucr.edu/ jeriksson/, 2005.
[24] A.J. Menezes, Elliptic curve public key cryptosystem, Kluwer Academic

Publications, 1993.

84

