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Abstract—We propose an architecture called secure overlay
services (SOS) that proactively prevents denial of service (DoS)
attacks, geared toward supporting emergency services, or similar
types of communication. The architecture uses a combination
of secure overlay tunneling, routing via consistent hashing, and
filtering. We reduce the probability of successful attacks by:
1) performing intensive filtering near protected network edges,
pushing the attack point perimeter into the core of the network,
where high-speed routers can handle the volume of attack traffic
and 2) introducing randomness and anonymity into the for-
warding architecture, making it difficult for an attacker to target
nodes along the path to a specific SOS-protected destination.

Using simple analytical models, we evaluate the likelihood that
an attacker can successfully launch a DoS attack against an SOS-
protected network. Our analysis demonstrates that such an archi-
tecture reduces the likelihood of a successful attack to minuscule
levels. Our performance measurements using a prototype imple-
mentation indicate an increase in end-to-end latency by a factor of
two for the general case, and an average heal time of less than 10 s.

Index Terms—Access control, denial of service (DoS) attacks,
overlay networks, packet filtering, peer-to-peer (P2P) networks.

I. INTRODUCTION

ASECURE system meets or exceeds an application-speci-
fied set of security policy requirements. For example, in

message delivery, the high-level requirements may be that the
correct information gets to the right person, in the right place,
at the right time. The details of “right” are determined by the
application’s needs. For example, during a crisis, the network
can be used to carry communications between widely dispersed
“static” sites (e.g., various federal, state, and city agencies) and
(semi) roaming stations and users. Similarly, timely message de-
livery is crucial for battlefield or stock-trading tasks. Traditional
security mechanisms have addressed the first two parts of this
informal definition of security, but largely ignored the timeliness
or service guarantee issue. One threat to timely data delivery in
a public network such as the Internet is denial of service (DoS)
attacks: these attacks overwhelm the processing or link capacity
of the target site (or routers that are topologically close) by sat-
urating it (them) with bogus packets. Such attacks can seriously
disrupt legitimate communications at minimal cost and danger
to the attacker, as has been demonstrated repeatedly in recent
years.
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In the SOS architecture [1], we address the problem of se-
curing communication in today’s existing Internet protocol (IP)
infrastructure from denial of service (DoS) attacks, where the
communication is between a predetermined location and a set
of well-known users, located anywhere in the wide-area net-
work, who have authorization to communicate with that loca-
tion. We focus our efforts on protecting a site that stores infor-
mation that is difficult to replicate due to security concerns or
due to its dynamic nature. An example is a database that main-
tains timely or confidential information such as building struc-
ture reports, intelligence, assignment updates, or strategic infor-
mation. We assume that there is a predetermined set of clients
scattered throughout the network who require (and should have)
access to this information, from anywhere in the network.

Contrary to the other approaches we review in Section VI,
which are reactive, our approach is proactive. In a nutshell, the
portion of the network immediately surrounding the target (loca-
tion to be protected) aggressively filters and blocks all incoming
packets whose source addresses are not “approved.” The small
set of source addresses (potentially as small as 2–3 addresses)
that are “approved” at any particular time is kept secret so that
attackers cannot use them to pass through the filter. These ad-
dresses are picked from among those within a distributed set
of nodes throughout the wide area network, that form a secure
overlay: any transmissions that wish to traverse the overlay must
first be validated at entry points of the overlay. Once inside the
overlay, the traffic is tunneled securely for several hops along
the overlay to the “approved” (and secret from attackers) loca-
tions, which can then forward the validated traffic through the
filtering routers to the target. The two main principles behind
our design are: 1) elimination of communication pinch-points,
which constitute attractive DoS targets, via a combination of fil-
tering and overlay routing to obscure the identities of the sites
whose traffic is permitted to pass through the filter and 2) the
ability to recover from random or induced failures within the
forwarding infrastructure or within the secure overlay nodes.

We discuss how to design the overlay such that it is secure
with high probability, given that attackers have a large but finite
set of resources to perform the attacks. The attackers can also
know the IP addresses of the nodes that participate in the overlay
and of the target that is to be protected, as well as the details of
the operation of protocols used to perform the forwarding. How-
ever, we assume that: 1) the attacker does not have unobstructed
access to the network core and 2) the attacker cannot severely
disrupt large parts of the backbone.

Our architecture leverages heavily off of previous work on
IP security [2], IP router filtering capabilities, and novel ap-
proaches to routing in overlays [3] and peer-to-peer (P2P) net-
works [4], [5]. To the extent possible, we strive to use existing
systems and protocols, rather than invent our own. Our resulting
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system is in some ways similar to the onion routing architecture
[6] used for anonymous communications.

We perform a preliminary stochastic analysis using simple
networking models to evaluate the likelihood that an attacker is
able to prevent communications to a particular target. We deter-
mine this likelihood as a function of the aggregate bandwidth
obtained by an attacker through the exploitation of compro-
mised systems. Our analysis includes an examination of the ca-
pabilities of static attackers who focus all their attack resources
on a fixed set of nodes, as well as attackers who adjust their
attacks to “chase after” the repairs that the SOS system imple-
ments when it detects an attack. We show that even attackers
that are able to launch massive attacks are very unlikely to pre-
vent successful communication. For instance, attackers that are
able to launch attacks upon 50% of the nodes in the overlay have
roughly one chance in one thousand of stopping a given commu-
nication from a client that accesses the overlay through a small
subset of overlay nodes. We use our prototype implementation
with PlanetLab, a distributed infrastructure for experimentation
on overlay networks, to measure the increase in end-to-end la-
tency. We determine that using SOS increases the latency by a
factor of two, which we consider acceptable in comparison to
the latency or lack of communication when the when a debili-
tating DDoS attack is successfully launched. Furthermore, we
experimentally determine that the overlay can heal itself within
10 s of being targeted by such an attack.

II. ARCHITECTURE DESCRIPTION

The goal of the SOS architecture is to allow communication
between a confirmed user and a target. By confirmed, we mean
that the target has given prior permission to this user. Typically,
this means that the user’s packets must be authenticated and au-
thorized by the SOS infrastructure before traffic is allowed to
flow between the user through the overlay to the target. We use
the techniques we developed in [2] for this purpose. While we
focus on the communication to a single target, the architecture
is easily extended to simultaneously protect unicast communi-
cations destined to different targets. Both peers can use the SOS
infrastructure to protect bidirectional communications; this is
particularly important for “static” sites (e.g., two branches of
the same company). For mobile clients the reverse direction’s
traffic (from the target site to the client) can be sent directly over
the Internet, or it can also use the SOS infrastructure.

SOS is a network overlay, composed of nodes that commu-
nicate with one another atop the underlying network substrate.
Often, nodes will perform routing functionality to deliver mes-
sages (packets) from one node in the overlay to another. We
assume that the set of nodes that participate in the overlay is
known to the public and hence also to any attacker. In effect,
no node’s identity is kept hidden. However, certain roles that an
overlay node may assume in the process of delivering traffic are
kept secret from the public. Keeping participation information
of certain nodes hidden from the public could be a means of pro-
viding additional security, but is not required.

Attackers in the network are interested in preventing traffic
from reaching the target. These attackers have the ability to
launch DoS attacks from a variety of points around the wide
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Fig. 1. Basic SOS architecture.

area network that we call compromised locations. The number
and bandwidth capabilities of these compromised locations de-
termine the intensity with which the attacker can bombard a
node with packets, to effectively shut down that node’s ability
to receive legitimate traffic. Without an SOS, knowledge of the
target’s IP address is all that is needed in order for a moder-
ately provisioned attacker to saturate the target site. We assume
attackers are smart enough to exploit features of the architec-
ture that are made publicly available, such as the set of nodes
that form the overlay. In this paper, we do not specifically con-
sider how to protect the architecture against attackers who can
infiltrate the security mechanism that distinguishes legitimate
traffic from (illegitimate) attack traffic: we assume that com-
munications between overlay nodes remain secure so that an at-
tacker cannot send illegitimate communications, masking them
as legitimate. In addition, it is conceivable that more intelligent
attackers could monitor communications between nodes in the
overlay and, based on observed traffic statistics, determine ad-
ditional information about the current configuration. Protecting
SOS from such attackers is beyond the scope of this paper [7].

Fig. 1 gives a high-level overview of the SOS architecture
that protects a target node or site so that it only receives legiti-
mate transmissions. In the discussion that follows, we first give
a brief overview of the design process, and then develop the ar-
chitecture piece by piece. The reader can refer back to the figure
during the discussion.

A. Design Rationale

Fundamentally, the goal of the SOS infrastructure is to distin-
guish between authorized and unauthorized (or, more generally,
unverified) traffic. The former is allowed to reach the destina-
tion, while the latter is dropped or is rate-limited. Thus, at a
very basic level, we need the functionality of a firewall “deep”
enough within the network so that the access link to the target
is not congested. This imaginary firewall would perform access
control by using protocols such as IPsec.

However, traditional firewalls themselves are susceptible to
DoS attacks. One way to address this problem is to replicate
the firewall functionality, in a manner similar to that described
in [8]. To avoid the effects of a DoS attack against the firewall
connectivity, we need to distribute these instances of the firewall
across the network. In effect, we are “farming out” the expen-
sive processing (such as cryptographic protocol handling) to a
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large number of nodes. However, firewalls depend on topolog-
ical restrictions in the network to enforce access control policy.
Since our distributed firewall has performed the access control
step, it would seem obvious that all we need around the target is
a router that is configured to only let through traffic forwarded
to it by one of the firewalls.

However, a security system cannot depend on the identity of
these firewalls to remain secret. Thus, an attacker can launch a
DoS attack with spoofed traffic purporting to originate from one
of these firewalls. Notice that given a sufficiently large group
of such firewalls, we can select a very small number of these
as the designated authorized forwarding stations: only traffic
forwarded from these will be allowed through the filtering router
and we change this set periodically.

B. Architecture Overview

The forwarding of a packet within the SOS architecture, de-
picted in Fig. 1, proceeds through five stages.

• A source point that is the origin of the traffic forward a
packet to a special overlay node called a secure overlay ac-
cess point (SOAP) that receives and verifies that the source
point has a legitimate communication for the target.

• The SOAP routes the packet to a special node in the SOS
architecture that is easily reached, called the beacon.

• The beacon forward the packet to a “secret” node, called
the secret servlet, whose identity is known to only a small
subset of participants in the SOS architecture.

• The secret servlet forward the packet to the target.
• The filter around the target stops all traffic from reaching

the target except for traffic that is forwarded from a point
whose IP address is the secret servlet.

In the following discussion, we motivate why the SOS archi-
tecture requires the series of steps described above.

C. Protecting the Target: Filtering

In the current Internet, knowledge of the target’s network
identifier (IP address) allows an attacker to bombard the target
location with packets that originate from compromised loca-
tions throughout the Internet. To prevent these attacks, a filter
can be constructed that drops illegitimate packets at some point
in the network, such that the illegitimate traffic does not over-
whelm routing and processing resources at or near the target.
We assume that the filter can be constructed so that attackers
do not have access to routers inside the filtered region (i.e., they
cannot observe which source addresses can proceed through the
filter). Past history indicates that it is significantly more diffi-
cult for an attacker to completely take over a router or link in
the middle of an Internet service protocols (ISPs) network than
to attack an end-host; intuitively, this is what we would expect,
given the limited set of services offered by a router (compared
with, e.g., a web server or a desktop computer).

We assume that filtering is done at a set of high-powered
routers such that 1) these routers can handle high loads of traffic,
making them difficult to attack and 2) possibly there are several,
disjoint paths leading to the target, each of which is filtered in-
dependently. This way, if one of these paths is brought down, fil-
tered traffic can still traverse the others and ultimately reach the

target. Essentially, we assume that the filter can be constructed
locally around the target to prevent a bombardment of illegiti-
mate traffic, while at the same time allowing legitimate, filtered
traffic to successfully reach the target. Such filters need to be es-
tablished at the ISPs point of presence (POP) routers that attach
to the ISP backbone.

D. Reaching Well-Filtered Target

Under the filtering mechanism described previously, legiti-
mate users can reach the target by setting the filter around the
target to permit only those IP addresses that contain legitimate
users. This straightforward approach has two major shortcom-
ings. First, whenever a legitimate user moves, changes IP ad-
dress, or ceases to be legitimate, the filter surrounding the target
must be modified. Second, the filter does not protect the target
from traffic sent by an illegitimate user that resides at the same
address as a legitimate user, or (more importantly) from an ille-
gitimate user that has knowledge about the location of a legiti-
mate user and spoofs the source address of its own transmissions
to be that of the legitimate user.

A first step in our solution is to have the target select a subset
of nodes that participate in the SOS overlay to act as for-
warding proxies. The filter only allows packets whose source
address matches the address of some overlay node .
Since is a willing overlay participant, it is allowed to perform
more complex verification procedures than simple address fil-
tering and use more sophisticated (and expensive) techniques to
verify whether or not a packet sent to it originated from a legit-
imate user of a particular target.

The filtering function that is applied to a packet or flow can
have various levels of complexity. It is, however, sufficient to
filter on the source address: the router only needs to let through
packets from one of the few forwarding proxies. All other traffic
can be dropped, or rate-limited. Because of the small number
of such filter rules and their simple nature (source IP address
filtering), router performance will not be impaired [9], even if
we do not utilize specialized hardware.

This architecture prevents attackers with knowledge of legit-
imate users’ IP addresses from attacking the target. However,
an attacker with knowledge of the IP address of the proxy can
still launch two forms of attacks: an attacker can breach the
filter and attack the target by spoofing the source address of the
proxy, or attack the proxy itself. This would prevent legitimate
traffic from even reaching the proxy, cutting off communication
through the overlay to the target.

Our solution to this form of attack is to hide the identities of
the proxies. If attackers do not know the identity of a proxy, they
cannot mount either form of attack mentioned above unless they
successfully guess a proxy’s identity. We refer to these “hidden”
proxies as secret servlets.

E. Reaching a Secret Servlet

To activate a secret servlet, the target sends a message to the
overlay node that it chooses to be a secret servlet, informing that
node of its task. Hence, if a packet reaches a secret servlet and
is subsequently verified as coming from a legitimate user, the
secret servlet can then forward the packet through the filter to
the target. The challenge at this point is constructing a routing
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mechanism that will route to a secret servlet while utilizing a
minimal amount of information about its identity.

Here, we take advantage of the dynamic nature and the high
level of connectivity that exists when routing atop a network
overlay. The connectivity graph of a network overlay consists
of nodes which are the devices (e.g., end-systems) that partici-
pate in the overlay, and edges which represent IP paths that con-
nect pairs of nodes in the overlay. Unlike the underlying network
substrate whose physical requirements limit the pairs of nodes
that can directly connect to one another, network overlays have
no such limits, such that an overlay edge is permissible between
any pair of overlay nodes. This added flexibility and increased
number of possible routes can be used to complicate the job of
an attacker by making it more difficult to determine the path
taken within the overlay to a secret servlet. In addition, since
a path exists between every pair of nodes, it is easy to recover
from a breach in communication that is the result of an attack
that shuts down a subset of overlay nodes. The recovery involves
having the overlay route around these nodes. The underlying as-
sumption is that network core links cannot easily be shut down.

There exists a straightforward but costly solution to reaching
a secret servlet without revealing the servlet’s identifier (ID)
to the nodes that wish to reach it: have each overlay node that
receives a packet randomly choose the next hop on the overlay
to which it forward a packet [10]. Eventually, the packet will
arrive at a secret servlet that can then deliver it to the target.

F. Connecting to the Overlay

Legitimate users need not reside at nodes that participate in
SOS. Hence, SOS must support a mechanism that allows legit-
imate traffic to access the overlay. For this purpose, we define
a SOAP. A SOAP is a node that will receive packets that have
not yet been verified as legitimate, and perform this verification.
This verification can be performed using off-the-shelf authenti-
cation protocols such as IPsec or TLS. Allowing a large number
of overlay nodes to act as SOAPs increases the bandwidth re-
sources that an attacker must obtain to prevent legitimate traffic
from accessing the overlay. Effectively, SOS becomes a large
distributed firewall [8] that discriminates between “good” (au-
thorized) traffic from “bad” (unauthorized) traffic. By using a
large number of topologically distributed firewall instances, we
increase the amount of resources (bandwidth) an attacker has
to spend to deny connectivity to legitimate clients. Note that
if an attacker manages to acquire a legitimate user’s authoriza-
tion material, he can use multiple SOAPs to mount a DDoS at-
tack from inside the overlay. In that case, the secret servlet or
the beacon can use a pushback-like mechanism [9] to ask the
SOAPs to revoke the user’s authorization.

Having a large number of SOAPs increases the robustness
of the architecture to attacks, but complicates the job of dis-
tributing the security information that is used to determine the
legitimacy of a transmission toward the target. One can imagine
several ways in which SOAPs can be chosen. For instance, dif-
ferent users (IP address origins) can be mapped to different sub-
sets of SOAPs. Given the relatively small number of nodes that
SOS requires, as we shall see in Section III, a list of all SOS
nodes may be publicized and used by all clients. We plan to in-
vestigate SOAP selection in future work.
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Fig. 2. Chord-based overlay routing.

G. Routing Through the Overlay

Having each overlay participant select the next node at
random is sufficient to eventually reach a secret servlet [10].
However, it is rather inefficient, with the expected number of
intermediate overlay nodes contacted being , where

is the number of nodes in the overlay and is the number
of secret servlets for a particular target. Here, we discuss an
alternative routing strategy in which, with only one additional
node knowing the identity of the secret servlet, the route from
a SOAP to the secret servlet has an expected path length that is

. We use Chord [4], which can be viewed as a routing
service that can be implemented atop the existing IP network
fabric, i.e., as a network overlay. Consistent hashing [11] is
used to map an arbitrary identifier to a unique destination node
that is an active member of the overlay.

In Chord, each node is assigned a numerical ID via a hash
function in the range for some predetermined value of

. The nodes in the overlay are ordered by these identifiers.
The ordering is cyclic (i.e., wraps around) and can be viewed
conceptually as a circle, where the next node in the ordering
is the next node along the circle in the clockwise direction.
Each overlay node maintains a table that stores the identities
of other overlay nodes. The th entry in the table is the node
whose identifier equals or, in relation to all other nodes in the
overlay, most immediately follows , as shown
in Fig. 2. When overlay node receives a packet destined for ID

, it forward the packet to the overlay node in its table whose ID
precedes by the smallest amount. In the example, if node 7 re-
ceives a packet whose destination is the identifier 20, the packet
will route from 7 to 16 to 17. When the packet reaches node 17,
the next node in the overlay is 22 and, hence, node 17 knows that
22 is responsible for identifier 20. Chord routes packets around
the overlay “circle,” progressively getting closer to the desired
node, visiting nodes. Typically, the hash functions used
to map nodes to identifiers do not attempt to map two geograph-
ically close nodes to nearby identifiers. Hence, often two nodes
with consecutive identifiers are geographically distant from one
another within the network.
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The Chord service is robust to changes in overlay mem-
bership, and each node’s list is adjusted to account for nodes
leaving and joining the overlay such that the above stated
properties continue to hold. Reference [12] discusses various
security considerations for P2P networks that use distributed
hash tables. Most of these do not apply here, since membership
in the SOS overlay is “closed”—the clients and the targets
are not considered part of the overlay, and can only interact
with it through a well-defined interface that requires strong
authentication and authorization.

SOS uses the IP address of the target as the identifier to which
the hash function is applied. Thus, Chord can direct traffic from
any node in the overlay to the node that the identifier is mapped
to, by applying the hash function to the target’s IP address. This
node, to which Chord delivers the packet, is not the target, nor
is it necessarily the secret servlet. It is simply a unique node that
will be eventually be reached, regardless of the entry point. This
node is called the beacon, since it is to this node that packets
destined for the target are first guided. Thus, Chord provides a
robust and reliable, while relatively unpredictable for an adver-
sary, means of routing packets from an overlay access point to
one of several beacons.

Finally, the secret servlet uses Chord to periodically inform
the beacon of the secret servlet’s identity. Should the servlet for
a target change, the beacon will find out as soon as the new
servlet sends an advertisement. If the old beacon for a target
drops out of the overlay, Chord will route the advertisements
to a node closest to the hash of the target’s identifier. Such a
node will know that it is the new beacon because Chord will not
be able to further forward the advertisement. By providing only
the beacon with the identity of the secret servlet, traffic can be
delivered from any firewall to the target by traveling across the
overlay to the beacon, then from the beacon to the secret servlet,
and finally from the secret servlet, through the filtering router, to
the target. This allows the overlay to scale for arbitrarily large
numbers of overlay nodes and target sites. Unfortunately, this
also increases the communication latency, since traffic to the
target must be redirected several times across the Internet. If the
overlay only serves a small number of target sites, traditional
routing protocols or RON-like routing [3] may be sufficient.
Other overlay routing mechanisms can also be used, e.g., CAN
[13].

H. Summary of Architecture

Before continuing on, we review the operational structure of
SOS. A site (target) installs a filter in its immediate vicinity and
then selects a number of SOS nodes to act as secret servlets; that
is, nodes that are allowed to forward traffic through the filter to
that site. Routers at the perimeter of the site are instructed to
only allow traffic from these servlets to reach the internal of the
site’s network. These routers are powerful enough to filter on
incoming traffic using a small number of rules without adversely
affecting their performance.

When an SOS node is asked to act as a secret servlet for a site
(and after verifying the authenticity of the request), it will com-
pute the key for each of a number of well-known consistent
hash functions, based on the target site’s network address. Each

of these keys will identify a number of overlay nodes that will
act as beacons for that target.

Having identified the beacons, the servlets or the target will
contact and notify the beacons of the servlets’ identities. Bea-
cons verify the validity of the received information and store
that information which is necessary to forward traffic for that
target to the servlet.

A source that wants to communicate with the target contacts
an overlay access point (SOAP). After authenticating and au-
thorizing the request, the SOAP securely routes all traffic from
the source to the target via one of the beacons. The SOAP (and
all subsequent hops on the overlay) can route the packet to an
appropriate beacon in a distributed fashion using Chord, by ap-
plying the appropriate hash function(s) to the target’s address to
identify the next hop on the overlay.

Finally, the beacon routes the packet to a secret servlet that
then routes it (through the filtering router) to the target.

This scheme is robust against DoS attacks because if an ac-
cess point is attacked, the confirmed source point can simply
choose an alternate access point to enter the overlay. If a node
within the overlay is attacked, the node simply exits the overlay
and the Chord service self-heals, providing new paths over the
reformed overlay to (potentially new sets of) beacons. Further-
more, no node is more important or sensitive than others—even
beacons can be attacked and are allowed to fail. Finally, if a se-
cret servlet’s identity is discovered and the servlet is targeted as
an attack point, or attacks arrive at the target with the source IP
address of some secret servlet, the target can choose an alternate
set of secret servlets.

I. Redundancy

Having a single SOAP, beacon, or secret servlet weakens the
SOS architecture, in that a successful attack on any one of these
nodes can prevent legitimate traffic from reaching the target.
Fortunately, each component is easily replicated within the ar-
chitecture. Furthermore, an attack upon any of these compo-
nents, once realized, is easily repaired.

Specifically, SOAP functionality is easily replicated. Any
overlay node can act as a SOAP as long as it has the ability to
check the legitimacy of a packet transmissions. If a SOAP is
attacked, it can exit the overlay. A legitimate user attempting
access need only contact another SOAP.

Furthermore, the target can choose multiple nodes as secret
servlets and set the filter to allow packets from only these nodes
to pass through the filter. If a secret servlet is attacked, or its
identity breached such that attack traffic with a secret servlet’s
source IP address can proceed through the filter, the target can
remove the servlet whose identity is compromised from its set
of servlets and modify its filter appropriately. A secret servlet
under attack can also remove itself from the overlay until the
attack terminates.

Finally, multiple nodes can act as beacons for a target by ap-
plying several hash functions (or several iterations of the same
hash function) over the target identifier. In addition, if a beacon
node is attacked, the node can remove itself from the overlay,
and the Chord routing mechanism will heal itself such that a new
node will act as a beacon for that hash function. If the former
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beacon cannot communicate the secret servlet information to
the new beacon, then the new beacon must wait for the secret
servlet to contact it again (as part of a keep-alive protocol) with
its identity.

We note that when there are multiple beacons and secret
servlets, every beacon should know the identity of at least one
secret servlet so that the packets that each beacon receives
can be forwarded onward to a secret servlet. Thus, each hash
function is used by at least one secret servlet.

A last word on redundancy: since the secret servlets use tun-
neling to reach the target, it is possible to use the backup links
of a multihomed site to carry SOS-routed traffic (effectively
using tunneling as a source-routing mechanism). Thus, all at-
tack traffic will use the BGP-advertised best route to the target,
while traffic from the SOS infrastructure will use the unused
available capacity of the target site.

III. SECURITY ANALYSIS

In this section, we develop simple analytical models to eval-
uate the performance of SOS in the face of DoS attacks. In our
evaluation, we make certain assumptions: an attacker knows the
set of nodes that form the overlay, and can attack these nodes
by bombarding them with traffic. However, the attacker does
not know the precise functionality (beacons or servlets) of the
nodes, nor can it infer them (e.g., by monitoring traffic through
the overlay). The bandwidth available to the attacker to launch
attack upon the overlay and the target has an upper bound. Fur-
thermore, we assume that the attackers have not breached the
security protocols of the overlay, i.e., their packets can always
be identified by SOS as being illegitimate. Finally, each legit-
imate user can access the overlay through a limited number of
SOAPs, but different users access the overlay through different
SOAPs.

A. Static Attack

Our analysis begins by considering the following
problem. Suppose some subset of nodes in the overlay
are assigned specific tasks for a given target . Let

be the set of secret servlets with
be the set of SOAPs that

can be used by a given source point with ,
and be the set of beacons used to receive
transmissions headed toward is a function
of the number of hash functions issued by .

For our initial analysis, we assume that can communicate
successfully with as long as there exists an available access
point, an available beacon, and an available secret servlet that
can be used to complete the communication path. We also as-
sume that the selection of nodes to perform various duties is
done independently, such that a node can simultaneously act as
any combination of access point, beacon, and secret servlet. We
assume that all nodes implement the Chord routing service (and,
hence, can be part of the communication path).

1e-08

1e-06

0.0001

0.01

1

100

1 10 100 1000 10000 100000 1e+06 1e+07

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

# nodes attacked

N=100
N=1000

N=100000
N=1000000

1e-08

1e-06

0.0001

0.01

1

100

1 10 100 1000

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

# nodes that are beacons

f=0.01
f=0.1

f=1
f=10

f=100

(a) Varying number of attackers and nodes in the overlay

(b) Varying number of beacons and secret servlets

Fig. 3. Attack success probability for the static case.

Let be the probability that a set of nodes selected
at random from nodes contains a specific subset of
nodes. It is easy to show that

when ,1 and when . Let be the
number of nodes that the attacker attacks. Let be a random
variable that equals 1 if can reach during an ongoing attack
and 0, otherwise

Fig. 3 plots the likelihood of an attack succeeding at shut-
ting down access to a site in the static case. In Fig. 3(a), we
hold , and fixed at 10 and vary along the axis.
These numbers are quite conservative: we restrict the source’s
entry to only ten possible access points and allow at most ten
beacons and secret servlets to service its needs. An increase in
any of these numbers decreases the probability of a successful

1This follows from an algebraic reduction of

P (a; b; c) =
a� c

b� c

a

b
:
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attack. The axis plots the probability of a successful attack,
with the different curves representing different values of , the
total number of nodes in the overlay system. In Fig. 3(b), we
hold fixed at 10 and fixed at 10 . We vary along the

axis and again plot the probability of a successful attack on
the axis. The different curves represent the probabilities for
different values of , where .

From these figures, we observe that the likelihood of an at-
tack successfully terminating communication between and
is negligible unless the attacker can simultaneously bring down
a significant fraction of nodes in the network. For instance,
Fig. 3(a) demonstrates that when only ten nodes act as bea-
cons, ten nodes act as secret servlets, and ten nodes act as ac-
cess points, for an attack to be successful in one out of 10 000
attempts, approximately 40% of the nodes in the overlay must
be attacked simultaneously. Similarly, Fig. 3(b) shows that the
likelihood of a successful attack is significant only when ei-
ther the number of secret servlets or the number of beacons
is small, but as we increase their numbers the attack success
probability rapidly falls beneath minuscule levels. In summary,
long-term static attacks upon a moderately provisioned SOS are
unlikely. (Notice that the number of overlay nodes is not lim-
ited by the number of POPs; such nodes can be located any-
where throughout the network, even at customer’s facilities. If
co-located with routers, more than one such node can be at-
tached to each router.)

B. Dynamic Attacks and Recovery

Our previous model assumed that an attacker would select a
set of nodes to attack, and that SOS takes no repairing action
(e.g., by changing the node that acts as the secret servlet, or by
having nodes dropping from the overlay). We extend this model
to the case where SOS does take such action and the attacker
reacts to a repaired network by altering its attack.

As in the static case, we assume that the attacker has enough
bandwidth resources to bring down nodes. When SOS iden-
tifies an attacked node, that node is removed from the overlay
such that its being attacked does not prevent communication be-
tween the source and target. The attacker reacts after some time,
and it redirects its attack toward a node that still resides in the
overlay. We assume that there is a repair delay that equals
the difference in time from when a node is first attacked until the
time when SOS detects the attack and removes the node. Also,
there is an attack delay that equals the difference in time be-
tween when an attacked node is removed from the overlay to the
time when the attacker redirects the attack toward a new node
in the overlay.

Our analysis assumes that when an attack on a node is termi-
nated, that node is immediately brought back into the overlay.
This is a reasonable assumption since a node can detect when it
is no longer being bombarded with traffic.

We define a random variable to be the number of nodes
that are under attack that have not yet been removed from the
overlay at time . Since the attacker can attack up to nodes,
we have that . Letting , we
can extend our static case analysis to this dynamic case. Let

be a random variable that equals 1 if can reach
during an ongoing attack at time and 0, otherwise. When of

TABLE I
QUEUEING MODELS FOR THE VARIANTS OF ATTACK AND REPAIR PROCESSES

the nodes are active in the overlay, then the total number of
nodes that are active in the overlay is . Then, we
obtain

where is set to equal , when .
We are interested in two variants of how we model the SOS re-

pair process. In the first, the ability to react to each attacked node
is performed sequentially. This would occur when the decision
to modify the overlay is made by a single centralized authority.
We refer to this variant as the centralized repair process. Alter-
natively, there can be a distributed repair process, where repairs
can be performed in parallel. This would occur when each node
can independently perform its repair process. Similarly, the at-
tack process can be centralized, where only one attack node can
be modified at a time, or distributed, where separate attackers
are responsible for the detection and movement of their indi-
vidual attacks.

Because SOS is a novel architecture, we do not yet have a
detailed understanding of how the repair and attack processes
will function. Thus, we do not have models that accurately cap-
ture the distributions of (attack delay) and (repair delay).
Nonetheless, we are interested in gaining preliminary insight
into how the relative rate of change in the number of success-
fully attacked nodes active in the overlay affects the robustness
of SOS. We achieve this insight by modeling the framework
as a closed queueing system with a finite customer population.
Customers arrive at the server(s), obtain service, and then after
a certain delay or think time, return to get serviced again. In
these models, the number of jobs active in the queueing system
equals the number of nodes actively under attack that remain in
the overlay. The repair process removes jobs (service) from the
system and the discovery by attacker and redirection places jobs
back in the system. We assume both and are exponen-
tially distributed random variables with respective rates and .

Table I presents the queueing models used to capture the four
possible scenarios, given that both the attack and repair pro-
cesses can be either centralized and distributed. Each of the four
models is a birth-death process with states where
the process resides in state when there are nodes that are ac-
tive in the overlay that are being attacked . When the
attack is centralized, the rate of transition from state to state

is . In the distributed case, the rate is . When the
repair is centralized, the rate of transition from state to state

is . In the distributed case, the rate is .
In each model, is expressed as a function of . See

[14] for the exact formulas. In Fig. 4, we plot ,
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Fig. 4. Attack success probability for the dynamic case.

varying along the axis. In each figure, the SOS
overlay contains 10 nodes, where ten nodes are selected as
secret servlets, ten nodes selected as beacons, and each user
can access the overlay through ten SOAPs. Each curve plots

using a different value for . We see that
as grows large, grows asymptotically to
the corresponding value of the static case . As

increases, attacks recover more quickly and repair takes
longer, such that the expected number of attacked nodes inside
the overlay approaches . When is small,
diminishes since the number of nodes successfully attacked
inside the system is reduced.

Not surprisingly, for a fixed , attacks are most likely to deny
service to the target when the attack process is distributed and
the repair process centralized, and are least likely to deny service
when the reverse holds. When both processes are distributed, the
fraction of time for which the attack is successful can be signif-
icant when a large fraction of nodes in the overlay is attacked,
even when . This can be understood intuitively by com-
paring the respective birth-death processes of the system when
repair and attack processes are both centralized and where they
are both distributed. When both processes are centralized, each
upward transition’s rate equals and each downward transi-
tion’s rate equals . In the system where both processes are dis-
tributed, the upward transitions’ rates of are larger for

states with smaller , whereas the downward transitions’ rates
of are smaller with smaller . As a result, when , the
centralized-process system is less likely to drift away from the
smaller states.

C. Attacking the Underlying Network

To this point, we have assumed that to deny service to a target
protected by SOS, an attacker will deny service to nodes in the
overlay. Another alternative, however, is to launch an attack at
the core of the network. Rather than attacking the edge nodes
that make up the overlay, attackers can focus on those core nodes
that lie on paths between multiple overlays.

We measure attack severity in a scenario in which several
compromised zombie nodes, widely distributed over the net-
work, launch attacks on a target node. The attacks can be co-
ordinated, timer-driven, or triggered by events like opening of
mailboxes, booting up of zombie machines, etc. For instance,
the triggering mechanism of the attack can either be: 1) attack
immediately, or 2) execute code at some specified time. For 1),
the timing of the attack depends on the infection vector: for an
email-based worm it is reasonable to assume that attacks will
go off at random times from zombie machines. For 2), we can
assume the coordinated attacks to be a single “large” attack. We
next show that attacks that are a combination of the two will
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overpower routers with low bandwidth capabilities much easier
than those with high bandwidth capabilities.

As a simple first approximation, we can view the arrival of
the attacks from such clients (with coordinated attacks acting as
a single, “large” attack client) as a Poisson process, with an ar-
rival rate attacks per unit time. Note that we are modeling
the attack arrival as a Poisson process. The attack traffic it-
self is assumed to be (high bandwidth) CBR. Each attacking
client is assumed to use up units of resources (typically band-
width) from a target while the attack is in progress. We also
assume that the duration of attacks from such clients is expo-
nentially distributed, with mean (the attacks can terminate
for a number of reasons, for instance discovery and shutdown
of compromised clients by users/local system administrators or
discovery by some trace-back mechanism and shutdown by ac-
cess network filtering). We also assume that legitimate traffic
arrives at the node with rate , requiring units of resource
and a mean holding time . Let us assume that the target
node has units of resource available. When all resources get
tied up and arriving requests (legitimate or not) are denied ser-
vice, we consider the attack successful.

The system model is now abstracted into a stochastic knap-
sack [15] framework. In a stochastic knapsack, is the total
amount of resources available at the server, and each arriving
connection is mapped into an arriving call of class with re-
source requirement and mean holding time . Calls in
each class arrive at a rate . The knapsack always admits an ar-
riving object when there is sufficient room. The probability of a
successful DoS attack is the blocking probability corresponding
to the class of legitimate traffic.

The blocking probability for a class- call under Poisson
arrival assumption is [15]

(1)

where .
As an illustrative example, we consider a simple case where

we have only two classes of customers, one corresponding to the
DoS attacks and the other to legitimate traffic. In a more accu-
rate or generalized model, we can classify the various clients ac-
cording to their bandwidth capabilities, more specifically their
network access types like DSL, Cable, T1, Dialup, etc., how-
ever that does not change the nature of the results we present.
We assume that an individual call in each class uses up the same
amount of bandwidth (motivated by the idea that the compro-
mised clients come from the same population as the legitimate
users). For a DoS attack to be successful, the load level
for the class of attack traffic has to be significantly higher than
that of legitimate traffic. We construct a test scenario where the
target node has 20 units of resource available, both the attack
and legitimate traffic utilize one unit of resource and
for the legitimate traffic is one. In Fig. 5, we plot the probability
that a legitimate connection is denied service as a function of
of of attack traffic.

As we can observe, under our test scenario, where
for the attack traffic will cause 90% of the legitimate traffic to be
denied service. Under a massive attack, if the attack load rises
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Fig. 5. Blocking probability for legitimate traffic as a function of attack traffic
load.

to 10 , 99.8% of legitimate traffic is denied service. Now, we
consider the effects of two key features of the SOS architec-
ture. First, when we push the attack point perimeter into the
interior of the core, then the traffic handling capability of the
attacked node increases (core routers can handle 10 Gb/s line
speeds per interface, compared with 155 Mb/s capabilities of a
typical high-speed edge router). We consider the case where the
attack traffic load in our test scenario is 200, and we recompute
the blocking probability for legitimate traffic as we increase the
capacity of the node by a factor , i.e., . We
denote the ratio of the old blocking probability with the new
blocking probability as the bandwidth gain (BG) of the system.
In Fig. 6(a), we plot the BG of the system as a function of . As
can be observed, a bandwidth increase by a factor of 12 brings
about a reduction in the blocking probability by three orders of
magnitude.

Next, we study the effects of anonymizing the attacked node.
If the attacker does not know the identity of the secret servlet for
a particular target, the attacks will be launched randomly onto
the overlay. Only a fraction of those attacks will reach the target
servlet. Thus, the effective arrival rate of the attacks becomes

, where is the fraction of the secret servlets in the
SOS for a particular node. We again compute the ratio of the old
probability with the new blocking probability and denote it as
the randomization gain (RG) of the system. In Fig. 6(b), we plot
the RG of the system as a function of the number of nodes in the
overlay (as the number of nodes in the overlay increases from
left to right, a correspondingly smaller fraction of the traffic
reaches the target node). Placing the target node randomly in a
group of 30 brings down the probability of attack by four orders
of magnitude.

IV. PERFORMANCE MEASUREMENT

In order to quantify the overhead associated with use of SOS,
we developed a prototype implementation using web proxies as
the SOS overlay nodes, and measured the time-to-completion
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Fig. 6. Performance gains with SOS.

of https requests. That is, we measured the elapsed time
starting when the browser initiates the transmission control
protocol (TCP) connection to the destination or the first proxy,
to the time all data from the remote web server have been
received. We ran this test by contacting three different SSL-en-
abled sites: login.yahoo.com, www.verisign.com, and the
Columbia course bulletin board web service (https://www1.co-
lumbia.edu/sec/bboard). For each of these sites, we measured
the time-to-completion for a different number of overlay nodes
between the browser and the target (remote web server).

Table II shows the results for the case of 0 (browser con-
tacts remote server directly), 1, 4, 7, and 10 overlay nodes. The
times reported are in seconds and are averaged over several
HTTPS GET requests of the same page, which was not locally
cached. For each GET request, a new TCP connection was ini-
tiated by the browser. The row labeled “Columbia (2nd)” shows
the time-to-completion of an HTTPS GET request that uses an
already-established connection through the overlay to the web
server, using the HTTP 1.1 protocol.

TABLE II
DIRECT CONNECTION VERSUS CHORD-BASED SOS OVERLAY

TABLE III
DIRECT CONNECTION VERSUS SHORTCUT-BASED SOS OVERLAY

We used PlanetLab [16], a wide-area overlay network testbed.
The PlanetLab nodes are distributed in academic institutions
across the country, connected over the Internet. We deployed
our SOS proxies PlanetLab and ran the exact same tests. We see
that the time-to-completion in this scenario increases by a factor
of 2–10, depending on the number of nodes in the overlay. The
increase in latency can be directly attributed to the delay in the
links between the SOS nodes.

While the PlanetLab configuration allowed us to conduct a
much more realistic performance evaluation, it also represents
a worst-case deployment scenario for SOS: typically, we would
expect SOS to be offered as a service by an ISP, with the (ma-
jority of) SOS nodes located near the core of the network. Using
PlanetLab, the nodes are distributed in (admittedly well-con-
nected) end-sites. We would expect that a more commercial-ori-
ented deployment of SOS would result in a corresponding de-
crease in the interoverlay delay. On the other hand, it is easier
to envision end-site deployment of SOS, since it does not re-
quire any participation from the ISPs. Finally, while the addi-
tional overhead imposed by SOS can be significant, we have
to consider the alternative: no web service while a DoS attack
against the server is occurring. While an increase in end-to-end
latency by a factor of 5–10 is considerable, we believe it is more
than acceptable in certain environments and in the presence of
a determined attack.

Table III shows the results (in seconds) when a shortcut
implementation was tested on the PlanetLab testbed using 76
overlay nodes. In this variant, SOAPs use Chord routing to
contact the beacon and determine the identity of the appropriate
secret servlet. They then cache this information for use with
subsequent traffic between the source and the target, and
directly route traffic to the servlet. Thus, in this scenario, the
overlay itself is used only for signaling, with actual data transfer
requiring only two hops. The hops to the beacon ranged from
4–8 and did not have a significant effect on latency. This im-
plementation provides significant performance improvements,
particularly on subsequent requests for the same site because of
the caching, with end-to-end latency increasing by as little as a
factor of two. To simulate the effects of an attack on individual
nodes in the overlay, we brought down specific nodes. The
overlay healed itself within 10 s.
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V. FURTHER DISCUSSION

Our study of SOS is admittedly in its early stages. There are
several issues that need to be addressed for the service to have
a viable impact within the Internet. In this section, we discuss
current limitations and suggest directions for future research.

1) Attacks From Inside the Overlay: We have assumed
that no malicious user can successfully bypass our protection
perimeter. However, in practice, security management over-
sights or development bugs could lead to situations where
breaches occur. An evaluation of the potential damages that can
be done from the inside and approaches to limit these damages
warrants further investigation.

2) A Shared Overlay: We have presented SOS as a means
to permit communication from a single confirmed source
point to a single target. The architecture should easily scale
to handle numerous confirmed source points transmitting to
multiple targets. Users of the infrastructure should treat it as
an untrusted network in terms of privacy or integrity (i.e., if
their communications are of a sensitive nature, they should
be appropriately encrypted)—SOS only attempts to address
the DoS problem; as such, it should be treated as a virtual
wide-area network (WAN).

We note that in its current form, state for each target must
be maintained at the secret servlets and beacons that support
those targets, as well as at access points (to confirm a source
point’s right to contact the target). Scalability is improved by
limiting the set of access points, secret servlets, and beacons
that offer support to a given target. However, this makes the
service more prone to DoS attacks. The overlay becomes more
efficient at protecting users from DoS attacks as it grows. Hence,
it would be of interest for multiple organizations to utilize a
shared overlay. This would increase the likelihood of the overlay
being compromised from the inside. We intend to investigate
some form of sandboxing that could be constructed within the
shared overlay such that a breach in one organization’s security
system would not lead to breaches in other networks.

3) Timely Delivery: To achieve security, SOS forces traffic
through a series of overlay points that perform different tasks.
We suspect that the latency across the path is far from min-
imal. Preliminary simulations have shown the latency to be in
the order of ten times larger than in the direct communications
case (in the absence of an attack). While this is a large overhead,
it may be acceptable in mission-critical systems. It would be of
interest to see if there are any “shortcuts” through the overlay
that do not compromise security, or to extend the architecture
such that it contains a “knob” that allows users to trade levels of
security with timely delivery.

VI. RELATED WORK

A fundamental design principle of the IP architecture is to
keep the functionality inside the core of the network simple,
pushing as much mechanism as possible to the network end-
points. This principle, commonly referred to as the “end-to-end

principle” [17], has been the basic premise behind protocol de-
sign. However, as has been demonstrated in the past few years
[18]–[20], such mechanisms are inadequate in addressing the
problem of DoS attacks.

Unfortunately, as a result of its increased popularity and use-
fulness, the Internet contains both interesting targets and enough
malicious and ignorant users that DoS attacks are simply not
going to disappear on their own; indeed, although the press has
stopped reporting such incidents, recent studies have shown a
surprisingly high number of DoS attacks occurring around the
clock throughout the Internet [21].

The need to protect against or mitigate the effects of DoS
attacks has been recognized by both the commercial and re-
search world. Some work has been done toward achieving these
goals, e.g., [9], [22]–[24]. However, these mechanisms focus
on detecting the source of DoS attacks in progress and then
countering them, typically by “pushing” some filtering rules on
routers as far away from the target of the attack (and close to the
sources) as possible. Thus, they fall into this class of approaches
that are reactive. The motivation behind such approaches has
been twofold: first, it is conceptually simple to introduce a pro-
tocol that will be used by a relatively small subset of the nodes
on the Internet (i.e., ISP routers), as opposed to requiring the in-
troduction of new protocols that must be deployed and used by
end-systems. Second, these mechanisms are fairly transparent
to protocols, applications, and legitimate users. Unfortunately,
these reactive approaches by themselves are not always ade-
quate solutions.

Methods that filter traffic by looking for known attack pat-
terns or statistical anomalies in traffic patterns can be defeated
by changing the attack pattern and masking the anomalies that
are sought by the filter. Furthermore, statistical approaches will
likely filter out valid traffic as well. Since the Internet spans mul-
tiple administrative domains and (legal) jurisdictions, it is often
very difficult, if not outright impossible, to shut down an attack
by contacting the administrator, or the authorities closest to the
source. In any case, such action cannot be realistically delivered
in a timely fashion (often taking several hours). Even if this were
possible, it is often the case that the source of the attack is not the
real culprit but simply a node that has been remotely subverted
by a cracker. The attacker can just start using another compro-
mised node.

Using a “pushback”-like mechanism such as that described
in [9] to counter a DoS attack makes close cooperation among
different service providers necessary: since most attacks use
random source IP addresses (and since ingress filtering is not
widely used [25]), the only reliable packet field that can be
used for filtering is the destination IP address (of the target).
If filters can only be pushed “halfway” through the network be-
tween the target and the sources of the attack, the target runs the
risk of voluntarily cutting off or adversely impacting (e.g., by
rate limiting) its communications with the rest of the Internet.
The accuracy of such filtering mechanisms improves dramati-
cally as the filters are “pushed” closer to the actual source(s)
of the attack. Thus, it will be necessary for providers to allow
other providers, or even end-network administrators to install
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filters on their routers. Apart from the very realistic possibility
of abuse, it is questionable whether such collaboration can be
achieved to the degree necessary.

The same concerns hold for the case of collaborative action by
the ISPs: even easy to implement mechanisms such as ingress
filtering, that could reduce or even eliminate spoofed-address
DoS attacks, are still not in wide use. We believe it is rather un-
realistic to expect that cooperative providers would even estab-
lish static filters to allow legitimate (paying) clients to tunnel
through their infrastructure with any assurance of quality-of-
service and much less so for the case of mobile or remote clients
(as may be the case for emergency teams).

Another approach to mitigating DoS attacks against infor-
mation carriers is to massively replicate the content being
secured around the entire network. To prevent access to the
replicated information, an attacker must attack all replication
points throughout the entire network—a task that is con-
siderably more difficult than attacking a small number of,
often co-located servers. Replication is a promising means
to preserve information that is relatively static, such as news
articles. However, there are several reasons why replication is
not always an ideal solution. For instance, the information may
require frequent updates, complicating large-scale coherency
(especially during DoS attacks), or may be dynamic by its
very nature (e.g., live audio or video). Another concern is the
security of the information: engineering a highly replicated
solution without information leaks is a challenging endeavor.

VII. CONCLUSION

In this paper, we addressed the problem of securing a com-
munication service on top of the existing IP infrastructure from
DoS attacks. It is envisioned that such a service would be of-
fered, among others, to emergency teams in the aftermath of a
disaster, to facilitate communication between the teams and var-
ious agencies and organizations over the Internet.

We attack the problem with a proactive mechanism, which is
composed of aggressive packet filtering in a site’s network pe-
riphery, an overlay network that can self-heal during (and after)
a DoS attack, and a scalable access control mechanism that al-
lows legitimate users to use the overlay network. We call this
architecture secure overlay services, or SOS.

Through simple analytical models, we show that DoS attacks
directed against any part of the SOS infrastructure have negli-
gible probability of disrupting the communication between two
parties: for instance, when only ten nodes act as beacons, ten
nodes act as secret servlets, and ten nodes act as access points,
for an attack to be successful in 1 out of 10 000 attempts, ap-
proximately 40% of the nodes in the overlay must be attacked
simultaneously. Furthermore, the resistance of a SOS network
against DoS attacks increases greatly with the number of nodes
that participate in the overlay.

We believe that our approach is a novel and powerful way
of countering DoS attacks, especially in service-critical envi-
ronments. While there remain several issues to be solved, our
work should encourage researchers to investigate proactive ap-
proaches in addressing the DoS problem.
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