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Abstract— Overlay multicast networks are used by service
providers to distribute contents such as web pages, streaming
multimedia data, or security updates to a large number of users.
However, such networks are extremely vulnerable to message
dropping attacks by malicious or selfish nodes that intentionally
drop packets they are required to forward. It is difficult to
detect such attacks both efficiently and effectively, not mentioning
to further identify the attackers, especially when members in
the overlay switch between online/offline statuses frequently. We
propose a random-sampling–based scheme to detect such attacks,
and a path-resolving–based scheme to identify the attack nodes.
Our schemes work for dynamic overlay networks and do not
assume the global knowledge of the overlay hierarchy. Analysis
and simulation results show that our schemes are bandwidth-
efficient and they both have high detection/identification rates
but low false positive rates.

Index Terms: Overlay networks, multicast, message dropping
attacks, network dynamics.

I. INTRODUCTION

Multicasting is an efficient mechanism for packet delivery in
one-to-many data transfer applications. Although IP multicast
has long been regarded as the right mechanism for large-scale
group communication applications due to its efficiency, its
full deployment has been very difficult and slow due to its
dependency on routers and ISP’s reluctance to turn on IP
multicast. A new alternative way is to move the multicast
functionality from routers to end-hosts, i.e. let end-hosts that
form a multicast group to replicate and forward packets on
behalf of the group. This is called overlay multicast, also called
end system multicast or application-level multicast [8]. Based
on standard unicast mechanisms, hosts participate in an appli-
cation session share responsibility for forwarding information
to other hosts. Thus, although additional overheads are put
on end hosts, the mechanism is more applicable because of its
easiness for deployment. Examples of applications that benefit
from overlay multicast include the distributions of web pages,
streaming multimedia data, real-time stock quotes, etc.

Although many research effort has been put on overlay
multicast networks, most of them focus on network construc-
tions, data deliveries, and routing. Security issues in overlay
multicast networks have not been considered adequately. The
existing work either investigates the impact of selfish cheating
nodes on the performance of overlay multicast [11], key
management[19], or improves the fault-tolerance or denial-
of-service(DoS) resilience of overlay network by introducing

redundancy [15], [17], [4], [19] in overlay multicast commu-
nications.
Contributions We study the message dropping attack, in
which selfish or malicious nodes (referred to as compromised
nodes hereafter) in an overlay hierarchy intentionally drop the
messages they have received, causing denial of service to the
nodes in its subtree. Unlike all the previous research[15], [17],
[4], [19] which attempts to tolerate message dropping attacks,
our work makes the first effort to detect this attack and further
identify the compromised nodes.

More specifically, we first examine the severity of the
message dropping attacks, then propose two efficient security
schemes: a random sampling based scheme to detect potential
message dropping attacks in the network and a path resolving
based scheme to identify compromised nodes. Besides con-
sidering static overlay networks, we also study these schemes
in dynamic overlay networks where global knowledge of the
overlay hierarchy is not assumed. Theoretical analysis and
simulation results show that both schemes are effective and
bandwidth-efficient, and also have low false positive rates.
Organization The remainder of this paper is organized as
follows: Section II discusses some related work on overlay
multicast networks. Section III describes the system model
and our design goal. In Section IV, we present our basic
schemes of malicious node detection and identification in a
static overlay. In Section V, we extend these two schemes for
dynamic overlay networks. We evaluate our schemes through
theoretical analysis and simulations in Section VI. Section VII
draws the conclusion.

II. RELATED WORK

Mathy et al [11] studied the impact of selfish nodes cheating
about their distance measurements in application-level multi-
cast overlay tree. Ngan et al [12] presented mechanisms that
distinguish selfish nodes from their peers. The peers make their
judgments strictly by observing the behavior of their upstream
peers. Wright et al [16] presented k-redundant depender graphs
for distributing public-key certificate revocation lists (CRLs),
which provides every node in the graph with k disjoint paths
to the root of the graph, thus guaranteeing delivery even when
up to k − 1 paths between them have failed. Song et al [15]
improved the scalability of the above scheme by presenting
expander graphs for constructing robust overlay networks that
have constant degree. Yang et al [17] proposed to augment
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tree-like hierarchy with hierarchical overlay networks, which
is actually also a type of graphs, to achieve DoS resilience.
Drabkin et al [6] designed an overlay based Byzantine tolerant
broadcast protocol, which overcomes Byzantine failure by
combining digital signatures, gossiping of message signatures,
and failure detectors.

Banerjee et al [4] introduced a probabilistic forwarding
scheme for overlay multicast. In their scheme, every node
forwards received packets to a randomly selected set of
nodes. Zhu et al [19] described a k-RIP scheme in which the
distribution server injects k copies of the same message into
k randomly selected nodes in the network. These schemes
provide probabilistic guarantee on message delivery ratio in
the presence of message dropping attacks.

Jun et al [10] propose a technique, which is similar to TCP
sliding window, for fault tolerance in overlay applications. In
their scheme, each message distributed has a sequence number
and periodically the root generates a signed certificate which
contains the last sequence number. Nodes in the overlay either
do not receive this (and hence know a parent is dropping
packets) or receive it and realize that they have not receive
the most recent multicast packets and hence again know that
a parent is dropping packets. They then reconnect to the tree
at a better point. Their method, however, assumes that the
root maintains a topology of the entire overlay. Moreover,
in a dynamic environment where packet losses caused by
node joins/departures cannot be ignored, failing to receive a
sequence message from the root does not necessarily mean a
malicious parent to the node.

In addition to the greatly increased bandwidth overhead,
many of these techniques require to maintain certain net-
work connectivity or structure to provide security guarantee;
moreover, they assume the global knowledge of the overlay
hierarchy, as is usually impossible for dynamic environments.
Unlike the above techniques, our work adopts a sampling-
based approach to detect the existence of message dropping
attacks in the first place, then tries to identify the attackers.
As such, our techniques provide another security building
block other than fault tolerance towards making overlays more
secure.

III. ASSUMPTIONS AND DESIGN GOAL

The System Model There are potentially a large number of
application scenarios of overlay multicast, which are char-
acterized by different parameters, e.g., group size, member-
ship dynamics, number of data sources. It seems unlikely
that a single system model can describe all these scenarios.
Therefore, we focus on a specific application scenario, which
we believe is (or will be) very representative. We consider
a commercial application of overlay multicast, in which a
service provider distributes data (e.g., live content or streaming
media) to a large number of subscribers (also called member
nodes hereafter).

For simplicity, we assume that online nodes are self-
organized into an overlay multicast delivery tree rooted at a
distribution server of the service provider. The algorithms for

constructing and maintaining overlay multicast trees [3], [8],
[9] are out of the scope of our work. In this model, packets are
propagated downwards in the hierarchy and reach every online
member node if there is no any packet losses and attacks. We
expect that the normal behavior of each node is to forward
each packet it receives to its current child nodes in the overlay
hierarchy. To focus our research on security issues and avoid
complications from group member controls, here we assume
a closed model where the population of the system remains
stable.

We assume that each member node possesses a security
credential such as a public key certificate, which is authorized
by the service provider, so that it can join the overlay network.
Every node only accepts authorized nodes as its parent node
or child nodes. A key management scheme such as the one
in [19] may be applied to revoke the nodes that are identified
as compromised, as this work does not deal with the node
revocation issue.
Attack Model Because an unauthorized node cannot join the
overlay network without a valid credential, we only focus on
authorized but misbehaving insider nodes. We assume that a
compromised node launches the message dropping attack to
cause denial of service to the other nodes in its subtree and
multiple compromised nodes, controlled by the same attacker,
may collaborate in launching this attack. Moreover, we assume
an intelligent attacker who knows the defense strategies of the
group controller (GC), the tree topology of the overlay, and can
place the compromised nodes in the positions of his choice.
However, due to the use of security credential for joining the
network, a node cannot lie about identity.
Design Goal To detect this attack, the simplest solution
is to query every online node some time after the server
broadcasts a message. A negative acknowledgement indicates
the existence of such an attack, and further investigation may
be made to further identify the compromised nodes. Obviously,
this scheme does not scale at all with the network size.
Therefore, our goal is to perform attack detection and attacker
identification in an efficient, scalable while still effective way.

IV. SAMPLING SCHEMES FOR STATIC OVERLAY

NETWORKS

This section studies the problem of attack detection and
attacker identification in a static overlay, where member nodes
remain online once they have joined the network. The nodes
communicate with one another through a TCP-based protocol;
therefore, we assume that packet losses are only caused by
message dropping attacks. We make these assumptions, which
may not be very realistic, to help understand our schemes for
dynamic networks introduced in the next section.

We assume a static balanced tree-structured topology which
is known to both the group controller and the attackers. Let
the degree of the tree be d and the height H, the population of
the overlay is N = dH+1−1

d−1 . We use LCA to denote the lowest
common ancestor of a set of nodes. In Fig.1, node m and i
share a LCA level c, denoted as LCA(m, i) = c.



A. Attacking Strategy

For an attacker, the optimal policy to place his compro-
mised nodes in the overlay network is to keep as many
legitimate nodes (victims) as possible inside the subtrees of
the compromised nodes, so that broadcast messages cannot
reach these victims. Meanwhile, the attacker does not want
his compromised nodes to be easily detected by the GC’s
defense strategy. If we define an overall attacking gain Gadv =
(1 − Pdet) · #victim

#total for the attacker, where Pdet denotes the
possibility that an attack is detected, then the attacker’s goal
becomes to find an optimal tree level h∗ for his compromised
nodes and try to put them as sparsely as possible in the
overlay, so that the attacking gain is maximized. When there
are multiple attackers in the overlay, the solution of this
optimization problem is that all compromised nodes are at
the same optimal height h∗ and there is no any compromised
node placed within the subtree of the another. Otherwise, the
number of victim nodes will be reduced without increasing
the attacking gain. In the rest of the paper, we always refer
to the optimal attack as the worst case when we discuss the
GC’s countermeasures. Such case strongly favors the attacker
and guarantees a lower-bound for effectiveness of the GC’s
defense scheme.

B. Attack Detection

The problem of attack detection is trivial if the GC queries
every node whether it has received a previously broadcast mes-
sage. However, this clearly does not scale with group size. A
more practical solution is to adopt a random sampling strategy,
making a trade-off between detection rate and overhead. Below
we introduce two sampling schemes.

Fig. 1. The GC’s sampling schemes: r-root node, m-malicious node,
s-sampled node

1) Scheme I: An Intuitive Random Sampling Scheme:
In this scheme, the GC samples every node with the same
probability. It periodically selects a random subset of nodes
and queries each of them regarding the receiving statuses of
a sequence of previously broadcast messages. Every sampled
node replies with an authenticated acknowledgment (ACK) in
a bitmap format where each bit value represents either the
node has received (1) or missed (0) the message. We name it
a positive ACK when the bitmap is all-1, and a negative ACK
otherwise. Since a compromised node tries to hide itself, it
reports a positive one when receiving a query. The GC will
detect the attack if it receives a negative ACK.
Security Analysis Suppose the optimal attacker places m ma-
licious nodes as sparsely as possible at tree level h∗. We have

the portion of nodes that are denied from receiving broadcast

messages: ps = m·Nc

N = md·(dH−h∗−1)
dH+1−1 ≈ m · (d−h∗ − d−H),

where Nc is the number of victims in the subtree of a malicious
node. When GC randomly samples a node, the probability that
a victim node is sampled ( hence an attack is flagged) is also
ps. Let Sn be the number of sampling messages the GC can
send, which is a system parameter limited by the resources
of GC, we compute the GC’s detection rate for scheme I as
follows:

P I
det = 1 − P I

miss = 1 − (1 − ps)Sn

= 1 − (1 − m · d−h∗
+ m · d−H)

Sn
(1)

As we mentioned, the optimal attacker’s goal is to maximize
Gadv = P I

miss · #victim
#total . We solve this optimization problem

and get h∗ = H − �logd[ dH

m·Sn
+ 1]� for compromised nodes.

Thus, we derive the worst cast of the GC’s detection rate as
follows:

P I
worst = 1 − (1 − S−1

n − 2m · d−H)
Sn (2)

Scheme I is simple but not optimal because it samples
many intermediate nodes. To cause message dropping attacks
to others, compromised nodes need to be intermediate nodes.
If we sample an intermediate compromised node, we will not
receive an honest ACK. Also, it is redundant if we sample
multiple nodes on the same path because if the one closest to
the leaf, if not compromised, reports a positive ACK, other
nodes on the same path normally also report positive ACKs.
These observations indicate the potential of a more effective
sampling scheme instead of purely randomly sampling the
nodes.

2) Scheme II: A Group-based Sampling Scheme: We
present a group-based sampling scheme, in which the GC
decides locally a subset of leaf nodes and sends its query
message to each of these selected nodes. Note that the GC
still accepts bitmap-format ACKs for a sequence of broadcast
messages. The algorithmic detail is as follows:

1) Based on the limit of its sampling bandwidth, the GC
first decides a LCA level c = �logdSn�, with which it
starts to group nodes.

2) The GC then forms k ≤ dc sampling clusters (subtrees),
whose root nodes are at level c, as illustrated in Fig.1.
If k < dc, the GC may randomly choose k out of dc

members as parent nodes to form sampling clusters.
3) Finally, the GC randomly samples w = �Sn/k� leaf

candidates within each cluster. Queries and acknowl-
edgments are direct interactions between the GC and
sampled nodes.

In a special case when c = 0 and k = 1, the entire tree is a
sampling cluster. This group-based technique ensures fairness
on sampling leaf nodes. It keeps k sampling groups as sparse
as possible, thus the GC may include more compromised
nodes on its sampling paths. On the other hand, the GC needs
sampling density (w) so that it may find potentially multiple
attackers within a sampling group. The GC seeks an optimal
balance between these two aspects.



Security Analysis In this case, the attacker’s best strategy
remains the same, i.e., to place his compromised nodes as
sparsely as possible at an optimal tree level h∗. However,
knowing the GC’s defense policy, the attacker will not choose
its h∗ ≤ c. The reason is that when the attacking level h∗ is
closer to the root than c, compromised nodes will always be
included in the GC’s sampling paths. More specifically, when
there are m ≤ dc malicious nodes, the attacker chooses to
evenly distribute them into m-out-of-dc clusters, each of them
stays at optimal level h∗.

Consider an arbitrary leaf node s in Fig.1. Its probability of
being randomly sampled is p

′
s = k·w

dH . For a malicious node
at tree level h∗, its probability of being included in w random
samplings within the cluster is:

Pin =
k

dc
· (1 − (1 − 1

dh∗−c
)
w

) =
k

dh∗ if k = dc. (3)

To simplify the problem, we always choose k = dc (i.e., w=1)
in later discussions. We can easily see from the equation that
Pin = 1 when c = h∗.

A false negative error might occur when the GC fails to
include any of the compromised nodes on its sampling paths.
We may compute the GC’s probability of missing sampling
all m compromised nodes as follows:

P II
miss = (1 − Pin)m = (1 − k

dh∗ )
m

, (4)

and the GC’s overall detection rate as: P II
det = 1 − P II

miss. It
can be observed that the false negative rate increases with the
optimal attacking level h∗ .

Since the attacker’s goal is to maximize its Gadv, we
solve this optimization problem for scheme II and get h∗ =
�logd2k� for compromised nodes. Thus, the worst detection
rate of scheme II is as follows:

P II
worst = 1 − (1 − 1

w + 1
)
m

(5)
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Fig. 2. Comparison of the worst-case detection rates in Scheme I
and Scheme II.

3) Comparison of Scheme I and Scheme II: From Equ.2 and
Equ.5, we derive that when m > −k · log2[Sn−1

Sn
] (as always

satisfies when m > 1), P II
worst > P I

worst, which indicates that
scheme II has a higher worst-case detection rate than scheme
I. Fig.2 makes the comparison based on the above analytical
results. It is shown that the GC achieves a higher detection rate

when adopting sampling scheme II. The figure also indicates
that the difference between the two schemes becomes more
distinct as the sampling size Sn increases.
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Fig. 3. Comparison of the average-case detection rates of the two
schemes (fm denotes the fraction of nodes that are malicious).

Based on simulation, Fig.3 compares the average-case de-
tection rates of the two schemes as the function of sampling
ratio and the fraction (fm) of malicious nodes. The figure
shows that, when using the same sampling size, scheme II
outperforms scheme I in terms of detection rate. It also shows
that more severe attacks take a higher risk of being detected
by the GC, as can be derived from Equ.1 and Equ.4.

We notice that in both schemes, a larger sampling size leads
to a higher detection rate at the cost of larger message over-
head. Both the detection schemes introduce 2 ∗ Sn additional
messages (queries + ACKs) to the overlay. In the case when
Sn/N is small and the bitmap form of broadcast messages
is used, the message overhead approaches O(1). Compared
to a flooding-based approach, whose message complexity is
2|E| ∗2 > 2 ∗Sn, both our detection schemes are lightweight.

C. Attacker Identification

The previous attack detection schemes can only report
with a certain probability if the message dropping attack
exists or not; it cannot identify the compromised nodes. Next
we propose a path-resolving (PR) scheme to identify the
compromised nodes without increasing the number of sampled
nodes. For the scheme to work, we assume that every leaf node
knows all the nodes on its path to the root.

Specifically, as in our group-based sampling scheme, the GC
periodically queries Sn = k·w leaf nodes, w from each cluster,
regarding their message receiving statuses. Each sampled node
j replies in its ACK a tuple of two data fields: a root path rj

including the ids of the enroute nodes from j to the root;
a receiving status sj , which consists of a bitmap indicating
whether j has successfully received a sequence of previously
broadcast message specified in the query. The GC uses a table
Ts to store these query records, as illustrated in Fig.4(b). Also,
it keeps a global list Ln for all member nodes in the overlay.
Each entry i of Ln contains a suspicious level pf [i], reflecting
the probability that node i has been compromised. This value
is aggregated through multiple rounds of PR processes. When
pf [i] = 1, we say node i is a compromised node.



(a) The PR algorithm in a static overlay

Index j Root Path rj of a Sampled Leaf Node ACK sj (6-bits)

1 … 13 9 C 6 1 110000  Negative

2 … 13 9 8 7 2 111111  Positive 

3 … 13 10 … … 3 111111  Positive 

4 … 14 11 …w4 … 4 111110  Negative

5 … 14 12 … … 5 111111  Positive 

j … … nj … … nj H sj

                hop 0                            hop H 

(b) Ts: sampling responses acquired by The GC

Fig. 4. An illustration of the PR algorithm: in this example, node 1-5 are sampled leaves, among which 1, 4 reply Negative ACKs. C denotes a compromised
node, and 11 is a selfish node, which also refuses to forward messages.

1) Scheme Overview: Our identification scheme is based
on the following observation: in an overlay where there are
potential message dropping attacks, when a (noncompromised)
leaf node reports a Positive, all the nodes on the path to the
root are good nodes. In contrast, if a (noncompromised) leaf
node reports a Negative, there is at least one compromised
node on the path. By analyzing the feedbacks from multiple
sampled nodes through multiple rounds, we are able to narrow
down the suspicious node set and identify each compromised
node (In Section VI we will evaluate the case when sampled
compromised nodes report Positive or Negative reversely).

Fig.4(a) illustrates such an example. The GC queries nodes
1-5 and receives an ACK from each of them. For node 1
that fails to receive the previous broadcast messages, the GC
searches within its current cluster a nearest sampled node
whose receiving status is Positive (in this case node 2). If
such a node does not exist, the GC tries in the next adjacent
cluster until it finds such a node (node 3). We may say
that, to the GC’s current knowledge, these two nodes share
a longest successful sub-path. In this way, the range of node
1’s suspicious sub-path is narrowed down.

2) Scheme Description: The PR scheme is also referred as
GSPR, as it adopts the group-based sampling technique. The
scheme consists of three basic steps. First, the GC reconstructs
a simple spanning tree based on the root path information it
receives from the sampled leaves. Second, the GC resolves
this spanning tree according to the receiving statuses of the
sampled leaves and derives the suspicious sub-paths. Third, the
GC applies a statistical aggregation to compute a suspicious
level for each node on the suspicious sub-paths. The GC
also updates the global list Ln considering nodes’ suspicious
history.

a) Path Resolving on a Spanning Tree: The GC may
adopt a similar method as the overlay construction to add
nodes into a spanning tree, as all root paths reported share a
common ancestor – the root node. The spanning tree provides
the GC with partial knowledge of the overlay topology.

The path resolving process on the spanning tree is: for each
leaf node j ∈ Ts that fails to receive the queried broadcast
messages, the GC searches for its nearest sampled leaf l that
reports a Positive. More formally,

arg maxl∈Ts
LCA(j, l), s.t. sl = Positive. (6)

Since these two nodes share a longest successful sub-path in

the spanning tree, we obtain j’s suspicious sub-path wj by
eliminating good nodes from rj . Thus, the hop count of j’s
suspicious sub-path is: |ωj | = H − LCA(j, l).

b) Statistical Aggregation: After obtaining a suspicious
sub-path ωj , the GC tries to compute for each node i ∈ ωj

a suspicious level f(i, ωj). Considering that a node situates
closer to the root is more of an attacker’s interest for compro-
mise so that his message dropping attack is more effective, we
use the node’s hop-count to the leaf as a weight to compute
its suspicious level: f(i, ωj) = 2(H−hi)

|ωj |·(|ωj|−1) .

Fig. 5. An example when node ni belongs to two suspicious paths.

A nodes is more likely to have been compromised when it
appears in multiple suspicious sub-paths at the same time. We
further aggregate the suspicious level of node i as follows:

f(i) = 1 −
#sus∏

j=1

(1 − f(i, ωj)), f(i, ωj) = 0 if i /∈ ωj , (7)

where #sus denotes the total number of suspicious sub-paths
in the spanning tree. Fig.5 illustrates a simple example of the
statistical aggregation.

c) Multiple Rounds: In real applications, the GC may
apply the GSPR algorithm over multiple rounds, each based on
a sampled spanning tree. Suppose through round 1, 2, ...r− 1,
node k has an aggregated suspicious level p

(r−1)
f [i] in the

global list Ln. During the rth round, the GC updates the global
list entry as follows:

p
(r)
f [i] = 1 − (1 − p

(r−1)
f [i]) · (1 − f(i)), p

(0)
f [i] = 0. (8)

d) Security Analysis: Our GSPR algorithm is resilient to
both consistent message dropping attacks and partial message
dropping attacks where compromised nodes randomly drop
messages with a probability α < 1. For a sampled leaf child
of an attack node, it will report a Positive with a probability
of at most (1 − α)b, where b is the bitmap size, reflecting
the message interval between two consecutive samplings. This
error rate is usually very small.



To evaluate the effectiveness of the algorithm, we define an
identification rate PI,iden, computed as an average suspicious
level on actually compromised nodes after executing the
algorithm for I rounds, i.e., PI,iden = 1

m ·∑ni
p
(I)
f (ni), where

{n1, ..., nm} are the compromised nodes in the overlay. We
can also calculate the false positive rate for the algorithm,
which is measured as the average suspicious level of legitimate
nodes.

The GC’s identification scheme has the same level of mes-
sage complexity as its detection schemes, which is I · 2Sn →
O(1). The time complexity of the GSPR algorithm typically
consists of three elements: spanning tree construction, path
resolving and statistical aggregation. Thus, we may derive its
running time as: I · 3H · Sn → O(logN). Since Sn/N << 1,
our GSPR scheme is a bandwidth-efficient scheme.
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Fig. 6. Identification rate as the function of the number of rounds
and the sample size.

Fig.6 shows our simulation result when the algorithm is
executed for 12 rounds in a static overlay. We can observe the
identification rate increases with the number of rounds and the
sample size.

D. Further Attack and Security Analysis

Our previous discussions assumed leaf nodes are all be-
nign nodes. However, malicious leaf nodes may exist in
a set of sampled nodes. To avoid being detected, these
nodes will report Positive ACKs once queried. Moreover,
they may report false root path information to disrupt our
detection/identification schemes.

1) Root Path Falsification Attacks: More specifically, we
consider two types of root path falsification attacks: truncation
attack and modification attack [7]. In the truncation attack
a compromised node creates an attacker-favored route by
shortening its actual root path. For instance, if it excludes the
ids of the other compromised nodes on its root path, the GC
may not be able to identify those compromised nodes. In the
modification attack, a compromised node modifies its root path
by altering intermediate node ids. This could mislead the GC
to suspect legitimate nodes.

To prevent from accepting false root path, the GC needs to
verify the authenticity of a root path consisting of multiple
nodes and edges. In[14], the Hash-based Strong Split Whisper
technique is proposed to provide path authenticity. However, it
cannot be applied directly to our scenario because it involves

proactive routing, whereas many of the routing protocols for
overlay networks adopt reactive routing. Our approach is
to first construct a spanning tree based on all the reported
root paths, then randomly sample some nodes in the tree.
Clearly, the more nodes to sample, the higher correctness
guarantee, but the larger overhead. Therefore, a practical trade-
off is required in this process. To tolerate false root path to
some extent, we use the principle of parsimony (Ockham’s
Razor). This principle suggests adopting the simplest adequate
explanation to observed data. In our case, we will accept a root
path if it is consistent with the root paths from the majority
of other sampled nodes.

2) Receiving Status Changing Attacks: Once being sam-
pled, a compromised leaf may 1) reply a Positive ACK when
it has not really received an attested broadcast message or
2) report a Negative ACK when it has actually received
the message. These two cases have impacts on both attack
detection and attacker identification, especially a high impact
on the latter case because our path resolving algorithm relies
heavily on the reported statuses. With the wrong information,
the GC may not suspect a malicious node but suspect a
legitimate node.

Fortunately, the chance of sampling a compromised leaf
node is very small. First, compromised nodes only account for
a fraction of the online nodes. Second, compromised nodes are
less likely to be leaf nodes for an effective attack. Nevertheless,
we cannot avoid sampling compromised nodes. Therefore, it
is important to tolerate this receiving status changing attack to
some degree as we may not know if these nodes actually have
been compromised. In Section VI-C.4 we will study through
simulations the detection rate under this false receiving status
changing attack as well as the false positive rate caused by it.

V. SAMPLING SCHEMES FOR DYNAMIC OVERLAYS

Now we study the problems of attack detection and attacker
identification in a dynamic environment – a typical case
in overlay applications. We first introduce some background
knowledge on the dynamic behaviors of overlay networks, and
then adapt our previous schemes to meet the new challenges
due to network dynamics.

A. The System Model

In addition to the general system model introduced in
Section III, in a dynamic overlay, a member node is in either
of the two statuses: presence (online) or absence (offline), and
it may switch between these two statuses as long as it keeps
its membership in the network. We use the term “presence
duration” and “absence duration” to denote a continuous time
period a node stays online and offline, respectively. Previ-
ous study based on multiple sessions showed that presence
duration in a multicast session follows either an exponential
distribution or a Zipf distribution [1]. For simplicity, we use the
former pattern in our dynamic case. We assume that presence
durations of nodes follow an exponential distribution with
mean R/µ, and absence durations have a mean of 1/µ. Thus,
R is the ratio between two duration means.



Let Non and Noff be the populations of online and offline
members when the time interval begins, respectively, then
Non +Noff = N . According to the queuing theory, when the
system is in its steady status, within a certain time interval, the
number of members that come online is equal to the number
of members go offline, i.e., Non · µ/R · T = Noff · µ · T .
Therefore, the average population of online nodes in steady
status is Non = N ·R

R+1 .
The details of the protocols for constructing and maintaining

dynamic overlay tree structures are presented in [18], [3],
[8], [9]. Basically, a node coming online first contacts a
well-known rendezvous point (RP) or a dedicated server to
locate the root of the tree, which will assign this node to an
appropriate child node based on such criteria as topological
closeness or available bandwidth. Based on the criteria, this
child node decides whether to accept this joining node as its
own child node or introduce this node to one of its own child
node. This process is repeated until this node is settled down in
the tree hierarchy. Each joined node keeps its children list and
root path (i.e., the node ids on its path to the root) up to date by
exchanging REFRESH and PATH messages with its neighbors.
In addition, we change these protocols so that a node sends
its initial root path to the RP after it is settled down; this
provides us the minimal and rough knowledge of the network
topology. Note that for scalability, we do not require nodes to
report updated root paths caused by network dynamics.

In our schemes we assume reliable communications in the
overlay, and that packet losses are caused by system dynam-
ics and message dropping attacks. The group controller(GC)
knows from the RP which nodes have recently come online
and their root paths. Note that according to the joining
protocol, nodes that recently come online are most likely to
be leaf nodes in the tree.

B. Attack Detection in Dynamic Overlays

Fig. 7. Packet loss caused by node arrivals/departures in a dynamic overlay.
The repair time starts as node s leaves and ends when node c1, c2 and their
children reconnect to the overlay.

1) New Challenges from System Dynamics: System dynam-
ics in the overlay raise several new challenges. First, because
a node may change its status frequently, the GC does not
have the precise knowledge of the tree topology. Moreover,
a node to be sampled may have already gone offline as time
elapses. Second, it is very hard to tell if packet losses are
due to system dynamics or message dropping attacks. In [18],
a node periodically exchanges control messages (REFRESH
and PATH) with its neighbors and discovers a neighbor’s

absence after the time period expires. Fig.7 shows a case when
node s has gone offline, its parent p and children c1, c2 are
informed promptly. Although it usually only takes a short time
(e.g., one period) for the temporarily isolated child nodes to
recover the connectivity by joining to p directly, broadcast
messages may get lost if they are delivered during this very
moment. This appears to be more complex than in the static
case where packet losses are solely attributed to malicious
attacks. Moreover, as nodes join and leave the overlay very
frequently, such packet losses may vary with time. Clearly, no
perfect deterministic solution exists due to the limited topology
information and node dynamics. As such, we will provide a
statistical solution in Section V-B.3.

2) The Dynamic Group-based Sampling algorithm: In a
dynamic overlay, the first problem is how to select nodes
to sample. An intuitive solution is one in which the GC
uniformly samples member nodes. The disadvantage is that it
may involve a large number of onlineness tests because some
sampled nodes are offline. Hence, we adopt an exponentially
weighted sampling strategy in which the GC samples the most
recently joined nodes with high probabilities. Our motivation
is that the recently joined nodes are more likely to be leaf
nodes. Thus, from the receiving statuses of leaf nodes the GC
can know more intermediate nodes. In addition, leaf nodes are
less likely to be compromised.

For member nodes with presence mean 1/θ, the probability
pj(t) that a member node j remains online at time t after its
last coming online is computed as pj(t) = e−θ·t. This simply
means that nodes more recently seen nodes are more likely
to remain online than those seen earlier. Sampling such nodes
reduces the number of onlineness tests.

a) Algorithmic Details: Similar as in IV-B.2, the GC
considers its bandwidth limit and decides a sampling size Sn,
it then acquires (R + 1) ∗ Sn/R most recently joined nodes
from the RP and group these nodes based on their initial root
paths according to the same LCA level c = �logdSn�. As a
result, the GP gets k clusters of recent nodes and it queries
�Sn/k� such nodes from each cluster.

However, due to presence dynamics of the nodes, some
of them might have gone offline as time elapses. Thus, the
server may not be able to successfully sample all �Sn/k�
recent nodes from each cluster. We propose two solutions to
address this problem: either the GC ignores these unavailable
nodes (hence the total number of samplings may be below
Sn) or the GC makes a parent substitution, that is, if the
node to be sampled is currently not available, its parent node
(learned from the initial root path) will be queried instead. We
adopt the latter strategy since it enables the GC to maintain a
relatively stable sampling size; moreover, the parent node for
replacement is also likely to be a leaf node.

In summary, this algorithm utilizes the rough knowledge of
the network topology from the RP and groups most probable
leaf nodes to achieve sampling breadth and density for a
dynamic overlay.

3) Statistical Detection of Attacks: Here we propose an
attack detection scheme which adopts the dynamic sampling



algorithm and a statistical technique to detect potential mes-
sage dropping attacks in the overlay. We define living rate
ra = Non

N = R
R+1 , as the average fraction of online nodes.

Also, we define receiving rate rv = #Positive
Sn

, as the fraction
of sampled online nodes that reply Positive ACKs. Thus, we
may use rl = 1 − rv to estimate the packet-loss rate of the
dynamic overlay.

Our dynamic detection scheme consists of two stages. The
first stage starts after the overlay has been constructed and the
network enters a stable status. At this point, no compromised
nodes or few of them have started to launch attacks in the
overlay, as it would take some time for an attacker to take over
many nodes. Therefore, packet losses are mainly attributed to
overlay dynamics. In each round, the GC samples Sn online
nodes to learn a packet-loss rate rl = 1 − #Positive

Sn
. This

process is repeated for I(I > 30) rounds and eventually the
GC computes an average loss rate r̄l. Alternatively, the GC
may refer to dynamic packet loss rates measured from live
streaming overlays, such as the CoopNet in [13], or resilient
overlay networks (RONs) [2].

To keep the packet loss rate rl more steady over time
in a dynamic overlay, so that we may apply the statistical
detection scheme, we adopt an active approach in which
each node monitors the packet loss rate it is experiencing
(learned through the GC’s query bitmaps). When its packet
loss reaches an unacceptable level, the node contacts the server
and executes a fresh relocation in the overlay. In [10] and [13],
the similar approach is used and it has been shown that the
packet loss rate as a function of time can be smoothed by
active relocations in the overlay.

In the second stage, when message dropping attacks may
exist in the overlay, both the attacks and system dynamics
contribute to packet losses. The GC samples the recently
joined nodes and measures the current packet-loss rate r

′
l =

1 − #Positive
′

Sn
. This rate is also averaged over I rounds of

measurements and the GC obtains a sampled mean r̄ l
′

=
1
I

∑r
i=1 r

′
l(i).

Now the GC is able to apply a statistical technique which
helps determine if the current packet loss rate significantly
deviates from the one learned from the first stage. If the
deviation is significant, it concludes that there are message
dropping attacks in the dynamic overlay. More specifically,
the GC performs the following hypothesis test to make the
decision:

H0 : r̄l
′
= r̄l vs. H1 : r̄l

′ 
= r̄l

Reject H0 with significance level α if:

|r̄l
′ − r̄l| >

s√
r
tα/2(R − 1),

where s is the standard deviation of the packet-loss rate r
′
l .

a) Security Analysis: Clearly, for dynamic networks we
cannot provide as precise guarantee on the detection rate as
for static networks due to the lack of topology information
and node dynamics. We have to rely on statistical methods to

detect such attacks. This is because of the necessary attacking
scale for the attack to cause nontrivial and increasing damages.
That is, there should be some number of compromised nodes
launching this attack frequently. Otherwise, if only few nodes
occasionally launch this attack, we may not care about this
attack because normal users may go offline as well, causing the
dropping of broadcast messages occasionally. We will show in
the next section the detection capability of our scheme with
respect to the number of compromised nodes and the network
dynamics.

C. Attacker Identification in Dynamic Overlays

We adapt the previous GSPR algorithm for attacker iden-
tification in dynamic overlays. Similarly, the GC will first
sample the nodes and receive some ACKs, then reconstruct
the spanning tree and conduct path resolving, finally it uses
statistical aggregations to identify those compromised nodes.
During these processes, we consider the influences from
system dynamics.

Selection of sampling intervals is an important issue in
a dynamic overlay. If the GC uses a large interval (i.e., it
samples the leaf nodes after broadcasting a large sequence of
messages), system dynamics may influence the sampling re-
sponses; if the GC samples after each broadcast, high message
overhead will be incurred. We propose the GC determines its
sampling interval according to R, the dynamic ratio of the
overlay. When the overlay becomes more dynamic, it reduces
its sampling interval to ensure the correctness of sampling
responses.

In a dynamic overlay, nodes may have different life times.
As a node stays longer in the overlay, its suspicious level
will accumulate due to the nondecreasing function in Eqn.8.
This may cause false positives. We introduce an aging factor
0 < β ≤ 1 to address this problem:

p
(r)
f [i] = β(r) · (1 − (1 − p

(r−1)
f [i]) · (1 − f(i))), (9)

where β(0) = 1 and β(r) = 0.5β(r−1). This equation guar-
antees that a legitimate node which is occasionally suspected
will not be eventually identified as an illegal one. We show
the effectiveness of our dynamic attacker identification scheme
through simulations in Section VI-C.4.

VI. PERFORMANCE EVALUATION

This section reports through simulations the effectiveness
of our attack detection and attacker identification schemes in
dynamic overlay networks.

A. Performance Metrics

We use the following performance metrics in the study:

• Detection Rate: The percentage of tests that correctly re-
ports the message dropping attacks in a dynamic overlay.
It reflects the power of our detection scheme.

• Identification Rate: The GC’s ability to identify the com-
promised nodes in the overlay, measured by the average
suspicious level of compromised node.
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• Sampling Rate: The percentage of sampled nodes over
the entire population, i.e., rs = #sampled

#total . It reflects the
scalability of a sampling algorithm.

B. Simulation Settings

We first generate a random graph of 9,994 nodes and then
construct a tree out of the graph based on the joining algorithm
that is also used in [18], [3], [9]. More specifically, every
joining member searches from the root downwards along
the tree for the (possible) nearest node as its parent, thus,
geometrically adjacent nodes become neighbors in the tree.
The link delay between any two nodes is randomly selected
from a uniform distribution between 10 and 200 ms, and the
out-degree d of a node is chosen between 3 and 5. We set the
presence dynamics of members according to an exponential
distribution, and adjust the dynamic ratio R (the online dura-
tion mean over the offline duration mean) to simulate various
dynamic environments. Our simulation programs were written
using the csim simulation library [5]. We use the method of
independent replications for our simulations and all our results
have α = 95% confidence intervals that are within 5% of the
reported values.

C. Simulation Results

1) Impact of Network Dynamics on Packet Loss Rates: In
the first stage of our statistical detection scheme, we evaluate
the impact of node joins/departures on normal packet losses
in various dynamic environments. More specifically, we apply
the dynamic sampling algorithm in different overlays (deter-
mined by the ratio R) and adjust control message parameters
(REFRESH/PATH message interval) to see their influences on
packet losses. Fig.8 shows the average packet loss rate r l as
a function of dynamic ratio R and the message interval. The
simulation result indicates that when an overlay becomes more
static, it will have less packet losses. Also, a longer control
message interval usually results in more packet losses to the
overlay. These results are consistent with our discussion in V-
B.1. When nodes join and leave more frequently, the overlay
will have more isolated nodes who are temporarily unaware
of their parents’ departures until the next refresh time arrives.

From the network point of view, the processing of node
joins/departures should be as prompt as possible, so that
a high receiving rate and a minimal interruption can be
guaranteed. Our schemes lower down the control message

interval to reduce the repair time, and hence the normal packet
losses. Also, we adopt the technique described in V-B.3 to
stabilize the change of packet loss rate over time. These two
steps significantly improve the detection rate of our statistical
method.

2) Impact of Attacks on Packet Loss Rates: In the second
stage of our statistical detection scheme, both the attacks and
system dynamics contribute to packet losses in the overlay. We
examine the feasibility of using the statistical method to detect
different severity levels of attacks in a dynamic environment.
Fig.9 shows the simulation result of impacts from both system
dynamics and message dropping attacks to the packet loss rate,
when applying the dynamic sampling algorithm in an overlay
whose dynamic ratio R = 2 : 1. The relationship between the
changes of loss rate and severity levels of attacks is clearly
shown in the figure. When there is no attack nodes, or only
few nodes occasionally launch attacks in the overlay, presence
dynamics alone contribute about r l ≈ 4.42% message losses to
the network. However, as the number of compromised nodes
increases, their portion of packet losses in the overlay becomes
more dominant, i.e., the overall loss rate deviates much from
the normal ratio (stable over time). This result is consistent
with our discussion in V-B.3.

3) Results on Attack Detection: Now we may adopt the
statistical detection scheme to check the existence of message
dropping attacks in a dynamic overlay. Fig.10 shows the
effectiveness of our detection scheme in various dynamic
environments, with different dynamic ratio Rs and different
repair times. In most cases, the GC achieves reasonably high
detection rates. As the overlay becomes more static, i.e, ratio
R increases, the detection rate gets improved accordingly,
because packet losses are largely attributed to attacks at this
point. The figure also shows that, when the normal packet
losses decrease due to a reduced repair time in a dynamic
environment, the statistical scheme achieves a higher detection
rate. These result are consistent with our previous discussions.

Fig.11 shows the simulation result when we use different
sampling rate rs for our statistical scheme to detect different
severity levels of attacks in a dynamic overlay (R = 2 : 1). We
can see from the figure that, in most cases, the sampling-based
scheme detects message dropping attacks very effectively.
Similar as in the static case, when the GC chooses a larger
sampling size or there are more compromised nodes in the



overlay, a higher detection rate can be achieved.
4) Results on Attacker Identification: Fig.12 shows the

simulation result when the GC applies the GSPR algorithm in
various dynamic environments. In our test, we set the range of
the dynamic ratio R from 2 : 1 to 8 : 1 and uniformly choose
3.5% of the total population as attack nodes. The figure clearly
indicates that, given a reasonable sampling size (limited by the
GC’s resource), the GSPR algorithm is able to identify most
of the compromised nodes even in a highly dynamic overlay
(R = 2 : 1), after a limited number (less than 10) of rounds of
statistical aggregations. As the overlay becomes less dynamic
(R increases), the GC achieves a higher identification rate.
The figure also indicates that a lager sampling size results in
a more accurate identification, because more malicious nodes
are likely to be included in the GC’s sampling paths and be
identified as suspicious nodes.
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In addition, we also measure the false positive rate of our
identification scheme based on the same set of parameters as
in Fig.12. We define the false positive rate as the percentage
of legitimate nodes which are mistakenly identified as com-
promised nodes. Our test result indicates that under different
levels of system dynamics, the GSPR scheme keeps its false
positive rate below a reasonable value of 2%.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a random-sampling–based scheme to de-
tect the message dropping attacks, and a path-resolving–
based scheme to identify the compromised/selfish nodes. Our
schemes work for dynamic overlay networks as well, because
they do not assume the global knowledge of the overlay
hierarchy as previous work did. Analysis and simulation
results show that our light-weight schemes have high detec-
tion/identification rates but low false positive rates.

We note that attack detection and attacker identification in
dynamic networks are very challenging issues. To address the
problem, we have made several assumptions, for example,
on the distribution of node membership durations and an
estimated ratio between compromised nodes and selfish nodes.
We will consider relaxing these assumptions in our future
research. Also, we will investigate techniques to counter
richer attack models (e.g. attacker collaborations) and allow
other trusted nodes than the GC to help in the process of

detection/identification.
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