

Rumor Riding: Anonymizing Unstructured
Peer-to-Peer Systems

Jinsong Han and Yunhao Liu

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

jasonhan@cse.ust.hk liu@cse.ust.hk

Abstract—Although anonymizing Peer-to-Peer (P2P) systems

often incurs extra costs in terms of transfer efficiency, many
systems try to mask the identities of their users for privacy
considerations. Existing anonymity approaches are mainly
path-based: peers have to pre-construct an anonymous path before
transmission. The overhead of maintaining and updating such
paths is significantly high. In this paper, we propose Rumor
Riding (RR), a lightweight mutual anonymity protocol for
decentralized P2P systems. RR employs a random walk scheme
which frees initiating peers from the heavy load of path
construction. Compared with previous RSA-based anonymity
approaches, RR also takes advantage of lower cryptographic
overhead by mainly utilizing a symmetric cryptographic algorithm
to achieve anonymity. We demonstrate the effectiveness of this
design through trace-driven simulations. The analytical and
experimental results show that RR is more efficient than existing
protocols. We also discuss our early implementation experiences
with the RR prototype.

Index Terms—Mutual Anonymity, Non Path-based, P2P

I. INTRODUCTION

eer-to-peer (P2P) networks, such as Napster, Gnutella, and
BitTorrent, have become essential media for information

dissemination and sharing over the Internet. Concerns about
privacy, however, have grown with the rapid development of
P2P systems. Recently, a number of P2P users have encountered
problems caused by being traced on non-anonymous P2P
systems due to their plain-text query messages and
direct-downloading behaviors. Hence, the requirement for
anonymity has become increasingly essential in current P2P
applications for both content requesters and providers.

A number of methods [1, 2, 10, 13, 20] have been proposed
to provide anonymity. Most, if not all of them, deliver messages
via non-traceable paths comprised of several anonymous
proxies or middle agent peers. In these approaches, known as
path-based approaches, users usually need to construct
anonymous paths before transmissions. All nodes in the path
cooperate to forward data to a receiver. Data is pre-wrapped by
the initiator in a layered-encryption packet (usually using
asymmetric cryptographic algorithms, such as RSA), which will
be peeled off along the path to the receiver. Although
path-based protocols provide strong anonymity, they have the
following problems:

1. Pre-construction of paths requires users to obtain a large
number of IP addresses and public keys from other peers in
advance. Furthermore, initiators must perform large amounts of
cryptographic processing in preparation for layer-encrypted
packets. Both the collection of information and the preparation
of packets incur high costs.

2. Initiators have to periodically update middle nodes along
the anonymous paths. An invariable path might otherwise
become increasingly vulnerable under the analysis of attackers.
In addition, users often expect to extend the length of
anonymous paths, as a longer path entails a higher degree of
anonymity. Both of these requirements increase the
maintenance and update overhead.

3. In highly dynamic P2P systems, peers randomly join and
leave. If a chosen node goes offline, the whole path fails, and
such a failure is often undetected by the initiator. Therefore, a
“blindly-assigned” path is very unreliable, and users have to
frequently probe the path and retransmit messages.

To address the above problems, we propose a non path-based
anonymous P2P protocol called Rumor Riding (RR). The
design goal is twofold: first, to eliminate the huge overhead of
path construction and maintenance; second, to use a symmetric
cryptographic algorithm to replace the asymmetric one so as to
reduce the cryptographic overhead and make the protocol more
practical.

In the RR design, we first let an initiator encrypt the query
message with a symmetric key, and then send the key and the
cipher text to different neighbors. The key and the cipher text
take random walks separately in the system, where each walk is
called a rumor. Once a key rumor and a cipher rumor meet at
some peer, the peer is able to recover the original query message
and act as an agent to issue the query for the initiator. A similar
idea is also employed during the query response, confirm, and
file delivery processes. Thus, the rumors serve as the primitives
of this protocol to achieve the mutual anonymity and meet the
design objectives. The highlights of our contributions are as
follows.
• We design a lightweight mutual anonymous P2P protocol,

RR, in which anonymous paths are automatically
constructed via the rumors’ random walks. Neither the
initiator nor the responder needs to be concerned with
anonymous path construction and maintenance. Extending
the scope of anonymous servants from a small clique of

P

221-4244-0593-9/06/$20.00 ©2006 IEEE

nodes to the entire P2P network, RR significantly increases
the degree of anonymity of the systems.

• RR mainly employs a symmetric cryptographic algorithm
to achieve anonymity. Without involving the asymmetric
cryptographic algorithm in the transmission of messages, it
significantly cuts down the cryptographic overhead for the
initiator, the responder, and the middle nodes.

• We conducted trace-driven simulations. We show that RR
outperforms existing protocols in terms of efficiency. In
previous anonymous systems, users have to communicate
with other peers or bootstrapping servers to obtain enough
proxies’ IP addresses. With RR, each initiating peer has no
requirement of extra information to construct paths, thus
eliminating the risk of information leakage caused by links
that are used for peers to request the IP addresses of
anonymous proxies.

The rest of this paper is structured as follows. In Section II,
we describe the related work on anonymous communications. In
Section III, we present the design of the RR protocol. Section IV
analyzes and discusses the key issues and the degree of
anonymity of RR. Section V presents simulation results and
performance evaluations. We introduce our early
implementation experience with RR in Section VI, and
conclude the work in Section VII.

II. RELATED WORK

Since Chaum [1] pioneered the concept of anonymity, many
approaches have been proposed to acquire anonymous
communication. These approaches fall into two categories:
path-based anonymous delivery and anonymous multicast.
Onion Routing[4] and Mix[1] are the classical approaches of the
first category, and P5 [10] is representative of the latter.

Onion Routing[4], as well as its second generation, Tor [14],
is the most popular path-based protocol providing anonymous
connections over the Internet based on a layered-encryption
method. They mainly focus on the IP layer rather than the
application level. APFS [6] proposes to provide the responder
with anonymity based on the Onion design.
Shortcut-responding Protocol [13] provides P2P mutual
anonymity with a reduced response delay. Crowds [2] enables
the intermediate nodes to randomly choose a successor to
forward the request to, and encrypts it with a symmetric cipher
algorithm. Due to the inherent problem of these path-based
approaches, users suffer the path construction and the high
cryptographic overhead from RSA. Even worse, they need to
periodically probe and update the anonymous paths. All of these
incur nontrivial overhead, particularly for fresh nodes.

P5 [10] is based on the concept of broadcasting to achieve
mutual anonymity: all participants in the same channel send
fixed-length encrypted packets at a fixed rate, making it look
like all the participants form a ring. To make the broadcasting
scalable, P5 proposes a novel broadcast hierarchy architecture to
construct the anonymous broadcasting channels. All nodes are
organized into different broadcasting groups, and each group is

mapped into a node in the virtual hierarchical spinning tree. A
high level in the hierarchy guarantees a high level of anonymity
at a high cost of communication bandwidth, and vice versa.
Users can make a balanced selection based on the tradeoff
between the level of anonymity and the cost of communication
efficiency. Due to well designed channels and hierarchy
overlaid spanning trees, P5 also improved the communication
efficiency. To defend against traffic analysis, P5 introduces
noise packets to maintain a fixed transmitting rate for each user.
However, the flooding-based message delivery inevitably
incurs large traffic overhead on the network, and it is not
practical to employ P5 in a P2P system.

The proposed protocol in this work, Rumor Riding, combines
the positive features of the path-based anonymous delivery and
the anonymous multicast approaches. Instead of using a single
path, RR allows messages to be sent via multiple anonymous
paths (at least two) without considering path construction, while
‘shrinking’ the scope of anonymous multicast.

III. RUMOR RIDING ANONYMOUS PROTOCOL

In this section, we present our work, the Rumor Riding (RR)
protocol, which includes five major components: Rumor
Generation and Recovery, Query Issuance, Query Response,
Query Confirm, and File Delivery. Although RR is designed for
unstructured P2P systems, it can be easily extended into other
distributed systems.

A. Rumor Generation and Recovery

RR employs the AES algorithm to encrypt original messages,
as illustrated in Fig. 1. The key size is 128-bit, which is secure
enough for encryption. To determine whether a pair of cipher
and key rumors hit, we employ a Cyclic Redundancy Check
(CRC) function to attach a CRC value, CRC(M), to the message
M.

In Fig. 1, we also illustrate the rumor recovery procedure in
the agent node S. For received key rumors and cipher rumors, S
uses AES to recover a message M’ and the checksum CRC(M’).
It then performs the CRC function to the recovered M’ and
compares the result with CRC(M’). If they match, the sower S is
aware that it has successfully recovered a message M. The
purpose of the CRC function is to avoid using a complex text
understanding technique to distinguish a meaningful M.

)}(,{ MCRCM

)}(,{ MCRCM ′′

)(MCRCM ′=′

Figure 1 Rumor generation and recovery.

23

aS

R

I

Figure 2 Query issuance.

B. Query Issuance

When an initiator I wishes to start an anonymous query, it
first generates the query content q, and inserts its own public key
KI

+ into q, which will be used by the responder in the query
response and file delivery phase. I then employs an AES
cryptographic algorithm to encrypt q into a cipher text C with a
symmetric key K. It organizes the key K and the cipher text C
into two query rumors, rK and rC. In Gnutella, each packet is
labeled with a Descriptor ID, a string that uniquely identifies the
packet. RR also uses descriptors to identify rumors. Hence, two
random number strings, IDKI and IDCI, are used to label the
two rumors. After generation, I forwards the rumor messages to
two randomly chosen neighbors, as shown with the dashed and
dotted lines in Fig. 2. The query cipher rumor and the query key
rumor then start their random walks in the P2P network.

The strategy of processing rumors is different from that of
processing normal queries. RR requires every node to
temporarily keep a local cache to store the received rumors.
When a node receives a query key rumor, it performs the rumor
recovery procedure to check all cached cipher rumors. If a
decrypted rumor holds a plain text matching the CRC value, q
will be successfully recovered. Whether or not there is a match,
this intermediate node reduces the TTL value of the received
key rumor by one, keeps a temporary record containing the ID
and route information of this rumor in the local cache, and
forwards it to a randomly chosen neighbor. This procedure
continues until the TTL value of this rumor is reduced to zero.

For the received query cipher rumor, the process is similar.
Therefore, if a pair of query rumors reach a certain node, no
matter what the sequence is, this node will eventually recover
the original q. The key issue with this procedure is that the
number of rumors and their initial TTL values need to be
carefully selected so that at least one pair of rumors, including a
key and a cipher, will meet. A detailed discussion on the
parameter settings are presented in Section IV.

If one intermediate node that recovers a q is willing to act as
an agent peer, it conducts a search on behalf of the unknown I.
We call this node a sower. When a peer identifies itself as a
sower, it proceeds as follows. First, it checks the TTL values
defined in the rumors; if they are not zero, the sower forwards

the rumors out, so that if there are attackers who can overhear
some of the messages sent to the sower, it is still not trivial to
determine whether or not the peer is a sower. Second, the sower,
Sa, as illustrated in Fig. 2, attaches the original query message q
with its IP address, and then issues the query marked with a
label IDq in a plain text (IDq is also used for Sa to locate the
correlated rK and rC). In this operation, we avoid a blind
flooding. Instead, we employ a probability-based-flooding
search, in which the sower selects a subset of its neighbors and
issues the query. Note that the sower does not send the query to
the nodes which sent or have been sent the two rumors of this
query. Such a selective flooding is effective on defending
against collaborating attacks, on which we discuss further in
Section IV.B. In later discussions, we use the lK and lC to denote
rumor paths from I to Sa.

C. Query Response

When a node receiving the query has a copy of the desired
file, it becomes a responder R. To respond to the query, R
encrypts the plain text of the response message re using the
initiator’s public key KI

+. It encrypts <(re)KI
+, IDq, IPSa , KR

+>
using AES, where KR

+ is the public key of R, and encloses the
cipher text and the key into two response rumors, reK and reC.
They are then assigned with IDKR and IDCR, respectively.

After being sent out from R, two rumors start their random
walks in the system. We illustrate this procedure in Fig. 3. RR
guarantees that at least one pair of rumors meet at a certain peer
Sb. We use l’K and l’C to denote their paths from R to Sb. Sb
decrypts the cipher text in reC with the key in reK, and recovers
the IP address of sower Sa.

If Sb volunteers to forward the response for R, it contacts Sa
via a TCP connection, and forwards these two response rumors
to Sa. Note that Sb also attaches its IP address, IDq, IDKR, and
IDCR to the two rumors. When Sa receives the responses reK and
reC, it delivers them to the originating peers of rK and rC. Two
response rumors are marked with IDKI and IDCI, to help them
walk along the reversed paths of lK and lC. The successor nodes
continue this procedure. Thus, two response rumors make use of
lK and lC to reach I.

Upon two response rumors, I recovers (re)KI
+ from reK and

reC, and then decrypts (re)KI
+ to recover the original response

messages re using its private key KI
−. A flooding search

aS

R

I bS

Figure 3 Query response.

24

Responder

Initiator

Confirm Key Rumor TCP LinkConfirm Cipher Rumor

aS ′
bS

R

I

Figure 4 Query confirm.

procedure may raise multiple responses. To simplify the
demonstration, we assume that I only selects one candidate as
the file provider for multiple responses. Without loss of
generality, we continue using R to denote this desired provider.

D. Query Confirm

In the query confirm phase, I uses the responder’s public key
to encrypt the confirm message rc. I then encrypts <(rc)KR

+,
IDKR , IDCR, IPSb> and obtains two confirm rumors, rcK and rcC,
which take random walks in the system. Note that two confirm
rumors are marked with new descriptors: IDK’I and IDC’I. We
assume that rcK and rcC collide in a new sower S’a. We denote
their paths from I to S’a by lrcK and lrcC. When S’a recovers the IP
address of Sb from rcK and rcC, it directly contacts Sb to forward
rcK and rcC attached with IDK’I and IDC’I via a TCP link, as
shown in Fig. 4. The rcK and rcC are then delivered along the
reversed paths of l’K and l’C until they reach R.

E. File Delivery

After recovering the confirm message from (rc) KR
+ using its

private key KR
−, R implements a digital envelope technique to

encrypt the file into cipher Cf. The purpose of this technique is
to reduce the cryptographic overhead. Instead of including Cf
into the rumor generation, R encrypts <IDK’I, IDC’I, IPS’a> to
generate the data cipher rumor and the data key rumor, and
attaches the digital envelop payload to the data cipher rumor.
The large data cipher rumor and the small data key rumor first
take random walks to meet each other at a sower S’b, then
traverse the path from S’b to S’a via a TCP connection, and
eventually reach I along the reversed paths of lrcK and lrcC. Upon
receiving the digital envelop, I recovers the desired file using its
private key. For large-size files, responders can split them into
multiple segments.

F. Multiple Rumor Riding

Previous works employ multiple walkers, say k-walkers, to
shorten the query delay time. After L hops, k-walkers should
cover approximately the same amount of peers as a one-walker
covers after k × L hops, while the response time can be
significantly reduced. To accelerate the query cycle, in RR, an
initiator can issue multiple rumors in the query cycle. We denote
this scheme as (i, j)-RR, which issues i cipher rumors and j key
rumors.

G. Rumor TTL

The selection of rumor TTL, together with the number of
cipher and key rumors, determines 1) how many sowers a query
would have, and 2) how the sowers are distributed. The tradeoff
with this is that for each query, RR requires a least number of
sowers randomly distributed in the entire system, but too many
sowers will lead to a greater overhead.

To assign a proper TTL, RR employs simple schemes similar
to the one used in [24]. Peers periodically insert several pairs of
‘testing’ rumors into the system, including the initiator’s IP.
Any sower recovers this testing query sends the retained TTL of
the two rumors directly to the initiator through a TCP
connection. During this process, we do not require anonymity.
The initiator observes the ID (IP address) of the responding
sower and the distribution of the reported TTL. If the diversity
of sowers is poor or the median of TTLs is low, the initiator
enlarges the TTL or adjusts the number of rumors. It decreases
the TTL value or the number of rumors when there are too many
sowers.

H. Rumor Cache

Each peer needs to cache a number of received rumors before
the rumors are matched. Due to space limitations, it is unlikely
to provide infinite space. Therefore, rumor removal policies are
necessary for each peer. Since key rumors and cipher rumors are
in different sizes, and key rumors are typically shorter than
cipher rumors (especially during content deliveries), RR
allocates three caches in each peer for 1) key rumors, 2) all
cipher rumors except the data cipher rumors, and 3) the data
cipher rumors. RR assigns a time-duration and starts a timer for
each rumor. An FIFO method is employed in the three caches;
RR always drops the ‘oldest’ rumor in the queue until there is
enough free space to store the newly arrived rumor. In addition,
a peer can drop cipher rumors ‘older’ than 2 minutes, as most of
the queries have the response time less than 1 minute, according
to many observations.

IV. DISCUSSION

In this section, we focus on several key issues in the RR
design. We first present a theoretical analysis on how to ensure
that each query has at the least one sower and that the sowers are
evenly distributed over the system. We then discuss the attack
models and analyze the anonymity degree of RR.

A. Sower Distribution and Collision Rate

RR rumors are sent in random directions, and each peer
forwards a rumor to one of its neighbors without any bias.
According to the observations in [19], random walk achieves
statistical properties similar to independent sampling for every
reasonable network. Studies in [11, 21] show that if the walk
length is sufficiently large, the final receivers of a random walk
query are randomly distributed. We define collision distance, T,
as the hop count of the shorter path that rumors walk from the
initiator to the sower, as illustrated in Fig. 5. When taking the T
to be O(logn), the sowers are evenly distributed guaranteed by

25

the observations in [21]. Our simulation results in Section V
show that carefully selecting parameters will lead to desired
collision distances. We assume that each peer accessed by a
rumor is an independent sample from a space of uniform
distribution.

A peer becomes a sower if it receives a pair of rumors. For a
(i, j)-RR scheme, there are i cipher rumors and j key rumors.
Without loss of generality, we assume that each rumor has a
fixed TTL value of L. After rumor spreading, the popularity of
cipher rumors is i × L, where popularity means the total number
of peers receiving the cipher rumor. We further assume that
those nodes are distinct with each other and the distribution of
them is uniformly random. On the key rumor path, the
probability of a peer only being visited by this key rumor and
not having the cipher rumor is (1 – i × L / n). The probability of
a key rumor terminating its walk without hitting a cipher rumor
is given by (1 – i × L / n)L. Thus, the probability of a successful
collision in a (i, j)-RR is given by:

 ph = 1 – (1 – i × L / n) j × L (1)
We also introduce a parameter τ to indicate the minimum

acceptable collision rate. The expected collision rate is
formulated subject to the constraint: ph ≥ 1 – τ, 0 < τ <<1.
Combining this with (1) we have

 j × L × log(1 – i × L / n) ≥ log(τ) (2)
To keep the collision rate ph at a high level, say 99%, peers

can choose the proper i, j, and L according to (1) and (2). We
calculate three typical distributions in (1, 1), (1, k), and (k,
k)-RR schemes to examine the optimal setting of i and j. Based
on (2), we show a theoretical distribution of ph in Fig. 6, Fig. 7,
and Fig. 8. The network size is one million nodes. Indeed, the (k,
k)-RR scheme achieves a higher collision rate than others in
most cases. Thus, we assert that the (k, k)-RR scheme is a proper
choice for a high collision rate. From the results, it is clear that

larger TTL values of rumors corresponds with a higher collision
rate, while increasing the number of rumors also leads to a
higher collision rate. We use the above results to guide the
implementation of the RR protocol.

It must be admitted that the above result merely considers the
ideal case. In practice, there might not be i × L distinct nodes on
the cipher rumor routes. Consequently, fewer sowers exist than
estimated. Therefore, the values of i, j, and L obtained from (1)
and (2) are the lower bounds in uniformly random topologies. A
node can increase the values to guarantee enough sowers. On
the other hand, due to the small world property of P2P networks,
the collision rate in real P2P overlays is significantly higher than
that in uniformly random topologies, as demonstrated in
simulations in Section V.

As we mentioned, the collision distance is another important
factor balancing the tradeoff between user anonymity and the
query delay. Normally, initiators wish the sower peers to be as
far away as possible since the sowers recover query messages
and might help adversaries to locate the initiator if they are
compromised. Thus, the number of rumors should be limited.
We also show our simulation results for the upper bound of
rumor numbers in a practical network in Section V.

B. Anonymity Analysis

In this subsection, we first discuss the degree of anonymity
that RR achieves, and then analyze the protocol effectiveness
under various attack scenarios.

1) Anonymity Degree

We first define the Anonymity Degree (AD) as the probability
of making an incorrect guess to identify a participant. A higher
degree signifies that better anonymity has been achieved.

In RR, when an intermediate node receives a query or
confirm rumor, it forwards the rumor to a randomly chosen
neighbor. From an observer’s perspective, each node sending
the rumor could be the actual initiator of the rumor. Similarly,
when an intermediate node receives a response or data rumor,
any intermediate node delivering the rumor could be a potential
receiver. Therefore, an observer (initiator, responder or an
intermediate node) cannot distinguish the initiator and
responder from the other peers. Thus, if the number of nodes in
the P2P system is n, the initiator’s or responder’s AD is (n – 2) /
(n – 1) from the viewpoint of a normal observer (the number of
potential initiators/responders is n - 1).

Figure 6 Collision rate in (1, 1)-RR. Figure 7 Collision rate in (1, k)-RR. Figure 8 Collision rate in (k, k)-RR.

Figure 5 Collision distance T = Min{LC, LK}.

26

2) Attacks

We assume that the number of adversary nodes is m. Thus,
the probability of a peer being an adversary is m / n. In some
cases, adversaries may merely observe the fact that a sender is
sending information, without any knowledge about the
transmitted data. We claim that the protocol achieves
unlinkability to the initiator and responder if they cannot be
identified when communicating with each other. In our attack
model, we assume that based on the records, the adversary
nodes are able to observe and store the communication
traversing them and guess the identity of nodes that initiated
those transmissions. Adversary nodes also have the capability to
perform active attacks which include dropping, hijacking, and
forging packets, controlling flows and connections of the
network, etc.

We categorize the major attacks a P2P anonymity protocol
should be able to defend against, and discuss why RR is
invulnerable.

Message coding attack: a passive observer can trace a
message in the network if the message does not change its
coding. This attack is also the main motivation to perform
encryptions in anonymous designs. For example, a naive
anonymous system can simply let queries randomly walk in the
system before reach a node which chooses to act as an agent to
flood the query. Such a plaintext random forwarding design can
achieve initiator anonymity to some extent. The fresh node,
however, would lose its anonymity immediately if it sends its
first query to an observer. Similarly, if an attacker (statistically)
tracks signal messages from a sender to a receiver [10], the
anonymity of such a plaintext random forwarding protocol
vanishes. RR provides unlinkability to fresh nodes, such that
when observers obtain a rumor, it cannot link a query to the
received rumor.

Local collaborating attack: neighboring adversaries may
collaborate to monitor the traffic passing through and share the
information in order to identify the possible neighboring
initiators. When two adversaries neighboring the initiator
receive a pair of rumors of a message, one of them may forward
the key rumor to another. The latter will recover the message,
and guess that the node sending the rumor is the initiator.

In RR, a sower selects a subset of its neighbors to send the
plaintext query, and the two collaborating nodes will not receive
the query. In this way, adversaries only bet that the monitored
node is an initiator or a responder. Thus, the AD of the initiator
or responder becomes 1 – 1 / (1 + s), where s is the number of
sowers of this pair of rumors. Suppose an initiator is
neighboring c local collaborating nodes. If c exceeds 2, then the
AD becomes 1 – 1 / (1 + s × (1 – p)(c – 2)), where p is the
probability of a sower choosing a neighbor to send the query.
Hence, RR is not subject to the local collaborating attack if the
adversaries cannot compromise more than three neighbors of
the monitored node.

Timing attack: in a timing attack [15], the adversary deduces
the correlation between the timings of packets, such as the
response time of a query, the time difference of a query, a time

interval between two sequential packets, etc., to locate a
transmission. Timing attacks pose a serious threat to path-based
approaches. RR is invulnerable in that (1) rumors are delivered
over the overlay network in a random walk manner and RTT
measurements do not reveal the real distance to the responder;
(2) if adversaries want to trace the rumor via the time difference
to locate the responder, they need to trace one query rumor from
initiator to a sower, then trace the plaintext query message from
the sower to the responder, which is too cumbersome to be
practical; and (3) a sower issues a request only after it obtains a
pair of query rumors, so the response time is mainly dependent
on the random walks of rumors, which are unpredictable. All of
these factors make it difficult to launch a timing attack.

Predecessor attack: in some anonymous systems, an
initiator repeatedly communicates to a specific responder in
many rounds. Adversaries are able to identify the path pointed
to the responder in each round, and log any node that sends a
message to this path. In this case, the initiator is most likely the
one which appears more [17]. The fundamental assumption in
such an attack is that an initiator always communicates with a
specific responder in the long run. A variation is passive
logging attacks[12]. In RR, rumors correlating to a message
walk randomly and interact with random sowers unpredictably.
Based on our earlier discussion, the sowers of a given initiator
or responder are not unique and randomly distributed over the
system. Hence, adversaries are not able to perform such an
attack to identify the initiator or responder via sowers, and RR is
not subject to this type of attack.

Traffic analysis attack: an adversary can extract traffic flow
information such as packet count, message volume, and
communication pattern, etc., and build correlations between the
initiator, responder, and their communication. Similar to timing
attacks, traffic analysis attacks can compromise the initiator’s or
responder’s anonymity if adversaries control a large fraction of
the network. For example, based on traffic shaping [22]
adversaries clog traffic in the suspected nodes and observe the
traffic change when they slightly mitigate the clogging traffic.
Thus, the real traffic can be deduced. Performing this attack
consequentially along the reversed path of the traffic,
adversaries can easily determine the initiator. RR is much less
vulnerable to this attack since subsequent messages do not
belong to the same traffic, and there are not any continuous
paths in RR.

Traceback attack: adversaries start from a known sower to
trace back to the initiator along the rumor paths. The adversary
examines the stored routing state of the peers to identify the
paths between the initiator and responder. We consider the
users’ anonymity in two attack scenarios: (1) One-way back
tracking: adversaries that are on the rumor path back-track and
collaborate with each other to detect the source node of this
rumor; (2) Multiple-ways back tracking: at least one adversary
intercepts both the cipher rumor and the key rumor.

Theorem: The probability that collaborating attackers
correctly guess the initiator of one captured rumor is less than
(m + 1) / n, 1 ≤ m < n, where n is the number of total peers and m

27

is the number of adversaries in the system.
Proof: Let Ek (k ≥ 1) denote the event that the first adversary

occupies the kth position on the path, where the initiator
occupies the 0th position. We let I denote the event that an
adversary is on the rumor path immediately after the initiator.
We also define Lkkkk EEEEE ∨∨∨∨= +++ K21 , where 1≤ k

≤ L. Clearly, Pr[I | E1] = 1. Therefore, we calculate Pr[I | E1+],
the probability that adversaries successfully determine that a
cipher rumor is coming from the initiator as follows.

For adversaries:

,
1

]Pr[

,]Pr[

1
2

1

n

mn

n

mn
n

mn

n

m

n

mn

n

m
E

n

m

n

mn
E

k

k

i

i

−=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−

=⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −=

∑
∞

=
+

−

.1]Pr[
0

1 =⎟
⎠
⎞

⎜
⎝
⎛ −= ∑

∞

=
+

k

k n

mn

n

m
Eand (3)

Note that we extend the path length L of rumors to infinity in
order to maximize the impact of attacks. Obviously, we also get
Pr[E1] = m / n, Pr[I | E1] = 1, Pr[I | E2+] = 1 / (n – m). The last
equation is derived from the observation that if the first
adversary does not immediately follow the initiator, it can only
guess the initiator of the message with a probability of 1 / (n –
m). We have

Pr[I] = Pr[E1] Pr[I | E1] + Pr[E2+] Pr[I | E2+]. (4)

Substituting the above equations with those of (3), we
calculate]|Pr[1+EI by:

n

m

E

I

E

EI
EI

1

]Pr[

]Pr[

]Pr[

]Pr[
]|Pr[

11

1
1

+=≤∧=
++

+
+

■ (5)

When the number of adversaries, m, approaches n, the
probability of an adversary correctly guessing the sender’s
identity approaches 1. The AD of an initiator or responder is 1 –
(m + 1) / n, 1 ≤ m < n.

Analogously, the probability that the multiple-ways back
tracking attacks can correctly guess that a peer is the initiator of
suspected rumors is given by:

()
11,,1,

1
5

22

−≤≤≤≤⋅⋅⋅⋅+= nm
L

n
ji

n

mjiLm
pm

 (6)

Thus the AD of the initiator and the responder is 1 – pm in this
scenario.

In summary, when there are no global adversaries or active
tracebacks, RR achieves a high degree of anonymity. RR is
vulnerable if the attackers have a global knowledge or full
control of the network. In this scenario, most anonymous
approaches fail. It is noticeable that path-based approaches
have to depend on the anonymous proxies or routers to achieve
the promised anonymity. With the increase of the network size,
it is very difficult for individual peers to maintain a large
number of anonymous agents in path-based approaches. In

contrast, RR takes advantage of using the entire P2P network to
provide anonymity. Thus, the anonymity set, which including all
equivalent probability to be a certain initiator or responder, is
maximized into the size of (n – m).

V. SIMULATION

Additional latency of data delivery, bandwidth consumed by
anonymous traffic, and crypto processing, if they exist, are
necessary in order to provide anonymity. In this section, we
evaluate the RR design through trace-driven simulations.

A. Metrics

We use the following metrics for evaluating RR.
Collision rate. To verify the theoretical results in Section IV,

we examine the distribution of collision rate with real traces.
Besides the verification, we also use the results to guide the
selection of rumor parameters.

Collision distance. A longer collision distance means a
higher anonymity level, but also increases the delay of a query
as well as the traffic overhead. On the other hand, the collision
distance must be sufficiently large to guarantee sower diversity,
as we discussed in Section IV.

Number of sowers. We are also concerned with the number of
sowers in a query cycle. Since each sower implements a
flooding search for an initiator, too many sowers will incur a
large number of replicated query messages, and too few sowers
will result in failure to provide enough redundancy and
reliability.

Traffic overhead. The amount of traffic overhead represents
the comprehensive latency in data delivery and bandwidth.
Specifically, we are more interested in the extra traffic overhead
caused by anonymous components. We assume that a query
cycle involves e edges in the P2P overlay. For each edge in the
P2P overlay, there is a unique path mapped into the physical
internet layer with the length l. For each message enrolled in one
query cycle, we calculate the sum of the distances that this
message passes through. Therefore, the traffic overhead of a
query cycle is defined as C = M×L = ∑ |mi | × li, 1 ≤ i ≤ e, where
|mi | is the size of the traversed messages.

Crypto latency. It is the overhead incurred by the main
cryptographic algorithms, 128-bit AES and 1024-bit RSA, in
this protocol. We investigate the cryptographic overhead
compared with other anonymity protocols. We use the
processing overhead in one AES operation as the basic unit to
make conversions between RSA and AES. Thus we can
investigate the comprehensive cryptographic overhead incurred
by different algorithms.

Response time. In P2P systems, it is defined as the time
elapsed from when a query is issued to when the first response
arrives. In our simulation, the response time is defined as the
time from the start of rumor spreading to the time when the
initiator receives the first response message.

B. Methodology

The P2P topologies come from two sources. One is based on

28

Figure 9 Theoretical collision rate. Figure 10 Collision rate of simulation. Figure 11 Collision distance.

0 20 40 60 80 100
0

10

20

30

40

50

TTL of rumors (L)

N
um

be
r

of
 s

ow
er

s

(1,1)-RR
(2,2)-RR
(3,3)-RR
(4,4)-RR
(5,5)-RR
(6,6)-RR

0 2 4 6 8 10
x 106

0

20

40

60

80

100

Extra traffic overhead per query

C
um

ul
at

iv
e

pr
ec

en
ta

ge
 o

f q
ue

rie
s

(%
)

Shortcut
(1,1)-RR
(2,2)-RR
(3,3)-RR
(4,4)-RR
(5,5)-RR
(6,6)-RR

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Response time (ms)

C
um

ul
at

iv
e

pr
ec

en
ta

ge
 o

f q
ue

rie
s

(%
)

Shortcut
(1,1)-RR
(2,2)-RR
(3,3)-RR
(4,4)-RR
(5,5)-RR
(6,6)-RR

(4,4)-RR
(5,5)-RR
(6,6)-RR

Shortcut
(1,1)-RR
(2,2)-RR
(3,3)-RR
(4,4)-RR

Figure 12 Number of sowers. Figure 13 Cumulative distribution of traffic overhead. Figure 14 Cumulative distribution of response time.

the DSS Clip2 trace, which collected log data from Jan 2001 to
Jun 2001. The other one is a more recent snapshot kit of Ion P2P
[23], which logged data from Sep 2004 to Feb 2005, including
topologies with high degree nodes (i.e., maintaining more than
30 neighbors). When adopting Ion’s traces into the simulated
topologies, we only use the ultrapeers of its snapshots, which
perform the flooding search in a hybrid Gnutella. Our
simulations ran over different traces, ranging from 103 to 105
nodes. To simulate the physical internet layer below the P2P
overlay [18], we used BRITE [5] to generate 30,000 – 100,000
nodes in the internet-like topologies. Content popularity of a
publisher follows a Zipf-like distribution (aka Power Law) [3],
where the relative probability of a request for the ith most
popular page is proportional to 1/iα, with α typically taking on
some value less than one.

To perform the security algorithms used in RR protocol, we
employ Crypto++, a software kit which provides standard
cryptographic functions. Our experiments for simulation and
implementation are both conducted on several desktop PCs,
typically with Pentium M 3.2G CPU, 1GBytes memory, 40G
hard disk, and 10/100M Ethernet card. We also simulate the
dynamic properties of the P2P overlay network by assigning a
lifecycle to each peer. The lifetime is generated according to the
distribution observed in [8]. The mean of the distribution is
chosen to be 600 seconds [9, 16]. The value of each peer’s
lifecycle is decreased by one with each passing second. When
peers use up their lifetimes at the end of each second, they leave
the system the following second, and other fresh peers selected
from the physical internet layer join in as replacements.

C. Results

We first consider the collision rate of a single rumor
spreading. To verify the theoretical result discussed in subsection
IV.A, we simulate rumor spreading procedures in the traces with
a (k, k)-RR scheme. We experiment in the sample space of rumor
numbers k ∈ [1..10] and path length L ∈ [1..256] (the default
TTL value in Gnutella is 7). The average results of the collision
rates are presented in Fig. 10. It is observed that the collision
rates are usually higher than they are in the theoretical results,
which are shown in Fig. 9. Since the topology in Gnutella
networks follows small-world properties, a random path in the
P2P topology often traverses high-degree nodes, causing the
collision rates to be higher than they are in homogeneous
networks, in which the node degree follows a uniform
distribution. This phenomenon is particularly obvious in the
dense topologies of the Ion’s traces. Combining the results of
theoretical and real experiments, we obtain that the proper lower
bound of the number of rumors k and the TTL value of each
rumor L is k × L ≥ 100. We use this result to guide the setting of
rumors in our protocol.

As discussed in Section IV, the collision distance is important
in balancing the tradeoff between user anonymity and the query
delay in the RR design. In the results of the (k, k)-RR scheme
plotted in Fig. 11, it is shown that if L is larger than 25 (1 ≤ k ≤
10), the average collision distance is no less than 5. On the other
hand, a small k, say less than 6, guarantees that the most collision
distance will be larger than 5. While k exceeds 6, the collision
distance tends to be constrained within 2~5 hops. Considering
the fact that anonymity is more important than latency, we
suggest that the number of rumors k should be kept to a maximum

29

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) Shortcut
0

500

1000

1500

La
te

nc
y

(m
s)

Latency per query
Crypto processing per query
Crypto processing per path

0 20 40 60 80 100
102

103

104

105

Path length

P
ro

ce
ss

in
g

ov
er

he
ad

Shortcut
RR

0 20 40 60 80 100
102

103

104

105

106

Path length

P
ro

ce
ss

in
g

ov
er

he
ad

Shortcut
RR

Figure 15 Components of latency. Figure 16 Average cryptographic overhead of the
initiator and responder for one query.

Figure 17 Cryptographic overhead of intermediate
nodes for one query.

of 6. Besides the collision distance, we are also concerned with
sower diversity. Ideally, sowers should be uniformly distributed
over the entire system so that for a given peer, distinct sowers are
generated in different RR executions. We use the distinct sower
ratio (D) to evaluate the diversity. If a peer performs g rounds of
RR, and generates d distinct sowers (d ≤ g), the distinct sower
ratio of this peer is given by D = (d / g) × 100%. By repeatedly
running RR for each node in its lifecycle, we see that when L is
larger than 30 and k ∈ [1..6], the ratio D is larger than 92%.
Therefore, selecting L > 30 and 1 ≤ k ≤ 6 can effectively
guarantee a safe collision distance as well as the random
distribution of sowers.

In the meantime, RR needs to limit the number of sowers in
order to avoid a large number of replicated query messages. As
shown in Fig. 12, when we select k × L ≤ 200, each (k, k)-RR
scheme has no more than 10 sowers (1 ≤ k ≤ 6). Therefore, k × L
should be in the range [100, 200] in order to meet both the
reliability and the scalability requirements.

We then consider the traffic overhead. We compare RR with
the most recent work, Shortcut protocol [13]. We insert 10,000
queries into the system, and Fig. 13 plots the cumulative
distribution of the extra traffic overhead of (k, k)-RR schemes. In
our experiments, the TTL value of rumors is constrained by k × L
= 150. Note that a larger L means more traffic overhead. We
observe that the average traffic overhead incurred by the
Shortcut protocol is little lower than that of the (6, 6)-RR scheme,
which is the maximum value of our suggested settings. Except for
this case, the traffic overhead of RR is much smaller than that of
the Shortcut protocol.

Users of current P2P systems often have rigid requirements for
the response time for requesting resources. We show the
cumulative distribution curves of response times in different (k,
k)-RR schemes in Fig. 14, comparing them with those of the
Shortcut protocol. Clearly, the average response latency is
decreased when we increase the number of rumors, k. However,
more rumors incur more traffic overhead and message
replications. Careful selection of the RR protocol settings will
lead to the reduction of both the traffic overhead and response
time compared with those of the Shortcut protocol.

Compared to the previous approaches, such as Shortcut and
APFS, the most significant advantage of RR is that the
cryptographic processing overhead has been cut down

tremendously. This feature also results in a low latency. Figure
15 contrasts the average latency per query and the part caused by
cryptographic processing. In addition, we also compare the
average latency of cryptographic processing along the rumor
paths. We observe that in most cases, the time spent on
cryptographic processing in an onion path is over 10 times higher
than the time spent in a rumor spreading path. This is due to the
fact that Shortcut’s peers must perform a large number of RSA
operations for both anonymous path construction and
anonymous relaying, which incur significantly longer responses
than those of RR.

We also examine the cryptographic overhead of the RR
protocol. Figures 16 and 17 show the average cryptographic
overhead of RR and the Shortcut protocol in a query cycle. We
can see that RR significantly reduces the cryptographic overhead
for initiators, responders, and intermediate nodes.

The total cryptographic overhead of the intermediate nodes is
linearly proportional to the length of the onion path when using
the Shortcut protocol. Also, the onion routing technique leads to
an overtly high cryptographic overhead for Shortcut users. With
paths of similar lengths, RR gains a large decrease of
cryptographic overhead compared with path-based approaches
due to the usage of symmetric encryption/decryption instead of
asymmetric key-based algorithms. Hence, the light
cryptographic overhead strongly supports RR’s implementation
in large-scale P2P systems.

VI. IMPLEMENTATION EXPERIENCE

We implemented a RR prototype on the Window XP platform.
We used the Crypto++ Library to implement all built-in
cryptographic algorithms. The modification to the Gnutella
prototype protocol comprises the following components:

(1) Sower peers require direct TCP links to forward the
rumors. For TCP forwarding, we took advantage of Windows
Sockets.

(2) RR uses AES for cryptographic operations. In each rumor
packet, the payload includes a cipher text generated by using the
AES (CBC mode). The AES key size is 128-bit.

(3) To guarantee the quality of AES keys, RR generates the
keys using the random number generator function in the
Crypto++ Library.

30

(4) Previous works [7] show that each node generates 0.3
queries per minute on average, most queries’ lengths are below
100 bytes, and the average number of neighbors of the traces are
below 60. After calculation, we set the size of the local key rumor,
cipher rumor, and data cipher rumor caches as 1MB, 2MB, and
10MB, respectively. The time-duration for cipher rumors is 2
minutes, and the time-duration is 10 minutes for key rumors. The
size of the file fragment is 512K bytes.

We examined the throughput and the latency of RR. Table I
presents the latency and throughput of a peer to perform
cryptographic operations, including AES key generation, AES
operation, CRC calculation, and RSA operation. In RR, the
throughput of an initiator query depends on the rumor generation
speed, which is determined by the AES key generation, AES
encryption, and CRC calculation. Among them, the slowest
algorithm is the AES key generation, which can provide 14,221
keys per second on average.

TABLE I LATENCY AND THROUGHPUT OF ALGORITHMS

ALGORITHMS THROUGHPUT (Mbytes/s)
128-bit AES key generation 0.217±0.00443

128-bit AES Encryption 8.155±0.256
CRC-32 calculation 137.48±4.79

1024-bit RSA Encryption 0.148±0.00280
1024-bit RSA Decryption 0.00670±0.000126

VII. CONCLUSION

Existing anonymity approaches are mainly path-based. Peers
have to recruit middle nodes and construct paths before
transmissions. The overhead of maintaining and updating the
paths is also significantly high. In this paper, we propose a
lightweight and non path-based mutual anonymity protocol for
unstructured P2P systems, Rumor Riding (RR). Employing a
random walk concept, RR issues key rumors and cipher rumors
separately, and expects that they meet in several random peers.
The results of extensive trace-driven simulations show that RR
provides a high degree of anonymity and outperforms existing
approaches in traffic overhead and processing latency. We also
discuss how RR can effectively defend against popular attacks.
The early experience of our prototype implementation shows its
practicality.

Future and ongoing work includes accelerating the query
speed, introducing mimic traffic to confuse attackers, and
optimizing the k and L combination to further reduce the traffic
overhead. We will also investigate other security properties of
RR, such as the unlinkability, information leakage, and failure
tolerance when facing different attacks. It would also be
interesting to explore the possibility of implementing this
lightweight protocol in other distributed systems, such as grid
systems and ad-hoc networks.

ACKNOWLEDGMENT

The authors would like to thank the shepherd, Bobby
Bhattacharjee, for his constructive feedback and valuable input.
This work is supported in part by the Hong Kong RGC grants
HKUST 6264/04E and HKUST 6152/06E.

REFERENCES

[1] D. Chaum, "Untraceable electronic mail return addresses, and digital
pseudonyms", Communications of the ACM, 1981.

[2] M. K. Reiter and A. D. Rubin, "Crowds: anonymity for web transactions",
ACM Transactions on Information and System Security, 1998.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, "Web caching and
Zipf-like distributions: evidence and implications", In Proceedings of
IEEE INFOCOM, 1999.

[4] D. Goldschlag, M. Reed, and P. Syverson, "Onion routing",
Communications of the ACM, 1999.

[5] A. Medina, A. Lakhina, I. Matta, and J. Byers, "BRITE: an approach to
universal topology generation", In Proceedings of the International
Workshop on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS), 2001.

[6] V. Scarlata, B. N. Levine, and C. Shields, "Responder anonymity and
anonymous Peer-to-Peer file sharing", In Proceedings of IEEE ICNP, 2001.

[7] K. Sripanidkulchai, "The popularity of Gnutella queries and its
implications on scalability", In Proceedings of The O'Reilly Peer-to-Peer
and Web Services Conference, 2001.

[8] S. Saroiu, P. Gummadi, and S. Gribble, "A measurement study of
Peer-to-Peer file sharing systems", In Proceedings of Multimedia
Computing and Networking (MMCN), 2002.

[9] S. Sen and J. Wang, "Analyzing Peer-to-Peer traffic across large
networks", In Proceedings of ACM SIGCOMM Internet Measurement
Workshop, 2002.

[10] R. Sherwood, B. Bhattacharjee, and A. Srinivasan, "P5: A protocol for
scalable anonymous communication", In Proceedings of IEEE Symposium
on Security and Privacy, 2002.

[11] I. Abraham and D. Malkhi, "Probabilistic quorums for dynamic systems",
In Proceedings of DISC, 2003.

[12] M. Wright, M. Adler, B. N. Levine, and C. Shields, "Defending
anonymous communications against passive logging attacks", In
Proceedings of IEEE Symposium on Security and Privacy, 2003.

[13] L. Xiao, Z. Xu, and X. Zhang, "Low-cost and reliable mutual anonymity
protocols in Peer-to-Peer networks", IEEE Transactions on Parallel and
Distributed Systems, 2003.

[14] R. Dingledine, N. Mathewson, and P. Syverson, "Tor: the
second-generation onion router", In Proceedings of the USENIX Security
Symposium, 2004.

[15] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, "Timing attacks in
low-latency Mix systems", In Proceedings of the International Conference
on Financial Cryptography, 2004.

[16] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, "Location-aware topology
matching in P2P systems", In Proceedings of IEEE INFOCOM, 2004.

[17] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, "The predecessor
attack: an analysis of a threat to anonymous communications systems",
ACM Transactions on Information and System Security (TISSEC), 2004.

[18] X. Zhang, Q. Zhang, Z. Zhang, G. Song, and W. Zhu, "A construction of
locality-aware overlay network: mOverlay and its performance", IEEE
JSAC Special Issue on Recent Advances on Service Overlay Networks,
2004.

[19] N. Bisnik and A. Abouzeid, "Modeling and analysis of random walk search
algorithms in P2P networks", In Proceedings of HOT-P2P, 2005.

[20] D. Figueiredo, J. Shapiro, and D. Towsley, "Incentives to promote
availability in Peer-to-Peer anonymity systems", In Proceedings of IEEE
ICNP, 2005.

[21] R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh, "Efficient
lookup on unstructured topologies", In Proceedings of ACM PODC, 2005.

[22] S. J. Murdoch and G. Danezis, "Low-cost traffic analysis of Tor", In
Proceedings of IEEE Symposium on Security and Privacy, 2005.

[23] D. Stutzbach and R. Rejaie, "Characterizing the two-tier Gnutella
topology", In Proceedings of ACM SIGMETRICS, 2005.

[24] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, "SybilGuard:
defending against Sybil Attacks via social networks", In Proceedings of
ACM SIGCOMM, 2006.

31

