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Abstract—Although anonymizing Peer-to-Peer (P2P) systems 

often incurs extra costs in terms of transfer efficiency, many 
systems try to mask the identities of their users for privacy 
considerations. Existing anonymity approaches are mainly 
path-based: peers have to pre-construct an anonymous path before 
transmission. The overhead of maintaining and updating such 
paths is significantly high. In this paper, we propose Rumor 
Riding (RR), a lightweight mutual anonymity protocol for 
decentralized P2P systems. RR employs a random walk scheme 
which frees initiating peers from the heavy load of path 
construction. Compared with previous RSA-based anonymity 
approaches, RR also takes advantage of lower cryptographic 
overhead by mainly utilizing a symmetric cryptographic algorithm 
to achieve anonymity. We demonstrate the effectiveness of this 
design through trace-driven simulations. The analytical and 
experimental results show that RR is more efficient than existing 
protocols. We also discuss our early implementation experiences 
with the RR prototype. 
 

Index Terms—Mutual Anonymity, Non Path-based, P2P  

I. INTRODUCTION 

eer-to-peer (P2P) networks, such as Napster, Gnutella, and 
BitTorrent, have become essential media for information 

dissemination and sharing over the Internet. Concerns about 
privacy, however, have grown with the rapid development of 
P2P systems. Recently, a number of P2P users have encountered 
problems caused by being traced on non-anonymous P2P 
systems due to their plain-text query messages and 
direct-downloading behaviors. Hence, the requirement for 
anonymity has become increasingly essential in current P2P 
applications for both content requesters and providers.  

A number of methods  [1, 2, 10, 13, 20] have been proposed 
to provide anonymity. Most, if not all of them, deliver messages 
via non-traceable paths comprised of several anonymous 
proxies or middle agent peers. In these approaches, known as 
path-based approaches, users usually need to construct 
anonymous paths before transmissions. All nodes in the path 
cooperate to forward data to a receiver. Data is pre-wrapped by 
the initiator in a layered-encryption packet (usually using 
asymmetric cryptographic algorithms, such as RSA), which will 
be peeled off along the path to the receiver. Although 
path-based protocols provide strong anonymity, they have the 
following problems:  

1. Pre-construction of paths requires users to obtain a large 
number of IP addresses and public keys from other peers in 
advance. Furthermore, initiators must perform large amounts of 
cryptographic processing in preparation for layer-encrypted 
packets. Both the collection of information and the preparation 
of packets incur high costs.   

2. Initiators have to periodically update middle nodes along 
the anonymous paths. An invariable path might otherwise 
become increasingly vulnerable under the analysis of attackers. 
In addition, users often expect to extend the length of 
anonymous paths, as a longer path entails a higher degree of 
anonymity. Both of these requirements increase the 
maintenance and update overhead.  

3. In highly dynamic P2P systems, peers randomly join and 
leave. If a chosen node goes offline, the whole path fails, and 
such a failure is often undetected by the initiator. Therefore, a 
“blindly-assigned” path is very unreliable, and users have to 
frequently probe the path and retransmit messages. 

To address the above problems, we propose a non path-based 
anonymous P2P protocol called Rumor Riding (RR). The 
design goal is twofold: first, to eliminate the huge overhead of 
path construction and maintenance; second, to use a symmetric 
cryptographic algorithm to replace the asymmetric one so as to 
reduce the cryptographic overhead and make the protocol more 
practical.  

In the RR design, we first let an initiator encrypt the query 
message with a symmetric key, and then send the key and the 
cipher text to different neighbors. The key and the cipher text 
take random walks separately in the system, where each walk is 
called a rumor. Once a key rumor and a cipher rumor meet at 
some peer, the peer is able to recover the original query message 
and act as an agent to issue the query for the initiator. A similar 
idea is also employed during the query response, confirm, and 
file delivery processes. Thus, the rumors serve as the primitives 
of this protocol to achieve the mutual anonymity and meet the 
design objectives. The highlights of our contributions are as 
follows.  
• We design a lightweight mutual anonymous P2P protocol, 

RR, in which anonymous paths are automatically 
constructed via the rumors’ random walks. Neither the 
initiator nor the responder needs to be concerned with 
anonymous path construction and maintenance. Extending 
the scope of anonymous servants from a small clique of 
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nodes to the entire P2P network, RR significantly increases 
the degree of anonymity of the systems.  

• RR mainly employs a symmetric cryptographic algorithm 
to achieve anonymity. Without involving the asymmetric 
cryptographic algorithm in the transmission of messages, it 
significantly cuts down the cryptographic overhead for the 
initiator, the responder, and the middle nodes. 

• We conducted trace-driven simulations. We show that RR 
outperforms existing protocols in terms of efficiency. In 
previous anonymous systems, users have to communicate 
with other peers or bootstrapping servers to obtain enough 
proxies’ IP addresses. With RR, each initiating peer has no 
requirement of extra information to construct paths, thus 
eliminating the risk of information leakage caused by links 
that are used for peers to request the IP addresses of 
anonymous proxies. 

The rest of this paper is structured as follows. In Section II, 
we describe the related work on anonymous communications. In 
Section III, we present the design of the RR protocol. Section IV 
analyzes and discusses the key issues and the degree of 
anonymity of RR. Section V presents simulation results and 
performance evaluations. We introduce our early 
implementation experience with RR in Section VI, and 
conclude the work in Section VII. 

 

II. RELATED WORK 

Since Chaum [1] pioneered the concept of anonymity, many 
approaches have been proposed to acquire anonymous 
communication. These approaches fall into two categories: 
path-based anonymous delivery and anonymous multicast. 
Onion Routing[4] and Mix[1] are the classical approaches of the 
first category, and P5 [10] is representative of the latter.  

Onion Routing[4], as well as its second generation, Tor [14], 
is  the most popular path-based protocol providing anonymous 
connections over the Internet based on a layered-encryption 
method. They mainly focus on the IP layer rather than the 
application level. APFS [6] proposes to provide the responder 
with anonymity based on the Onion design. 
Shortcut-responding Protocol [13] provides P2P mutual 
anonymity with a reduced  response delay. Crowds [2] enables 
the intermediate nodes to randomly choose a successor to 
forward the request to, and encrypts it with a symmetric cipher 
algorithm. Due to the inherent problem of these path-based 
approaches, users suffer the path construction and the high 
cryptographic overhead from RSA. Even worse, they need to 
periodically probe and update the anonymous paths. All of these 
incur nontrivial overhead, particularly for fresh nodes. 

P5 [10] is based on the concept of broadcasting to achieve 
mutual anonymity: all participants in the same channel send 
fixed-length encrypted packets at a fixed rate, making it look 
like all the participants form a ring. To make the broadcasting 
scalable, P5 proposes a novel broadcast hierarchy architecture to 
construct the anonymous broadcasting channels. All nodes are 
organized into different broadcasting groups, and each group is 

mapped into a node in the virtual hierarchical spinning tree. A 
high level in the hierarchy guarantees a high level of anonymity 
at a high cost of communication bandwidth, and vice versa. 
Users can make a balanced selection based on the tradeoff 
between the level of anonymity and the cost of communication 
efficiency. Due to well designed channels and hierarchy 
overlaid spanning trees, P5 also improved the communication 
efficiency. To defend against traffic analysis, P5 introduces 
noise packets to maintain a fixed transmitting rate for each user. 
However, the flooding-based message delivery inevitably 
incurs large traffic overhead on the network, and it is not 
practical to employ P5 in a P2P system. 

The proposed protocol in this work, Rumor Riding, combines 
the positive features of the path-based anonymous delivery and 
the anonymous multicast approaches. Instead of using a single 
path, RR allows messages to be sent via multiple anonymous 
paths (at least two) without considering path construction, while 
‘shrinking’ the scope of anonymous multicast.  

 

III. RUMOR RIDING ANONYMOUS PROTOCOL 

In this section, we present our work, the Rumor Riding (RR) 
protocol, which includes five major components: Rumor 
Generation and Recovery, Query Issuance, Query Response, 
Query Confirm, and File Delivery. Although RR is designed for 
unstructured P2P systems, it can be easily extended into other 
distributed systems.  

A. Rumor Generation and Recovery 

RR employs the AES algorithm to encrypt original messages, 
as illustrated in Fig. 1. The key size is 128-bit, which is secure 
enough for encryption. To determine whether a pair of cipher 
and key rumors hit, we employ a Cyclic Redundancy Check 
(CRC) function to attach a CRC value, CRC(M), to the message 
M.  

In Fig. 1, we also illustrate the rumor recovery procedure in 
the agent node S. For received key rumors and cipher rumors, S 
uses AES to recover a message M’ and the checksum CRC(M’). 
It then performs the CRC function to the recovered M’ and 
compares the result with CRC(M’). If they match, the sower S is 
aware that it has successfully recovered a message M. The 
purpose of the CRC function is to avoid using a complex text 
understanding technique to distinguish a meaningful M.  
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Figure 1 Rumor generation and recovery. 
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Figure 2 Query issuance. 

B. Query Issuance 

When an initiator I wishes to start an anonymous query, it 
first generates the query content q, and inserts its own public key 
KI

+ into q, which will be used by the responder in the query 
response and file delivery phase. I then employs an AES 
cryptographic algorithm to encrypt q into a cipher text C with a 
symmetric key K. It organizes the key K and the cipher text C 
into two query rumors, rK and rC. In Gnutella, each packet is 
labeled with a Descriptor ID, a string that uniquely identifies the 
packet. RR also uses descriptors to identify rumors. Hence, two 
random number strings, IDKI  and IDCI, are used to label the 
two rumors. After generation, I forwards the rumor messages to 
two randomly chosen neighbors, as shown with the dashed and 
dotted lines in Fig. 2. The query cipher rumor and the query key 
rumor then start their random walks in the P2P network.  

The strategy of processing rumors is different from that of 
processing normal queries. RR requires every node to 
temporarily keep a local cache to store the received rumors. 
When a node receives a query key rumor, it performs the rumor 
recovery procedure to check all cached cipher rumors. If a 
decrypted rumor holds a plain text matching the CRC value, q 
will be successfully recovered. Whether or not there is a match, 
this intermediate node reduces the TTL value of the received 
key rumor by one, keeps a temporary record containing the ID 
and route information of this rumor in the local cache, and 
forwards it to a randomly chosen neighbor. This procedure 
continues until the TTL value of this rumor is reduced to zero.  

For the received query cipher rumor, the process is similar. 
Therefore, if a pair of query rumors reach a certain node, no 
matter what the sequence is, this node will eventually recover 
the original q. The key issue with this procedure is that the 
number of rumors and their initial TTL values need to be 
carefully selected so that at least one pair of rumors, including a 
key and a cipher, will meet. A detailed discussion on the 
parameter settings are presented in Section IV.  

If one intermediate node that recovers a q is willing to act as 
an agent peer, it conducts a search on behalf of the unknown I. 
We call this node a sower. When a peer identifies itself as a 
sower, it proceeds as follows. First, it checks the TTL values 
defined in the rumors; if they are not zero, the sower forwards 

the rumors out, so that if there are attackers who can overhear 
some of the messages sent to the sower, it is still not trivial to 
determine whether or not the peer is a sower. Second, the sower, 
Sa, as illustrated in Fig. 2, attaches the original query message q 
with its IP address, and then issues the query marked with a 
label IDq in a plain text (IDq is also used for Sa to locate the 
correlated rK and rC). In this operation, we avoid a blind 
flooding. Instead, we employ a probability-based-flooding 
search, in which the sower selects a subset of its neighbors and 
issues the query. Note that the sower does not send the query to 
the nodes which sent or have been sent the two rumors of this 
query. Such a selective flooding is effective on defending 
against collaborating attacks, on which we discuss further in 
Section IV.B. In later discussions, we use the lK and lC to denote 
rumor paths from I to Sa. 

C. Query Response  

When a node receiving the query has a copy of the desired 
file, it becomes a responder R. To respond to the query, R 
encrypts the plain text of the response message re using the 
initiator’s public key KI

+. It encrypts <(re)KI
+, IDq, IPSa , KR

+> 
using AES, where KR

+ is the public key of R, and encloses the 
cipher text and the key into two response rumors, reK and reC. 
They are then assigned with IDKR and IDCR, respectively.  

After being sent out from R, two rumors start their random 
walks in the system. We illustrate this procedure in Fig. 3. RR 
guarantees that at least one pair of rumors meet at a certain peer 
Sb. We use l’K and l’C to denote their paths from R to Sb. Sb 
decrypts the cipher text in reC with the key in reK, and recovers 
the IP address of sower Sa. 

If Sb volunteers to forward the response for R, it contacts Sa 
via a TCP connection, and forwards these two response rumors 
to Sa. Note that Sb also attaches its IP address, IDq, IDKR, and 
IDCR to the two rumors. When Sa receives the responses reK and 
reC, it delivers them to the originating peers of rK and rC. Two 
response rumors are marked with IDKI and IDCI, to help them 
walk along the reversed paths of lK and lC. The successor nodes 
continue this procedure. Thus, two response rumors make use of 
lK and lC to reach I.  

Upon two response rumors, I recovers (re)KI
+ from reK and 

reC, and then decrypts (re)KI
+ to recover the original response 

messages re using its private key KI
−. A flooding search 
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Figure 3 Query response. 
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Figure 4 Query confirm. 

procedure may raise multiple responses. To simplify the 
demonstration, we assume that I only selects one candidate as 
the file provider for multiple responses. Without loss of 
generality, we continue using R to denote this desired provider.  

D. Query Confirm  

In the query confirm phase, I uses the responder’s public key 
to encrypt the confirm message rc. I then encrypts <(rc)KR

+, 
IDKR , IDCR, IPSb> and obtains two confirm rumors, rcK and rcC, 
which  take random walks in the system. Note that two confirm 
rumors are marked with new descriptors: IDK’I and IDC’I. We 
assume that rcK and rcC collide in a new sower S’a. We denote 
their paths from I to S’a by lrcK and lrcC. When S’a recovers the IP 
address of Sb from rcK and rcC, it directly contacts Sb to forward 
rcK and rcC attached with IDK’I  and IDC’I via a TCP link, as 
shown in Fig. 4. The rcK and rcC are then delivered along the 
reversed paths of l’K and l’C until they reach R. 

E. File Delivery 

After recovering the confirm message from (rc) KR
+ using its 

private key KR
−, R implements a digital envelope technique to 

encrypt the file into cipher Cf. The purpose of this technique is 
to reduce the cryptographic overhead. Instead of including Cf 
into the rumor generation, R encrypts <IDK’I, IDC’I, IPS’a> to 
generate the data cipher rumor and the data key rumor, and 
attaches the digital envelop payload to the data cipher rumor. 
The large data cipher rumor and the small data key rumor first 
take random walks to meet each other at a sower S’b, then 
traverse the path from S’b to S’a via a TCP connection, and 
eventually reach I along the reversed paths of lrcK and lrcC. Upon 
receiving the digital envelop, I recovers the desired file using its 
private key. For large-size files, responders can split them into 
multiple segments. 

F. Multiple Rumor Riding  

Previous works employ multiple walkers, say k-walkers, to 
shorten the query delay time. After L hops, k-walkers should 
cover approximately the same amount of peers as a one-walker 
covers after k × L hops, while the response time can be 
significantly reduced. To accelerate the query cycle, in RR, an 
initiator can issue multiple rumors in the query cycle. We denote 
this scheme as (i, j)-RR, which issues i cipher rumors and j key 
rumors.  

G. Rumor TTL  

The selection of rumor TTL, together with the number of 
cipher and key rumors, determines 1) how many sowers a query 
would have, and 2) how the sowers are distributed. The tradeoff 
with this is that for each query, RR requires a least number of 
sowers randomly distributed in the entire system, but too many 
sowers will lead to a greater overhead. 

To assign a proper TTL, RR employs simple schemes similar 
to the one used in [24]. Peers periodically insert several pairs of 
‘testing’ rumors into the system, including the initiator’s IP. 
Any sower recovers this testing query sends the retained TTL of 
the two rumors directly to the initiator through a TCP 
connection. During this process, we do not require anonymity. 
The initiator observes the ID (IP address) of the responding 
sower and the distribution of the reported TTL. If the diversity 
of sowers is poor or the median of TTLs is low, the initiator 
enlarges the TTL or adjusts the number of rumors. It decreases 
the TTL value or the number of rumors when there are too many 
sowers.  

H. Rumor Cache  

Each peer needs to cache a number of received rumors before 
the rumors are matched. Due to space limitations, it is unlikely 
to provide infinite space. Therefore, rumor removal policies are 
necessary for each peer. Since key rumors and cipher rumors are 
in different sizes, and key rumors are typically shorter than 
cipher rumors (especially during content deliveries), RR 
allocates three caches in each peer for 1) key rumors, 2) all 
cipher rumors except the data cipher rumors, and 3) the data 
cipher rumors.  RR assigns a time-duration and starts a timer for 
each rumor.  An FIFO method is employed in the three caches; 
RR always drops the ‘oldest’ rumor in the queue until there is 
enough free space to store the newly arrived rumor. In addition, 
a peer can drop cipher rumors ‘older’ than 2 minutes, as most of 
the queries have the response time less than 1 minute, according 
to many observations.  

 

IV. DISCUSSION 

In this section, we focus on several key issues in the RR 
design. We first present a theoretical analysis on how to ensure 
that each query has at the least one sower and that the sowers are 
evenly distributed over the system. We then discuss the attack 
models and analyze the anonymity degree of RR. 

A. Sower Distribution and Collision Rate 

RR rumors are sent in random directions, and each peer 
forwards a rumor to one of its neighbors without any bias. 
According to the observations in [19], random walk achieves 
statistical properties similar to independent sampling for every 
reasonable network. Studies in [11, 21] show that if the walk 
length is sufficiently large,  the final receivers of a random walk 
query are randomly distributed. We define collision distance, T, 
as the hop count of the shorter path that rumors walk from the 
initiator to the sower, as illustrated in Fig. 5.  When taking the T 
to be O(logn), the sowers are evenly distributed guaranteed by 
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the observations in [21]. Our simulation results in Section V 
show that carefully selecting parameters will lead to desired 
collision distances. We assume that each peer accessed by a 
rumor is an independent sample from a space of uniform 
distribution.  

A peer becomes a sower if it receives a pair of rumors. For a 
(i, j)-RR scheme, there are i cipher rumors and j key rumors. 
Without loss of generality, we assume that each rumor has a 
fixed TTL value of L. After rumor spreading, the popularity of 
cipher rumors is i × L, where popularity means the total number 
of peers receiving the cipher rumor. We further assume that 
those nodes are distinct with each other and the distribution of 
them is uniformly random. On the key rumor path, the 
probability of a peer only being visited by this key rumor and 
not having the cipher rumor is (1 – i × L / n). The probability of 
a key rumor terminating its walk without hitting a cipher rumor 
is given by (1 – i × L / n)L. Thus, the probability of a successful 
collision in a (i, j)-RR is given by:  

              ph = 1 – (1 – i × L / n ) j × L                                        (1) 
We also introduce a parameter τ to indicate the minimum 

acceptable collision rate. The expected collision rate is 
formulated subject to the constraint: ph ≥ 1 – τ, 0 < τ <<1. 
Combining this with (1) we have  

              j × L × log(1 – i × L / n) ≥ log(τ)                                 (2) 
To keep the collision rate ph at a high level, say 99%, peers 

can choose the proper i, j, and L according to (1) and (2). We 
calculate three typical distributions in (1, 1), (1, k), and (k, 
k)-RR schemes to examine the optimal setting of i and j. Based 
on (2), we show a theoretical distribution of ph in Fig. 6, Fig. 7, 
and Fig. 8. The network size is one million nodes. Indeed, the (k, 
k)-RR scheme achieves a higher collision rate than others in 
most cases. Thus, we assert that the (k, k)-RR scheme is a proper 
choice for a high collision rate. From the results, it is clear that 

larger TTL values of rumors corresponds with a higher collision 
rate, while increasing the number of rumors also leads to a 
higher collision rate. We use the above results to guide the 
implementation of the RR protocol. 

It must be admitted that the above result merely considers the 
ideal case. In practice, there might not be i × L distinct nodes on 
the cipher rumor routes. Consequently, fewer sowers exist than 
estimated. Therefore, the values of i, j, and L obtained from (1) 
and (2) are the lower bounds in uniformly random topologies. A 
node can increase the values to guarantee enough sowers. On 
the other hand, due to the small world property of P2P networks, 
the collision rate in real P2P overlays is significantly higher than 
that in uniformly random topologies, as demonstrated in 
simulations in Section V.  

As we mentioned, the collision distance is another important 
factor balancing the tradeoff between user anonymity and the 
query delay. Normally, initiators wish the sower peers to be as 
far away as possible since the sowers recover query messages 
and might help adversaries to locate the initiator if they are 
compromised. Thus, the number of rumors should be limited. 
We also show our simulation results for the upper bound of 
rumor numbers in a practical network in Section V. 

B. Anonymity Analysis 

In this subsection, we first discuss the degree of anonymity 
that RR achieves, and then analyze the protocol effectiveness 
under various attack scenarios.  

1) Anonymity Degree 

We first define the Anonymity Degree (AD) as the probability 
of making an incorrect guess to identify a participant. A higher 
degree signifies that better anonymity has been achieved.  

In RR, when an intermediate node receives a query or 
confirm rumor, it forwards the rumor to a randomly chosen 
neighbor. From an observer’s perspective, each node sending 
the rumor could be the actual initiator of the rumor. Similarly, 
when an intermediate node receives a response or data rumor, 
any intermediate node delivering the rumor could be a potential 
receiver. Therefore, an observer (initiator, responder or an 
intermediate node) cannot distinguish the initiator and 
responder from the other peers. Thus, if the number of nodes in 
the P2P system is n, the initiator’s or responder’s AD is (n – 2) / 
(n – 1) from the viewpoint of a normal observer (the number of 
potential initiators/responders is n - 1). 

 

Figure 6 Collision rate in (1, 1)-RR.  Figure 7 Collision rate in (1, k)-RR.  Figure 8 Collision rate in (k, k)-RR.  

 

Figure 5 Collision distance T = Min{LC, LK}.  
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2) Attacks 

We assume that the number of adversary nodes is m. Thus, 
the probability of a peer being an adversary is m / n. In some 
cases, adversaries may merely observe the fact that a sender is 
sending information, without any knowledge about the 
transmitted data. We claim that the protocol achieves 
unlinkability to the initiator and responder if they cannot be 
identified when communicating with each other. In our attack 
model, we assume that based on the records, the adversary 
nodes are able to observe and store the communication 
traversing them and guess the identity of nodes that initiated 
those transmissions. Adversary nodes also have the capability to 
perform active attacks which include dropping, hijacking, and 
forging packets, controlling flows and connections of the 
network, etc.  

We categorize the major attacks a P2P anonymity protocol 
should be able to defend against, and discuss why RR is 
invulnerable.  

Message coding attack: a passive observer can trace a 
message in the network if the message does not change its 
coding. This attack is also the main motivation to perform 
encryptions in anonymous designs. For example, a naive 
anonymous system can simply let queries randomly walk in the 
system before reach a node which chooses to act as an agent to 
flood the query. Such a plaintext random forwarding design can 
achieve initiator anonymity to some extent. The fresh node, 
however, would lose its anonymity immediately if it sends its 
first query to an observer. Similarly, if an attacker (statistically) 
tracks signal messages from a sender to a receiver [10], the 
anonymity of such a plaintext random forwarding protocol 
vanishes. RR provides unlinkability to fresh nodes, such that 
when observers obtain a rumor, it cannot link a query to the 
received rumor.  

Local collaborating attack: neighboring adversaries may 
collaborate to monitor the traffic passing through and share the 
information in order to identify the possible neighboring 
initiators. When two adversaries neighboring the initiator 
receive a pair of rumors of a message, one of them may forward 
the key rumor to another. The latter will recover the message, 
and guess that the node sending the rumor is the initiator.  

In RR, a sower selects a subset of its neighbors to send the 
plaintext query, and the two collaborating nodes will not receive 
the query. In this way, adversaries only bet that the monitored 
node is an initiator or a responder. Thus, the AD of the initiator 
or responder becomes 1 – 1 / (1 + s), where s is the number of 
sowers of this pair of rumors. Suppose an initiator is 
neighboring c local collaborating nodes. If c exceeds 2, then the 
AD becomes 1 – 1 / (1 + s × (1 – p)( c – 2) ),  where p is the 
probability of a sower choosing a neighbor to send the query. 
Hence, RR is not subject to the local collaborating attack if the 
adversaries cannot compromise more than three neighbors of 
the monitored node.  

Timing attack: in a timing attack [15], the adversary deduces 
the correlation between the timings of packets, such as the 
response time of a query, the time difference of a query, a time 

interval between two sequential packets, etc., to locate a 
transmission. Timing attacks pose a serious threat to path-based 
approaches. RR is invulnerable in that (1) rumors are delivered 
over the overlay network in a random walk manner and RTT 
measurements do not reveal the real distance to the responder; 
(2) if adversaries want to trace the rumor via the time difference 
to locate the responder, they need to trace one query rumor from 
initiator to a sower, then trace the plaintext query message from 
the sower to the responder, which is too cumbersome to be 
practical; and (3) a sower issues a request only after it obtains a 
pair of query rumors, so the response time is mainly dependent 
on the random walks of rumors, which are unpredictable. All of 
these factors make it difficult to launch a timing attack. 

Predecessor attack: in some anonymous systems, an 
initiator repeatedly communicates to a specific responder in 
many rounds. Adversaries are able to identify the path pointed 
to the responder in each round, and log any node that sends a 
message to this path. In this case, the initiator is most likely the 
one which appears more [17]. The fundamental assumption in 
such an attack is that an initiator always communicates with a 
specific responder in the long run. A variation is  passive 
logging attacks[12]. In RR, rumors correlating to a message 
walk randomly and interact with random sowers unpredictably. 
Based on our earlier discussion, the sowers of a given initiator 
or responder are not unique and randomly distributed over the 
system. Hence, adversaries are not able to perform such an 
attack to identify the initiator or responder via sowers, and RR is 
not subject to this type of attack.  

Traffic analysis attack: an adversary can extract traffic flow 
information such as packet count, message volume, and 
communication pattern, etc., and build correlations between the 
initiator, responder, and their communication. Similar to timing 
attacks, traffic analysis attacks can compromise the initiator’s or 
responder’s anonymity if adversaries control a large fraction of 
the network. For example, based on traffic shaping [22] 
adversaries clog traffic in the suspected nodes and observe the 
traffic change when they slightly mitigate the clogging traffic. 
Thus, the real traffic can be deduced. Performing this attack 
consequentially along the reversed path of the traffic, 
adversaries can easily determine the initiator. RR is much less 
vulnerable to this attack since subsequent messages do not 
belong to the same traffic, and there are not any continuous 
paths in RR.     

Traceback attack: adversaries start from a known sower to 
trace back to the initiator along the rumor paths. The adversary 
examines the stored routing state of the peers to identify the 
paths between the initiator and responder. We consider the 
users’ anonymity in two attack scenarios: (1) One-way back 
tracking: adversaries that are on the rumor path back-track and 
collaborate with each other to detect the source node of this 
rumor; (2) Multiple-ways back tracking: at least one adversary 
intercepts both the cipher rumor and the key rumor.  

Theorem: The probability that collaborating attackers 
correctly guess the initiator of one captured rumor is less than 
(m + 1) / n, 1 ≤ m < n, where n is the number of total peers and m 
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is the number of adversaries in the system. 
Proof: Let Ek (k ≥ 1) denote the event that the first adversary 

occupies the kth position on the path, where the initiator 
occupies the 0th position. We let I denote the event that an 
adversary is on the rumor path immediately after the initiator. 
We also define Lkkkk EEEEE ∨∨∨∨= +++ K21 , where 1≤ k 

≤ L. Clearly, Pr[I | E1] = 1. Therefore, we calculate Pr[I | E1+], 
the probability that adversaries successfully determine that a 
cipher rumor is coming from the initiator as follows.  

For adversaries: 
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Note that we extend the path length L of rumors to infinity in 
order to maximize the impact of attacks. Obviously, we also get 
Pr[E1] = m / n, Pr[I | E1] = 1,  Pr[I | E2+] = 1 / (n – m). The last 
equation is derived from the observation that if the first 
adversary does not immediately follow the initiator, it can only 
guess the initiator of the message with a probability of 1 / (n – 
m). We have                                         

Pr[I] = Pr[E1] Pr[I | E1] + Pr[E2+] Pr[I | E2+].                      (4) 

Substituting the above equations with those of (3), we 
calculate ]|Pr[ 1+EI  by: 

     
n

m

E

I

E

EI
EI

1

]Pr[

]Pr[

]Pr[

]Pr[
]|Pr[

11

1
1

+=≤∧=
++

+
+

■                      (5) 

When the number of adversaries, m, approaches n, the 
probability of an adversary correctly guessing the sender’s 
identity approaches 1. The AD of an initiator or responder is 1 – 
(m + 1) / n, 1 ≤ m < n. 

Analogously, the probability that the multiple-ways back 
tracking attacks can correctly guess that a peer is the initiator of 
suspected rumors is given by:  
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Thus the AD of the initiator and the responder is 1 – pm in this 
scenario.  

In summary, when there are no global adversaries or active 
tracebacks, RR achieves a high degree of anonymity. RR is 
vulnerable if the attackers have a global knowledge or full 
control of the network. In this scenario, most anonymous 
approaches fail.  It is noticeable that path-based approaches 
have to depend on the anonymous proxies or routers to achieve 
the promised anonymity. With the increase of the network size, 
it is very difficult for individual peers to maintain a large 
number of anonymous agents in path-based approaches. In 

contrast, RR takes advantage of using the entire P2P network to 
provide anonymity. Thus, the anonymity set, which including all 
equivalent probability to be a certain initiator or responder, is 
maximized into the size of (n – m).  

 

V. SIMULATION 

Additional latency of data delivery, bandwidth consumed by 
anonymous traffic, and crypto processing, if they exist, are 
necessary in order to provide anonymity. In this section, we 
evaluate the RR design through trace-driven simulations.   

A. Metrics 

We use the following metrics for evaluating RR. 
Collision rate. To verify the theoretical results in Section IV, 

we examine the distribution of collision rate with real traces. 
Besides the verification, we also use the results to guide the 
selection of rumor parameters. 

Collision distance. A longer collision distance means a 
higher anonymity level, but also increases the delay of a query 
as well as the traffic overhead. On the other hand, the collision 
distance must be sufficiently large to guarantee sower diversity, 
as we discussed in Section IV.  

Number of sowers. We are also concerned with the number of 
sowers in a query cycle. Since each sower implements a 
flooding search for an initiator, too many sowers will incur a 
large number of replicated query messages, and too few sowers 
will result in failure to provide enough redundancy and 
reliability. 

Traffic overhead. The amount of traffic overhead represents 
the comprehensive latency in data delivery and bandwidth. 
Specifically, we are more interested in the extra traffic overhead 
caused by anonymous components. We assume that a query 
cycle involves e edges in the P2P overlay. For each edge in the 
P2P overlay, there is a unique path mapped into the physical 
internet layer with the length l. For each message enrolled in one 
query cycle, we calculate the sum of the distances that this 
message passes through. Therefore, the traffic overhead of a 
query cycle is defined as C = M×L = ∑ |mi | ×  li, 1 ≤ i ≤ e, where 
|mi | is the  size of the traversed messages.  

Crypto latency. It is the overhead incurred by the main 
cryptographic algorithms, 128-bit AES and 1024-bit RSA, in 
this protocol. We investigate the cryptographic overhead 
compared with other anonymity protocols. We use the 
processing overhead in one AES operation as the basic unit to 
make conversions between RSA and AES. Thus we can 
investigate the comprehensive cryptographic overhead incurred 
by different algorithms.  

Response time. In P2P systems, it is defined as the time 
elapsed from when a query is issued to when the first response 
arrives. In our simulation, the response time is defined as the 
time from the start of rumor spreading to the time when the 
initiator receives the first response message. 

B. Methodology 

The P2P topologies come from two sources. One is based on  
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Figure 9 Theoretical collision rate. Figure 10 Collision rate of simulation. Figure 11 Collision distance. 
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the DSS Clip2 trace, which collected log data from Jan 2001 to 
Jun 2001. The other one is a more recent snapshot kit of Ion P2P 
[23], which logged data from Sep 2004 to Feb 2005, including 
topologies with high degree nodes (i.e., maintaining more than 
30 neighbors). When adopting Ion’s traces into the simulated 
topologies, we only use the ultrapeers of its snapshots, which 
perform the flooding search in a hybrid Gnutella. Our 
simulations ran over different traces, ranging from 103 to 105 
nodes. To simulate the physical internet layer below the P2P 
overlay [18], we used BRITE [5] to generate 30,000 – 100,000 
nodes in the internet-like topologies. Content popularity of a 
publisher follows a Zipf-like distribution (aka Power Law) [3], 
where the relative probability of a request for the ith most 
popular page is proportional to 1/iα, with α typically taking on 
some value less than one.  

To perform the security algorithms used in RR protocol, we 
employ Crypto++, a software kit which provides standard 
cryptographic functions. Our experiments for simulation and 
implementation are both conducted on several desktop PCs, 
typically with Pentium M 3.2G CPU, 1GBytes memory, 40G 
hard disk, and 10/100M Ethernet card. We also simulate the 
dynamic properties of the P2P overlay network by assigning a 
lifecycle to each peer. The lifetime is generated according to the 
distribution observed in [8]. The mean of the distribution is 
chosen to be 600 seconds [9, 16]. The value of each peer’s 
lifecycle is decreased by one with each passing second. When 
peers use up their lifetimes at the end of each second, they leave 
the system the following second, and other fresh peers selected 
from the physical internet layer join in as replacements. 

C. Results 

We first consider the collision rate of a single rumor 
spreading. To verify the theoretical result discussed in subsection 
IV.A, we simulate rumor spreading procedures in the traces with 
a (k, k)-RR scheme. We experiment in the sample space of rumor 
numbers k ∈ [1..10] and path length L ∈ [1..256] (the default 
TTL value in Gnutella is 7). The average results of the collision 
rates are presented in Fig. 10. It is observed that the collision 
rates are usually higher than they are in the theoretical results, 
which are shown in Fig. 9. Since the topology in Gnutella 
networks follows small-world properties, a random path in the 
P2P topology often traverses high-degree nodes, causing the 
collision rates to be higher than they are in homogeneous 
networks, in which the node degree follows a uniform 
distribution. This phenomenon is particularly obvious in the 
dense topologies of the Ion’s traces. Combining the results of 
theoretical and real experiments, we obtain that the proper lower 
bound of the number of rumors k and the TTL value of each 
rumor L is k × L ≥ 100. We use this result to guide the setting of 
rumors in our protocol. 

As discussed in Section IV, the collision distance is important 
in balancing the tradeoff between user anonymity and the query 
delay in the RR design. In the results of the (k, k)-RR scheme 
plotted in Fig. 11, it is shown that if L is larger than 25 (1 ≤ k ≤ 
10), the average collision distance is no less than 5. On the other 
hand, a small k, say less than 6, guarantees that the most collision 
distance will be larger than 5. While k exceeds 6, the collision 
distance tends to be constrained within 2~5 hops. Considering 
the fact that anonymity is more important than latency, we 
suggest that the number of rumors k should be kept to a maximum  
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Figure 17 Cryptographic overhead of intermediate 
nodes for one query. 

 
of 6. Besides the collision distance, we are also concerned with 
sower diversity. Ideally, sowers should be uniformly distributed 
over the entire system so that for a given peer, distinct sowers are 
generated in different RR executions. We use the distinct sower 
ratio (D) to evaluate the diversity. If a peer performs g rounds of 
RR, and generates d distinct sowers (d ≤ g), the distinct sower 
ratio of this peer is given by D = (d / g) × 100%. By repeatedly 
running RR for each node in its lifecycle, we see that when L is 
larger than 30 and k ∈ [1..6], the ratio D is larger than 92%. 
Therefore, selecting L > 30 and 1 ≤ k ≤ 6 can effectively 
guarantee a safe collision distance as well as the random 
distribution of sowers. 

In the meantime, RR needs to limit the number of sowers in 
order to avoid a large number of replicated query messages. As 
shown in Fig. 12, when we select k × L ≤ 200, each (k, k)-RR 
scheme has no more than 10 sowers (1 ≤ k ≤ 6). Therefore,  k × L 
should be in the range [100, 200] in order to meet both the 
reliability and the scalability requirements. 

We then consider the traffic overhead. We compare RR with 
the most recent work, Shortcut protocol [13]. We insert 10,000 
queries into the system, and Fig. 13 plots the cumulative 
distribution of the extra traffic overhead of (k, k)-RR schemes. In 
our experiments, the TTL value of rumors is constrained by k × L 
= 150.  Note that a larger L means more traffic overhead. We 
observe that the average traffic overhead incurred by the 
Shortcut protocol is little lower than that of the (6, 6)-RR scheme, 
which is the maximum value of our suggested settings. Except for 
this case, the traffic overhead of RR is much smaller than that of 
the Shortcut protocol.  

Users of current P2P systems often have rigid requirements for 
the response time for requesting resources. We show the 
cumulative distribution curves of response times in different (k, 
k)-RR schemes in Fig. 14, comparing them with those of the 
Shortcut protocol. Clearly, the average response latency is 
decreased when we increase the number of rumors, k. However, 
more rumors incur more traffic overhead and message 
replications. Careful selection of the RR protocol settings will 
lead to the reduction of both the traffic overhead and response 
time compared with those of the Shortcut protocol. 

Compared to the previous approaches, such as Shortcut and 
APFS, the most significant advantage of RR is that the 
cryptographic processing overhead has been cut down 

tremendously. This feature also results in a low latency. Figure 
15 contrasts the average latency per query and the part caused by 
cryptographic processing. In addition, we also compare the 
average latency of cryptographic processing along the rumor 
paths. We observe that in most cases, the time spent on 
cryptographic processing in an onion path is over 10 times higher 
than the time spent in a rumor spreading path. This is due to the 
fact that Shortcut’s peers must perform a large number of RSA 
operations for both anonymous path construction and 
anonymous relaying, which incur significantly longer responses 
than those of RR. 

We also examine the cryptographic overhead of the RR 
protocol. Figures 16 and 17 show the average cryptographic 
overhead of RR and the Shortcut protocol in a query cycle. We 
can see that RR significantly reduces the cryptographic overhead 
for initiators, responders, and intermediate nodes.  

The total cryptographic overhead of the intermediate nodes is 
linearly proportional to the length of the onion path when using 
the Shortcut protocol. Also, the onion routing technique leads to 
an overtly high cryptographic overhead for Shortcut users. With 
paths of similar lengths, RR gains a large decrease of 
cryptographic overhead compared with path-based approaches 
due to the usage of symmetric encryption/decryption instead of 
asymmetric key-based algorithms. Hence, the light 
cryptographic overhead strongly supports RR’s implementation 
in large-scale P2P systems. 

 

VI. IMPLEMENTATION EXPERIENCE 

We implemented a RR prototype on the Window XP platform. 
We used the Crypto++ Library to implement all built-in 
cryptographic algorithms. The modification to the Gnutella 
prototype protocol comprises the following components:  

(1) Sower peers require direct TCP links to forward the 
rumors. For TCP forwarding, we took advantage of Windows 
Sockets. 

(2) RR uses AES for cryptographic operations. In each rumor 
packet, the payload includes a cipher text generated by using the 
AES (CBC mode). The AES key size is 128-bit. 

(3) To guarantee the quality of AES keys, RR generates the 
keys using the random number generator function in the 
Crypto++ Library.  
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(4) Previous works [7] show that each node generates 0.3 
queries per minute on average, most queries’ lengths are below 
100 bytes, and the average number of neighbors of the traces are 
below 60. After calculation, we set the size of the local key rumor, 
cipher rumor, and data cipher rumor caches as 1MB, 2MB, and 
10MB, respectively. The time-duration for cipher rumors is 2 
minutes, and the time-duration is 10 minutes for key rumors. The 
size of the file fragment is 512K bytes.  

We examined the throughput and the latency of RR. Table I 
presents the latency and throughput of a peer to perform 
cryptographic operations, including AES key generation, AES 
operation, CRC calculation, and RSA operation. In RR, the 
throughput of an initiator query depends on the rumor generation 
speed, which is determined by the AES key generation, AES 
encryption, and CRC calculation. Among them, the slowest 
algorithm is the AES key generation, which can provide 14,221 
keys per second on average.  

TABLE  I   LATENCY AND THROUGHPUT OF ALGORITHMS 

ALGORITHMS THROUGHPUT (Mbytes/s) 
128-bit AES key generation 0.217±0.00443 

128-bit AES Encryption  8.155±0.256 
CRC-32 calculation 137.48±4.79 

1024-bit RSA Encryption 0.148±0.00280 
1024-bit RSA Decryption 0.00670±0.000126 

 

VII. CONCLUSION 

Existing anonymity approaches are mainly path-based. Peers 
have to recruit middle nodes and construct paths before 
transmissions. The overhead of maintaining and updating the 
paths is also significantly high. In this paper, we propose a 
lightweight and non path-based mutual anonymity protocol for 
unstructured P2P systems, Rumor Riding (RR). Employing a 
random walk concept, RR issues key rumors and cipher rumors 
separately, and expects that they meet in several random peers. 
The results of extensive trace-driven simulations show that RR 
provides a high degree of anonymity and outperforms existing 
approaches in traffic overhead and processing latency. We also 
discuss how RR can effectively defend against popular attacks. 
The early experience of our prototype implementation shows its 
practicality. 

Future and ongoing work includes accelerating the query 
speed, introducing mimic traffic to confuse attackers, and 
optimizing the k and L combination to further reduce the traffic 
overhead. We will also investigate other security properties of 
RR, such as the unlinkability, information leakage, and failure 
tolerance when facing different attacks. It would also be 
interesting to explore the possibility of implementing this 
lightweight protocol in other distributed systems, such as grid 
systems and ad-hoc networks.  
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