
Efficient Algorithms for
Pairing-Based Cryptosystems

Paulo S. L. M. Barreto1, Hae Y. Kim1,
Ben Lynn2, and Michael Scott3

1 Universidade de São Paulo, Escola Politécnica.
Av. Prof. Luciano Gualberto, tr. 3, 158.
BR 05508-900, São Paulo(SP), Brazil.

pbarreto@larc.usp.br, hae@lps.usp.br
2 Computer Science Department, Stanford University, USA.

blynn@cs.stanford.edu
3 School of Computer Applications

Dublin City University
Ballymun, Dublin 9, Ireland.

mscott@indigo.ie

Abstract. We describe fast new algorithms to implement recent crypto-
systems based on the Tate pairing. In particular, our techniques improve
pairing evaluation speed by a factor of about 55 compared to previously
known methods in characteristic 3, and attain performance comparable
to that of RSA in larger characteristics. We also propose faster algorithms
for scalar multiplication in characteristic 3 and square root extraction
over Fpm , the latter technique being also useful in contexts other than
that of pairing-based cryptography.

1 Introduction

The recent discovery [11] of groups where the Decision Diffie-Hellman (DDH)
problem is easy while the Computational Diffie-Hellman (CDH) problem is hard,
and the subsequent definition of a new class of problems variously called the
Gap Diffie-Hellman [11], Bilinear Diffie-Hellman [2], or Tate-Diffie-Hellman [6]
class, has given rise to the development of a new, ever expanding family of
cryptosystems based on pairings, such as:

– Short signatures [3].
– Identity-based encryption and escrow ElGamal encryption [2].
– Identity-based authenticated key agreement [29].
– Identity-based signature schemes [8, 22, 24].
– Tripartite Diffie-Hellman [10].
– Self-blindable credentials [33].

The growing interest and active research in this branch of cryptography has
led to new analyses of the associated security properties and to extensions to
more general (e.g. hyperelliptic and superelliptic) algebraic curves [6, 23].

However, a central operation in these systems is computing a bilinear pairing
(e.g. the Weil or the Tate pairing), which are computationally expensive. More-
over, it is often the case that curves over fields of characteristic 3 are used to
achieve the best possible ratio between security level and space requirements for
supersingular curves, but such curves have received considerably less attention
than their even or (large) prime characteristic counterparts. Our goal is to make
such systems entirely practical and contribute to fill the theoretical gap in the
study of the underlying family of curves, and to this end we propose several
efficient algorithms for the arithmetic operations involved.

The contributions of this paper are:

– The definition of point tripling for supersingular elliptic curves over F3m , that
is, over fields of characteristic 3. A point tripling operation can be done in
O(m) steps (or essentially for free in hardware), as opposed to conventional
point doubling that takes O(m2) steps. Furthermore, a faster point addition
algorithm is proposed for normal basis representation. These operations lead
to a noticeably faster scalar multiplication algorithm in characteristic 3.

– An algorithm to compute square roots over Fpm in O(m2 log m) steps, where
m is odd and p ≡ 3 (mod 4) or p ≡ 5 (mod 8). The best previously known al-
gorithms for square root extraction under these conditions take O(m3) steps.
This operation is important for the point compression technique, whereby a
curve point P = (x, y) is represented by its x coordinate and one bit of its y
coordinate, and its usefulness transcends pairing-based cryptography.

– A deterministic variant of Miller’s algorithm to compute the Tate pairing
that avoids many irrelevant operations present in the conventional algorithm
whenever one of the pairing’s arguments is restricted to a base field (as
opposed to having both in an extension field). Besides, in characteristics 2
and 3 both the underlying scalar multiplication and the final powering in
the Tate pairing experience a complexity reduction from O(m3) to O(m2)
steps.

All of these improvements are very practical and result in surprisingly faster
implementations. Independent results on this topic have been obtained by Gal-
braith, Harrison and Soldera, and are reported in [7]; in particular, they provide
a very clear and nice description of the Tate pairing.

This paper is organized as follows. Section 2 summarizes the mathematical
concepts we will use in the remainder of the paper. Section 3 describes point
tripling and derives a fast scalar multiplication algorithm for characteristic 3.
Section 4 introduces a fast method to compute square roots that works for half
of all finite fields, and an extension to half of the remaining cases. Section 5
presents our improvements for Tate pairing computation. Section 6 discusses
experimental results. We conclude in section 7.

2 Mathematical Preliminaries

Let p be a prime number, m a positive integer and Fpm the finite field with
pm elements; p is said to be the characteristic of Fpm , and m is its extension

degree. We simply write Fq with q = pm when the characteristic or the extension
degree are known from the context or irrelevant for the discussion. We also write
F∗q ≡ Fq −{0}.

An elliptic curve E(Fq) is the set of solutions (x, y) over Fq to an equation of
form E : y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6, where ai ∈ Fq, together with an
additional point at infinity, denoted O. The same equation defines curves over
Fqk for k > 0.

There exists an abelian group law on E. Explicit formulas for computing the
coordinates of a point P3 = P1 +P2 from the coordinates of P1 and P2 are given
in [27, algorithm 2.3]; we shall present in section 3 a subset of those formulas.

The number of points of an elliptic curve E(Fq), denoted #E(Fq), is called the
order of the curve over the field Fq. The Hasse bound states that #E(Fq) = q +
1−t, where |t| 6 2

√
q. The quantity t is called the trace of Frobenius (for brevity,

we will call it simply ‘trace’). Of particular interest to us are supersingular curves,
which are curves whose trace t is a multiple of the characteristic p.

Let n = #E(Fq). The order of a point P ∈ E is the least nonzero integer
r such that rP = O. The set of all points of order r in E is denoted E[r], or
E(K)[r] to stress the particular subgroup E(K) for a field K. The order of a
point always divides the curve order. It follows that 〈P 〉 is a subgroup of E[r],
which in turn is a subgroup of E[n].

Let P be a point on E of prime order r where r2 - n. The subgroup 〈P 〉 is
said to have security multiplier k for some k > 0 if r | qk − 1 and r - qs − 1 for
any 0 < s < k. If E is supersingular, the value of k is bounded by k 6 6 [16].
This bound is attained in characteristic 3 but not in characteristic 2, where the
maximum achievable value is k = 4 [15, section 5.2.2].

The group E(Fq) is (isomorphic to) a subgroup of E(Fqk). Let P ∈ E(Fq) be
a point of order r such that 〈P 〉 has security multiplier k. Then E(Fqk) contains
a point Q of the same order r but linearly independent of P .

We will consider in detail the curves listed in table 1, where k is the security
multiplier, both m and p are prime numbers, and either p ≡ 2 (mod 3) or p ≡ 3
(mod 4). The curve orders are explicitly computed in [15, section 5.2.2].

Table 1. Some cryptographically interesting supersingular elliptic curves

curve equation underlying field curve order k

E1,b : y2 = x3 + (1− b)x + b, b ∈ {0, 1} Fp p + 1 2

E2,b : y2 + y = x3 + x + b, b ∈ {0, 1} F2m 2m + 1± 2(m+1)/2 4

E3,b : y2 = x3 − x + b, b ∈ {−1, 1} F3m 3m + 1± 3(m+1)/2 6

For our purposes, a divisor is a formal sum of points on the curve E(Fqm),
m > 0. The degree of a divisor A =

∑
P aP (P) is the sum

∑
P aP . An abelian

group structure is imposed on the set of divisors by the addition of corresponding
coefficients in their formal sums; in particular, nA =

∑
P (naP)(P).

Let f : E(Fqk)→ Fqk be a function on the curve and let A =
∑

P aP (P) be a
divisor of degree 0. We define f(A) ≡

∏
P f(P)aP . Note that, since

∑
P aP = 0,

f(A) = (cf)(A) for any factor c ∈ F∗qk . The divisor of a function f is (f) ≡∑
P ordP (f)(P) where ordP (f) is the order of the zero or pole of f at P (if f

has no zero or pole at P , then ordP (f) = 0). A divisor A is called principal if
A = (f) for some function (f). It is known [15, theorem 2.25] that a divisor A =∑

P aP (P) is principal if and only if the degree of A is zero and
∑

P aP P = O.
Two divisors A and B are equivalent, and we write A ∼ B, if their difference
A−B is a principal divisor. Let P ∈ E[n] where n is coprime to q, and let AP be
a divisor equivalent to (P)− (O); under these circumstances the divisor nAP is
principal, and hence there is a function fP such that (fP) = nAP = n(P)−n(O).

Let ` be a natural number coprime to q. The Tate pairing of order ` is the
map e` : E(Fq)[`] × E(Fqk)[`] → F∗qk defined4 as e`(P,Q) = fP (AQ)(q

k−1)/`. It
satisfies the following properties:

– (Bilinearity) e`(P1 + P2, Q) = e`(P1, Q) · e`(P2, Q) and e`(P,Q1 + Q2) =
e`(P,Q1)·e`(P,Q2) for all P, P1, P2 ∈ E(Fq)[`] and all Q, Q1, Q2 ∈ E(Fqk)[`].
It follows that e`(aP, Q) = e`(P, aQ) = e`(P,Q)a for all a ∈ Z.

– (Non-degeneracy) If e`(P,Q) = 1 for all Q ∈ E(Fqk)[`], then P = O. Alter-
natively, for each P 6= O there exists Q ∈ E(Fqk)[`] such that e`(P,Q) 6= 1.

– (Compatibility) Let ` = h`′. If P ∈ E(Fq)[`] and Q ∈ E(Fqk)[`′], then
e`′(hP,Q) = e`(P,Q)h.

Notice that, because P ∈ E(Fq), fP is a rational function with coefficients in Fq.

3 Scalar Multiplication in Characteristic 3

Arithmetic on the curve E3,b is performed according to the following rules. Let
P1 = (x1, y1), P2 = (x2, y2), P3 = P1 + P2 = (x3, y3). By definition, −O = O,
−P1 = (x1,−y1), P1 + O = O + P1 = P1. Furthermore,

P1 = −P2 ⇒ P3 = O.

P1 = P2 ⇒ λ ≡ 1/y1, x3 = x1 + λ2, y3 = −(y1 + λ3).

P1 6= −P2, P2 ⇒ λ ≡ y2 − y1

x2 − x1
, x3 = λ2 − (x1 + x2), y3 = y1 + y2 − λ3.

These rules in turn give rise to the double-and-add method to compute scalar
multiples V = kP , k ∈ Z. Let the binary representation of k > 0 be k =
(kt . . . k1k0)2 where ki ∈ {0, 1} and kt 6= 0. Computation of V = kP ≡ P + P +
· · ·+ P (with k terms) proceeds as follows.
4 This definition differs from those given in [5, 6] in that we restrict the first argument

of e` to E(Fq)[`] and the second argument to E(Fqk)[`] instead of E(Fqk)[`] and

E(Fqk)/`E(Fqk) respectively, and we raise fP (AQ) to the power (qk − 1)/`, so that
e` maps to certain uniquely determined coset representatives. However, our definition
keeps the properties listed above unchanged, and captures the essential properties
needed in practice for cryptographical purposes.

Double-and-add scalar multiplication:

set V ← P
for i← t− 1, t− 2, . . . , 1, 0 do {

set V ← 2V
if ki = 1 then set V ← V + P

}
return V

By extension, one defines 0P = O and (−k)P = k(−P) = −(kP).
Several improvements to this basic algorithm are well known [1, 17]. However,

one can do much better than this, as we will now see.

3.1 Point Tripling

In characteristic 3, point tripling for the supersingular curve E3,b can be done in
time O(m) in polynomial basis, or simply O(1) in hardware using normal basis.
Indeed, since the cubing operation is linear in characteristic 3, given P = (x, y)
one computes 3P = (x3, y3) with the formulas:

x3 = (x3)3 − b

y3 = −(y3)3

These formulas are derived from the basic arithmetic formulas above in a
straightforward way.

The linearity of point tripling corresponds to that of point doubling for super-
singular curves in characteristic 2, as discovered by Menezes and Vanstone [18],
and it leads to a triple-and-add scalar multiplication algorithm much faster
than the double-and-add method. Let the signed ternary representation of k
be k = (kt . . . k1k0)2 where ki ∈ {−1, 0, 1} and kt 6= 0. Computation of V = kP
proceeds as follows.

Triple-and-add scalar multiplication:

set V ← P if kt = 1, or V ← −P if kt = −1
for i← t− 1, t− 2, . . . , 1, 0 do {

set V ← 3V
if ki = 1 then set V ← V + P
if ki = −1 then set V ← V − P

}
return V

Obviously, the same advanced techniques used for the double-and-add
method can be easily applied to triple-and-add.

3.2 Projective Coordinates

Koblitz [12] describes a method to add curve points in characteristic 3 in pro-
jective coordinates with 10 multiplications. Actually, point addition can be done
with only 9 multiplications. Let P1 = (x1, y1, z1), P2 = (x2, y2, 1); one computes
P3 = P1 + P2 = (x3, y3, z3) as:

A← x2z1 − x1, B ← y2z1 − y1, C ← A3, D ← C − z1B
2,

x3 ← x1C −AD, y3 ← BD − y1C, z3 ← z1C.

To recover P3 in affine coordinates one just sets P3 = (x3/z3, y3/z3). This
involves one single inversion, which is usually only performed at the end of a
scalar multiplication.

4 Square Root Extraction

One can use the elliptic curve equation E : y2 = f(x) over Fq, where f(x) is a
cubic polynomial, to obtain a compact representation of curve points. The idea
is to use a single bit from the ordinate y as a selector5 between the two solutions
of the equation y2 = f(x) for a given x.

In a finite field Fpm where p ≡ 3 (mod 4) and odd m, the best algorithm
known [4, 17] to compute a square root executes O(m3), or more precisely
O(m3 log p), Fp operations. By that method, a solution of x2 = a is given by
x = a(pm+1)/4, assuming a is a quadratic residue.

We first notice that, if m = 2k + 1 for some k:

pm + 1
4

=
p + 1

4

[
p(p− 1)

k−1∑
i=0

(p2)i + 1

]
,

so that
a(pm+1)/4 = [(a

∑k−1
i=0 (p2)i

)p(p−1) · a](p+1)/4.

These relations can be verified by straightforward induction. The quantity
a

∑k−1
i=0 ui

where u = p2 can be efficiently computed in an analogous fashion to
Itoh-Teechai-Tsujii inversion [9], based on the Frobenius map in characteristic p:

a1+u+···+uk−1
=

{
(a1+u+···+ubk/2c−1

) · (a1+u+···+ubk/2c−1
)ubk/2c

, k even,

((a1+u+···+ubk/2c−1
) · (a1+u+···+ubk/2c−1

)ubk/2c
)u · a, k odd.

Notice that raising to a power of p is a linear operation in characteristic p
(and almost for free in normal basis representation). It can be easily verified

5 In certain cryptographic applications one can simply discard y. This happens, for
instance, in BLS signatures [3], where one only keeps the abscissa x as signature
representative. Notice that one could discard the ordinates of public keys as well
without affecting the security level.

by induction that this method requires blg kc + ω(k) − 1 field multiplications,
where ω(k) is the Hamming weight of the binary representation of k. Additional
O(log p) multiplications are needed to complete the square root evaluation due
to the extra multiplication by a and to the raisings to p − 1 and (p + 1)/4,
which can be done with a conventional exponentiation algorithm6. The overall
cost is O(m2(log m + log p)) Fp operations to compute a square root. If the
characteristic p is fixed and small compared to m, the complexity is simply
O(m2 log m) Fp operations.

Similar recurrence relations hold for a variant of Atkin’s algorithm [21, sec-
tion A.2.5] for computing square roots in Fpm when p ≡ 5 (mod 8) and odd
m, with the same O(m2(log m + log p)) complexity. The details are left to the
reader.

The general case is unfortunately not so easy. Neither the Tonelli-Shanks
algorithm [4] nor Lehmer’s algorithm [21, section A.2.5] can benefit entirely
from the above technique, although partial improvements that don’t change the
overall complexity are possible.

The above improvements are useful not only for pairing-based cryptosystems,
but for more conventional schemes as well (see e.g. [12, section 6]).

5 Computing the Tate Pairing

In this section we propose several improvements to Miller’s algorithm [19] for
computing the Tate pairing in the cases of cryptographical interest. Let P ∈
E(Fq)[`] and Q ∈ E(Fqk)[`] be linearly independent points, and let n ≡ #E(Fq).
As we saw in section 2, the Tate pairing is defined as e`(P,Q) = fP (AQ)(q

k−1)/`,
where AQ ∼ (Q)−(O) and (fP) = `(P)−`(O). Computation of the Tate pairing
is helped by the following observations.

Lemma 1. The value q − 1 is a factor of (qk − 1)/r for any factor r of n, for
all curves on table 1.

Proof. Since F∗q is a multiplicative subgroup of F∗qk , it follows that # F∗q |# F∗qk ,
i.e. q− 1 | qk− 1. On the other hand, it is known [15, section 5.2.2] that #E1,b =
q+1, #E2,b = q+1±

√
2q, and #E3,b = q+1±

√
3q. In all cases, gcd(n, q−1) = 1,

and hence no factor r of n divides q − 1. Therefore, (qk − 1)/r contains a factor
q − 1. ut

Theorem 1. Let r be a factor of n. Then er(P,Q) = fP (Q)(q
k−1)/r for Q 6= O

and for all curves on table 1.

Proof. Suppose R 6∈ {O,−P} is some point on the curve. Let f ′P be a function
with divisor (f ′P) = r(P + R) − r(R) ∼ (fP), so that er(P,Q) = f ′P ((Q) −
(O))(q

k−1)/r. Since P has coordinates in Fp, and because f ′P does not have a zero

6 If p is large, it may be advantageous to compute zp−1 as zp/z, trading O(log p)
multiplications by one inversion.

or pole at O, we know that f ′P (O) ∈ F∗q . Thus f ′P ((Q) − (O)) = f ′P (Q)/f ′P (O).
By Fermat’s Little Theorem for finite fields [13, lemma 2.3], f ′P (O)q−1 = 1.
Lemma 1 then ensures that f ′P (O)(q

k−1)/r = 1. Hence, f ′P (O) is an irrelevant
factor and can be omitted from the Tate pairing computation, i.e. er(P,Q) =
f ′P (Q)(q

k−1)/r. Now consider P,Q to be fixed and R to be variable. Since the
above statement holds for all R 6∈ {O,−P} we have that f ′P (Q) is a constant
when viewed as a function of R, coinciding with the value of fP (Q). Therefore,
er(P,Q) = fP (Q)(q

k−1)/r. ut

Corollary 1. One can freely multiply or divide fP (Q) by any nonzero Fq factor
without affecting the pairing value.

The above corollary is not the same property that enables one to replace
(f) by (cf); in particular, it does not hold for the Weil pairing. Notice that the
special case Q = O where the theorem does not apply is trivially handled, since
then er(P,Q) = 1.

In the next theorem, for each pair U, V ∈ E(Fq) we define gU,V : E(Fqk) →
Fqk to be (the equation of) the line through points U and V (if U = V , then
gU,V is the tangent to the curve at U , and if either one of U, V is the point at
infinity O, then gU,V is the vertical line at the other point). The shorthand gU

stands for gU,−U : if U = (u, v) and Q = (x, y), then gU (Q) = x− u.

Theorem 2 (Miller’s formula). Let P be a point on E(Fq) and fc be a func-
tion with divisor (fc) = c(P) − (cP) − (c − 1)(O), c ∈ Z. For all a, b ∈ Z,
fa+b(Q) = fa(Q) · fb(Q) · gaP,bP (Q)/g(a+b)P (Q).

Proof. The divisors of the line functions satisfy:

(gaP,bP) = (aP) + (bP)− (−(a + b)P)− 3(O),
(g(a+b)P) = ((a + b)P) + (−(a + b)P)− 2(O).

Hence, (gaP,bP)−(g(a+b)P) = (aP)+(bP)−((a+b)P)−(O). From the definition
of fc we see that:

(fa+b) = (a + b)(P)− ((a + b)P)− (a + b− 1)(O)
= a(P)− (aP)− (a− 1)(O)
+ b(P)− (bP)− (b− 1)(O)
+ (aP) + (bP)− ((a + b)P)− (O)
= (fa) + (fb) + (gaP,bP)− (g(a+b)P).

Therefore fa+b(Q) = fa(Q) · fb(Q) · gaP,bP (Q) / g(a+b)P (Q). ut

Notice that (f0) = (f1) = 0, so that f0(Q) = f1(Q) = 1. Furthermore, fa+1(Q) =
fa(Q) · gaP,P (Q)/g(a+1)P (Q) and f2a(Q) = fa(Q)2 · gaP,aP (Q)/g2aP (Q).

Let the binary representation of ` > 0 be ` = (`t, . . . , `1, `0) where `i ∈ {0, 1}
and `t 6= 0. Miller’s algorithm computes fP (Q) = f`(Q), Q 6= O by coupling the
above formulas with the double-and-add method to calculate `P :

Miller’s algorithm:

set f ← 1 and V ← P
for i← t− 1, t− 2, . . . , 1, 0 do {

set f ← f2 · gV,V (Q)/g2V (Q) and V ← 2V
if `i = 1 then set f ← f · gV,P (Q)/gV +P (Q) and V ← V + P

}
return f

5.1 Irrelevant denominators

We will now show that, when computing en(P, φ(Q)) where Q ∈ E(Fq) and
where φ is a distortion map [32], the g2V and gV +P denominators in Miller’s
algorithm can be discarded. The choice of parameters is important, and is sum-
marized in table 2. Notice that there is no entry for E1,1.

Table 2. Choice of distortion maps

curve (see table 1) underlying field distortion map conditions

E1,0 Fp, p > 3 φ1(x, y) = (−x, iy) i ∈ Fp2 ,
i2 = −1

E2,b, b ∈ {0, 1} F2m φ2(x, y) = (x + s2, y + sx + t) s, t ∈ F24m ,
s4 + s = 0,

t2 + t + s6 + s2 = 0

E3,b, b ∈ {−1, 1} F3m φ3(x, y) = (−x + rb, iy) rb, i ∈ F36m

r3
b − rb − b = 0,

i2 = −1

Theorem 3. With the settings listed in table 2, the denominators in Miller’s
formula can be discarded altogether without changing the value of en(P,Q).

Proof. We will show that the denominators become unity at the final powering
in the Tate pairing.

– (Characteristic 2) Let q ≡ 2m. From the defining condition s4 = s it follows
by induction that s4t

= s for all t > 0; in particular, sq2
= s22m

= s,
and hence (s2)q2

= s2. The denominators in Miller’s formula have the form
gU (φ(Q)) ≡ x + s2 + c, where x ∈ Fq is the abscissa of Q and c ∈ Fq,
so that xq2

= x and cq2
= c. Hence, gU (φ(Q))q2

= xq2
+ (s2)q2

+ cq2
=

x + s2 + c = gU (φ(Q)), using the linearity of raising to powers of q in Fq. It
follows that gU (φ(Q))q2−1 = 1. Now the exponent of the final powering in
the Tate pairing has the form z = (q4 − 1)/n = (q + 1 ±

√
2q)(q2 − 1), i.e.

q2 − 1 | z. Therefore, gU (φ(Q))z = 1.

– (Characteristic 3) Let q ≡ 3m. From the defining condition r3
b − rb − b = 0

it follows by induction that r3t

b = rb + b(t mod 3) for all t > 0; in particu-
lar, rq3

b = r33m

b = rb. The denominators in Miller’s formula have the form
gU (φ(Q)) ≡ rb−x− c, where x ∈ Fq is the abscissa of Q and c ∈ Fq, so that
xqt

= x and cqt

= c for all t > 0. Hence, gU (φ(Q))q3
= rq3

b − xq3 − cq3
=

rb − x− c = gU (φ(Q)), using the linearity of raising to powers of q in Fq. It
follows that gU (φ(Q))q3−1 = 1. Now the exponent of the final powering in
the Tate pairing has the form z = (q6− 1)/n = (q + 1±

√
3q)(q3− 1)(q + 1),

i.e. q3 − 1 | z. Therefore, gU (φ(Q))z = 1.
– (Characteristic p > 3) The denominators in Miller’s formula have the form

gU (φ(Q)) ≡ −x − c, where x ∈ Fp is the abscissa of Q and c ∈ Fp. Hence,
gU (φ(Q))p = −xp − cp = −x − c = gU (φ(Q)), using the linearity of raising
to p in Fp. It follows that gU (φ(Q))p−1 = 1. Now the exponent of final
powering in the Tate pairing is precisely z = (p2 − 1)/n = p− 1. Therefore,
gU (φ(Q))z = 1.

ut

One can alternatively couple the evaluation of fn with the more efficient
triple-and-add method in characteristic 3. To this end one needs a recursive
formula for f3a(Q), which is easy to obtain from Miller’s formula: the divisor of
f3a is (f3a) = 3(fa) + (gaP,aP) + (g2aP,aP) − (g2aP) − (g3aP), hence discarding
the irrelevant denominators one obtains:

f3b(Q) = f3
b (Q) · gaP,aP (Q) · g2aP,aP (Q).

Notice that it is not necessary to actually compute 2aP , because the coeffi-
cients of g2aP,aP can be obtained from aP and 3aP .

In characteristic 3, the tripling formula is by itself more efficient than the
doubling formula, since the squaring operation, which takes O(m2) time, is re-
placed by cubing, which has only linear complexity at most; besides, it is invoked
only a fraction log3 2 times compared to the doubling case. Furthermore, for the
Tate pairing of order n = (3(m−1)/2 ± 1)3(m+1)/2 + 1 the contribution of the
underlying scalar multiplication to the complexity of Miller’s algorithm is only
O(m2) instead of O(m3), as it involves only two additions or one addition and
one subtraction. An analogous observation holds for supersingular elliptic curves
in characteristic 2.

An interesting observation is that, even if Miller’s algorithm computes fr(Q)
for r |n, it is often the case that a technique similar to that used for square root
extraction can be applied, reducing the number of point additions or subtractions
from O(m) down to O(log m). However, we won’t elaborate on this possibility,
as the above choice is clearly faster.

5.2 Choice of the Subgroup Order

Pairing evaluation over fields Fp2 of general characteristic (as used, for instance,
in the Boneh-Franklin identity-based cryptosystem [2]) with Miller’s algorithm

can benefit from the above observations with a careful choice of parameters,
particularly the size q of the subfield where calculations are performed. Instead of
choosing a random subfield prime, use a Solinas prime [30] of form q = 2α±2β±1
(it is always possible to find such primes for practical subgroup sizes), since
qP = (2β(2α−β ± 1) ± 1)P involves only two additions or subtractions plus α
doublings.

5.3 Speeding up the Final Powering

Evaluation of the Tate pairing en(P,Q), where n ≡ #E(Fpm), includes a final
raising to the power of (pkm−1)/n. The powering is usually computed in O(m3)
steps. However, this exponent shows a rather periodical structure in base p. One
can exploit this property in a fashion similar to the square root algorithm of
section 4, reducing the computational effort to O(m2 log m) steps. As it turns
out, it is actually possible to compute the power in only O(m2) steps, by carefully
exploiting the structure of the exponent. Details of this process are given in
appendix A.2.

5.4 Fixed-base Pairing Precomputation

Actual pairing-based cryptosystems often need to compute pairings en(P,Q)
where P is either fixed (e.g. the base point on the curve) or used repeatedly (e.g.
a public key). In these cases, the underlying scalar multiplication in Miller’s
algorithm can be executed only once to precompute the coefficients of the line
functions gU (Q). The speedup resulting from this technique is more prominent
for characteristic p > 3.

5.5 MNT curves

Until recently, the only elliptic curves known to have embedding degree k 6 6
were supersingular like E2,b and E3,b. As it turns out, it is possible to construct
ordinary (non-supersingular) curves with k ∈ {3, 4, 6}. Such curves were first
described by Miyaji, Nakabayashi and Takano in [20]; we call them MNT curves.

Briefly, MNT curves are built with the complex multiplication (CM)
method [1, chapter VIII]. The idea is to impose certain constraints on the form
of the underlying finite field Fq, the curve order n, and the trace of Frobenius t,
which are linked to each other by the relation n = q + 1− t. These in turn lead
to further constraints on the form of the CM equation DV 2 = 4q− t2, which for
k ∈ {3, 4, 6} reduces to a Pell equation7, whose solution is well known [28].

MNT curves address concerns that supersingular curves may not be as secure
as ordinary curves. They are suitable for variants of pairing-based cryptosystems
that do not involve distortion maps, like the BLS variant of [3, section 3.5] or

7 There is reason to believe that one can effectively construct MNT-like curves with
k ∈ {5, 8, 10, 12}, for which the CM equation reduces to a quartic elliptic Diophantine
equation [31]. However, we refrain from further investigating this possibility here.

the general IBE variants of [2, section 4] and [6, section 3]. In such systems, the
pairings have the form e`(P,Q) where P ∈ E(Fq) and Q ∈ E(Fqk), and both are
chosen so that e`(P,Q) 6= 1.

An important property of the MNT criteria is that n | Φk(q) but n - (qk −
1)/Φk(q), where Φk is the k-th cyclotomic polynomial. Due to this property,
lemma 1 holds for MNT curves as well, and consequently, so do theorem 1 and
corollary 1. Therefore, the deterministic version of Miller’s algorithm presented
in section 5 is equally valid for the MNT case. Furthermore, for even k it often
happens that the point Q = (x, y) in the variant cryptosystems can be chosen
so that x ∈ Fqk/2 but y 6∈ Fqk/2 ; with this setting8, denominator elimination as
suggested in section 5.1 is also applicable.

6 Experimental Results

The heaviest operation in any pairing-based cryptosystem is the pairing compu-
tation. We give our timings for these operations in table 3.

Table 3. Tate pairing computation times (in ms) on a PIII 1 GHz.

underlying base field timing

F397 26.2

F2271 23.0

Fp, |p| = 512 bits 20.0

Fp with preprocessing 8.6

Boneh-Lynn-Shacham (BLS) signature generation is comparable to RSA or
DSA signing at the same security level. Table 4 compares the signing times for
the RSA, DSA (without precomputation), ECDSA (without precomputation),
and BLS signature schemes. We consider two BLS implementations, namely, one
using the curve E3,b and one using an MNT curve.

Timings for BLS verification and Boneh-Franklin identity-based encryption
(IBE) are listed in table 5. BLS signature verification speed for F397 shows an
improvement by a factor of about 55 over published timings. The performance
of IBE is also comparable to other cryptosystems; the data refers to a curve over
Fp where |p| = 512 bits, using a subgroup of order q where q is a Solinas prime
and |q| = 160 bits.

The implementations in this section were written in C/C++ and based on
the MIRACL [26] library.
8 Representing Fqk in polynomial basis as Fq[t]/Rk(t) and carefully choosing Rk(t), it

is quite easy to find a point Q satisfying these constraints. For instance, if Rk(t) =
tk + t2 + c for some c ∈ Fq, one can show that a suitable Q can be found by
restricting the coordinates to the form x = ak−2t

k−2 + ak−4t
k−4 + · · · + a2t

2 + a0

and y = bk−1t
k−1 + bk−3t

k−3 + · · ·+ b3t
3 + b1t.

Table 4. Comparison of signing and verification times (in ms) on a PIII 1 GHz.

algorithm signing verification

RSA, |n| = 1024 bits, |d| = 1007 bits 7.90 0.40
DSA, |p| = 1024 bits, |q| = 160 bits 4.09 4.87

Fp ECDSA, |p| = 160 bits 4.00 5.17
F2160 ECDSA 5.77 7.15

F397 BLS (supersingular) 3.57 53.0
Fp BLS (MNT), |p| = 157 bits 2.75 81.0

Table 5. BLS and IBE times (in ms) on a PIII 1 GHz.

operation original [3, 14] ours

BLS verification 2900 53

IBE encryption 170 48 (preprocessed: 36)

IBE decryption 140 30 (preprocessed: 19)

7 Conclusions and Acknowledgements

We have proposed several new algorithms to implement pairing-based cryptosys-
tems. Our algorithms are all practical and lead to significant improvements, not
only for the pairing evaluation process but to other operations as well, such as
elliptic curve scalar multiplication and square root extraction.

An interesting line of further research is the application of these techniques
to more general algebraic curves; for instance, a fast n-th root algorithm in the
lines of the square root algorithm presented here would be useful for super-
elliptic curves. Investigating the conditions leading to composition operations
computable in linear time in abelian varieties would also be of great interest.

We are very grateful to Dan Boneh, Steven Galbraith, Antoine Joux, Frederik
Vercauteren, and the anonymous referees for their valuable comments and/or
feedback regarding this work.

References

1. I. Blake, G. Seroussi and N. Smart, “Elliptic Curves in Cryptography,” Cambridge
University Press, 1999.

2. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Advances in Cryptology – Crypto’2001, Lecture Notes in Computer Science 2139,
pp. 213–229, Springer-Verlag, 2001.

3. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” Asia-
crypt’2001, Lecture Notes in Computer Science 2248, pp. 514–532, Springer-Verlag,
2002.

4. H. Cohen, “A Course in Computational Algebraic Number Theory,” Springer-
Verlag, 1993.

5. G. Frey, M. Müller, and H. Rück, “The Tate Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems,” IEEE Transactions on Information The-
ory 45(5), pp. 1717–1719, 1999.

6. S. Galbraith, “Supersingular curves in cryptography,” Asiacrypt’2001, Lecture
Notes in Computer Science 2248, pp. 495–513, Springer-Verlag, 2002.

7. S. Galbraith, K. Harrison and D. Soldera, “Implementing the Tate pairing,” Al-
gorithm Number Theory Symposium – ANTS V, Lecture Notes in Computer Sci-
ence 2369, Springer-Verlag, to appear.

8. F. Hess, “Exponent Group Signature Schemes and Efficient Identity Based Signature
Schemes Based on Pairings,” Cryptology ePrint Archive, Report 2002/012, available
at http://eprint.iacr.org/2002/012/.

9. T. Itoh, O. Teechai and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Information and Computation 78, pp. 171–
177, 1988.

10. A. Joux, “A one-round protocol for tripartite Diffie-Hellman,” Algorithm Number
Theory Symposium – ANTS IV, Lecture Notes in Computer Science 1838, pp. 385–
394, Springer-Verlag, 2000.

11. A. Joux and K. Nguyen, “Separating Decision Diffie-Hellman from Diffie-Hellman
in Cryptographic Groups,” Cryptology ePrint Archive, Report 2001/003, available
at http://eprint.iacr.org/2001/003/.

12. N. Koblitz, “An Elliptic Curve Implementation of the Finite Field Digital Signa-
ture Algorithm,” Advances in Cryptology – Crypto’98, Lecture Notes in Computer
Science 1462, pp. 327–337, Springer-Verlag, 1998.

13. R. Lidl and H. Niederreiter, “Finite Fields,” Encyclopedia of Mathematics and its
Applications 20, 2nd Ed. Cambridge University Press, 1997.

14. B. Lynn, “Stanford IBE library,” available at http://crypto.stanford.edu/ibe/.
15. A.J. Menezes, “Elliptic Curve Public Key Cryptosystems,” Kluwer International

Series in Engineering and Computer Science, 1993.
16. A.J. Menezes, T. Okamoto and S.A. Vanstone, “Reducing elliptic curve loga-

rithms to logarithms in a finite field,” IEEE Transactions on Information Theory
39, pp. 1639–1646, 1993.

17. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, “Handbook of Applied
Cryptography,” CRC Press, 1997.

18. A.J. Menezes and S.A. Vanstone, “The implementation of elliptic curve cryp-
tosystems,” Advances in Cryptology – Auscrypt’90, Lecture Notes in Computer Sci-
ence 453, pp. 2–13, Springer-Verlag, 1990.

19. V. Miller, “Short Programs for Functions on Curves,” unpublished manuscript,
1986.

20. A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic
curve traces for FR-reduction,” IEICE Trans. Fundamentals, Vol. E84 A, no. 5,
May 2001.

21. IEEE Std 2000–1363, “Standard Specifications for Public Key Cryptography,”
2000.

22. K.G. Paterson, “ID-based signatures from pairings on elliptic curves,” Cryptology
ePrint Archive, Report 2002/004, available at http://eprint.iacr.org/2002/004/.

23. K. Rubin and A. Silverberg, “Supersingular abelian varieties in cryptology,” Ad-
vances in Cryptology – Crypto’2002, these proceedings.

24. R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing,” 2000
Symposium on Cryptography and Information Security (SCIS2000), Okinawa, Japan,
Jan. 26–28, 2000.

25. R. Schroeppel, H. Orman, S. O’Malley, O. Spatscheck, “Fast Key Exchange with
Elliptic Curve Systems,” Advances in Cryptology – Crypto ’95, Lecture Notes in
Computer Science 963, pp. 43–56, Springer-Verlag, 1995.

26. M. Scott, “Multiprecision Integer and Rational Arithmetic C/C++ Library (MIR-
ACL),” available at http://indigo.ie/~mscott/.

27. J.H. Silverman, “The Arithmetic of Elliptic Curves,” Graduate Texts in Mathe-
matics, vol. 106, Springer-Verlag, 1986.

28. N.P. Smart, “The Algorithmic Resolution of Diophantine Equations,” London
Mathematical Society Student Text 41, Cambridge University Press, 1998.

29. N.P. Smart, “An Identity Based Authenticated Key Agreement Protocol Based on
the Weil Pairing,” Electronics Letters, to appear.

30. J. Solinas, “Generalized Mersenne numbers,” technical report CORR-39, Depart-
ment of C&O, University of Waterloo, 1999, available at http://www.cacr.math.

uwaterloo.ca/.
31. N. Tzanakis, “Solving elliptic diophantine equations by estimating linear forms

in elliptic logarithms. The case of quartic equations,” Acta Arithmetica 75 (1996),
pp. 165–190.

32. E. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems,” Advances in Cryptology – Eurocrypt’2001, Lecture Notes in Com-
puter Science 2045 (2001), pp. 195–210.

33. E. Verheul, “Self-blindable Credential Certificates from the Weil Pairing,” Asia-
crypt’2001, Lecture Notes in Computer Science 2248, pp. 533–551, Springer-Verlag,
2002.

A Implementation Issues

A.1 Field Representation

The authors of the BLS scheme suggest representing F36m as F36 [x]/τm(x) for a
suitable irreducible polynomial τm(x) [3, section 5.1]. It is our experience that the
alternative representation as F3m [x]/τ6(x) using an irreducible trinomial τ6(x)
(for instance, τ6(x) = x6 + x − 1) leads to better performance for practical
values of m; moreover, both signing and verification benefit at once from any
improvement made to the implementation of F3m . Karatsuba multiplication can
also be used to great effect, as one F36m multiplication can be implemented with
only 18 F3m multiplications. Similar observations apply to characteristic 2, where
one F24m multiplication takes 9 F2m multiplications.

As it turns out, however, Karatsuba is not the fastest multiplication tech-
nique in all circumstances. As seen in section 5.1, it is often the case that the
actual pairing to be computed is en(P, φ(Q)) where both P and Q are on the
curve over Fq (rather than the curve over the extension field Fqk), and the pair-
ing algorithm can explicitly use the form of the φ distortion map to reduce the
number of Fq products involved in Miller’s formula down to only two per line
equation evaluation.

A.2 Speeding up the Final Powering in the Tate Pairing

The exponentiation needed by the Tate pairing en(P,Q) = fP (Q)z where z =
(qk − 1)/n can be efficiently computed with the following observations:

1. (Characteristic p > 3) Assume that p ≡ 2 (mod 3) and p ≡ 3 (mod 4). The
order of a curve E1,b is n = p + 1. Let the order of the curve subgroup of
interest be r, and notice that r | p + 1. Consider the scenario where the
representation of a point t ∈ Fp2 is t = u + iv where u, v ∈ Fp and i satisfies
i2 + 1 = 0. The Tate exponent is z = (p2 − 1)/r = ((p + 1)/r) · (p − 1).
To calculate s = wz mod p, compute t = w(p+1)/r ≡ u + iv and set s =
(u + iv)p−1 = (u + v)p/(u + iv) = (u − v)/(u + iv), using the linearity of
raising to p and the fact that ip = −i for p ≡ 3 (mod 4). We can further
simplify to obtain s = (u2 − v2)/(u2 + v2)− 2uvi/(u2 + v2).

2. (Characteristic 2) Let q = 2m. As we saw in the proof of theorem 3, the
Tate exponent is of form z = (q + 1±

√
2q)(q2 − 1). Therefore, to calculate

s = wz one computes t = wq · w · w±
√

2q and s = tq
2
/t. Raising to the

exponents q,
√

2q and q2 can be done in O(m) steps using normal basis, or
in O(m2) steps using polynomial basis with a careful choice of the reduction
polynomial (see [25], for instance), while the small (and constant) number
of multiplications and inversions can be done in O(m2) steps. Therefore, the
complete operation takes time O(m2).

3. (Characteristic 3) Let q = 3m. As we saw in the proof of theorem 3, the
Tate exponent is of form z = (q + 1 ±

√
3q)(q3 − 1)(q + 1). Therefore, to

calculate s = wz one computes u = wq ·w ·w±
√

3q, t = uq3
/u, and s = tq · t.

Raising to the exponents q,
√

3q and q3 can be done in O(m) steps using
normal basis, or in O(m2) steps using polynomial basis with a careful choice
of the reduction polynomial (see [25], for instance), while the small (and
constant) number of multiplications and inversions can be done in O(m2)
steps. Therefore, the complete operation takes time O(m2).

