
GPU Accelerated Isosurface Volume Rendering Using Depth-Based Coherence

Colin Braley ∗

Virginia Tech
Robert Hagan ∗

Virginia Tech
Yong Cao ∗

Virginia Tech
Denis Gračanin ∗

Virginia Tech

Figure 1: Two isosurfaces in the Visible Human R© male dataset, a visualization of the prediction buffer, and a performance graph.

Keywords: GPGPU, Depth Buffer, Rotational Coherence

1 Introduction
With large scientific and medical datasets, visualization tools have
trouble maintaining a high enough frame-rate to remain interactive.
In this paper, we present a novel GPU based system that permits
visualization of isosurfaces in large data sets in real time. In par-
ticular, we present a novel use of a depth buffer to speed up the
operation of rotating around a volume data set. As the user rotates
the viewpoint around the 3D volume data, there is much coherence
between depth buffers from two sequential renderings. We utilize
this coherence in our novel prediction buffer approach, and achieve
a marked increase in speed during rotation. The authors of [Klein
et al. 2005] used a depth buffer based approach, but they did not
alter their traversal based on the prediction value. Our prediction
buffer is a 2D array in which we store a single floating point value
for each pixel. If a particular pixel pij has some positive depth value
dij , this indicates that the ray Rij , which was cast through pij on
the previous render, intersected an isosurface at depth dij . The pre-
diction buffer also handles three special cases. When the ray Rij
misses the isosurface, but hits the bounding box containing the vol-
ume data, we store a negative flag value, dhitBoxMissSurf in pij .
When Rij misses the bounding box, we store the value dmissBox.
Lastly, when we have no prediction stored in the buffer, we store
the value dnoInfo.

When rendering a specific pixel pij , we perform 1 of 2 different
kinds of voxel traversals. If the prediction value is dnoInfo, we per-
form full traversal. If our prediction value is dhitBoxMissSurf we
perform sparse traversal. For dmissBox we do not traverse at all,
and assume we have missed the isosurface. Lastly, when we some
positive value for dij we perform local traversal. After traversal is
complete, we will then update the prediction buffer.

2 Traversals
For full traversal we use the classic voxel traversal algorithm pre-
sented in [Amanatides and Woo 1987]. This algorithm is efficient
in terms of floating point operations, but not in terms of divergent
branching. Divergent branching is slow on the GPU seeing as the
GPU is optimized for data-parallel operations. In NVIDIA Cuda,
all intra-warp divergent branches are serialized, resulting in a large
performance hit. This is our motivation for creating out alternate
types of traversals. In sparse traversal, we step along the ray by

∗{ cbraley , rdhagan , yongcao , gracanin } @vt.edu

intervals of dt. At every value step we sample the voxel data using
trilinear interpolation done in hardware. If two consecutive sam-
ples bound the iso-value, we bisect this interval in order to locate
the hit point. This process continues until we find the isosurface, or
exit the voxel data’s bounding box. This is significantly faster than
full traversal since this greatly reduces the amount of branching,
and because trilinear interpolation is very fast when implemented
in hardware. The visual accuracy of this method relies on us choos-
ing a small dt, while speed relies on choosing a large dt. We choose
dt = min(dx,dy,dz)

κ
, where dx, dy, and dz are the widths of a single

voxel in the x, y, and z directions, respectively. κ is a user specified
constant. Experimentally, we found κ ≈ 0.5 to be a good trade-off.
In local traversal, we have some positive predicted depth dij which
our isosurface is likely to be near. In order to find the surface as fast
as possible, we alternate back and forth, moving by some interval
dt, starting at distance dij . Since it is likely that we will find an iso-
surface at a nearby location, rendering time is drastically reduced.
However, this technique can create slight visual artifacts when an
occluding isosurface appears. In order to remedy this, we perform
a full traversal, for all pixels, every α renderings. Experimentally,
we found α ≈ 10 to be a good trade-off.

3 Discussion of Results
In the above histogram, we see that our technique gets a relatively
large speedup for many real-world sized data sets. This dimension-
less speedup is simply the average time spent traversing the dataset
when using full traversal, divided by the average time when using
our prediction buffer based approach. We performed an automated
360 degree rotation around each dataset, and timed each Cuda ker-
nel launch. We found that, while speedups were attained across the
board, the speedup amount is slightly dependent on camera position
and data characteristics. Note that in this data collection, and in all
data in our accompanying video, κ = 0.5 and α = 10.

References
AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal

algorithm for ray tracing. In Proceedings of Eurographics 87,
3–10.

KLEIN, T., STRENGERT, M., STEGMAIER, S., AND ERTL, T.
2005. Exploiting frame-to-frame coherence for accelerating
high-quality volume raycasting on graphics hardware. In Visual-
ization, 2005. VIS 05. IEEE, 223–230.


