
Integrating Occlusion Culling with Parallel LOD for Rendering Complex 3D
Environments on GPU

Chao Peng ∗

Department of Computer Science
Virginia Tech, Blacksburg, VA, USA

Yong Cao †

Department of Computer Science
Virginia Tech, Blacksburg, VA, USA

(a) (b) (c) (d)

Figure 1: The images rendered by our Parallel-GigaVis. (a)-(b) The Boeing 777 model; (c)-(d) The Power Plant model.

Abstract

Real-time rendering of complex 3D models is still a very challeng-
ing task. Recently, many GPU-based level-of-detail (LOD) algo-
rithms have been proposed to decrease the complexity of 3D mod-
els in a parallel fashion. However, LOD approaches alone are not
sufficient to reduce the amount of geometry data for interactive ren-
dering of massive scale models. Visibility-based culling, especially
occlusion culling, has to be introduced to the rendering pipeline
for large models. In this paper, we aim to tackle the challenge of
integrated parallel processing for both mesh simplification and oc-
clusion culling. We present a novel rendering approach that seam-
lessly integrates parallel LOD algorithm, parallel occlusion culling
and Out-of-Core method in a unified scheme towards GPU architec-
tures. The result shows the parallel occlusion culling significantly
reduces the required complexity of the 3D model and increases the
rendering performance.

Keywords: Parallel rendering, parallel LOD, parallel visibility
culling, GPU out-of-core

1 Introduction

In many computer graphics applications, such as mechanical en-
gineering, game development and virtual reality, a typical dataset

∗e-mail:chaopeng@vt.edu
†e-mail:yongcao@vt.edu

from these applications is usually produced in a multi-object man-
ner for efficient data management. Each object usually contains a
relatively small number of polygonal primitives as long as they are
sufficient to describe the topological properties of the object. To
have a complete description of the whole model, tens of thousands
of, or even millions of, such individual objects are necessarily cre-
ated and loosely connected, which makes the entire dataset excep-
tionally complex. As data complexity continue to increase due to
the fundamental advances in modeling and simulation technologies,
a complex 3D model may need several gigabytes in storage. Conse-
quently, visualizing the model becomes a computationally intensive
process that impedes a real-time rendering and interaction.

Recently, massive parallelism in GPUs has become a major trend
for high-performance applications. Today’s GPUs can perform gen-
eral purpose computation and allow researchers to solve problems
by delivering fine-grained parallel processes. However, the require-
ment to interactively render gigabyte-scale models usually overbur-
dens the computational power and memory capacity of the GPUs.
To solve this problem, GPU-based parallel mesh simplification al-
gorithms, such as [Hu et al. 2009; Derzapf et al. 2010; Peng et al.
2011]), have been proposed to fast simplify complex models. How-
ever, without considering view-parameters, the occluded objects
are undesirably rendered in high levels of details, where process-
ing them consumes many computational resources. The waste of
GPU’s computing power and memory for rendering those occluded
objects will definitely hurt the overall performance and visual qual-
ity, especially when dealing with large-scale complex models.

For further improvement, more unnecessary polygonal primitives
need to be excluded from the GPU processing pipeline. To do this,
visibility culling techniques are commonly used to reject render-
ing of the invisible objects. For example, view-frustum culling
is able to determine an object’s visibility by testing its bounding
volume against the view frustum. But performing view-frustum
culling alone is not sufficient to handle the model that has a high
depth complexity. To handle high-depth models, occlusion culling
is used to disable rendering of the objects obscured by others. Al-
though GPU-accelerated occlusion culling approaches have been
introduced in the past, the integration with parallel LOD algorithms
has not been satisfactorily addressed, which we believe is essential

to speed up the processing of complex 3D models on GPU.

Main contributions. In this work, we present a parallel render-
ing approach for interactively visualizing gigabyte-scale complex
models on a commodity desktop workstation. Recently, the capa-
bility of CPU main memory easily reaches tens of gigabytes that
can hold billions of polygons. In contrast, GPU memory is still
insufficient to store large size data. For example, the Boeing 777
model, shown in Figure 1(a-b), consumes more than 6 gigabytes to
store only its vertices and triangles, which is over the memory lim-
its of most modern GPUs. Our GPU out-of-core method takes the
advantages of frame-to-frame coherence, so that only the necessary
portions of data are selected and steamed to the GPU at each frame.

Our approach tightly integrates the LOD algorithms, occlusion
culling and out-of-core towards GPU parallel architectures. To
our knowledge, our work is the first attempt to integrate them for
gigabyte-scale complex model rendering. Our contributions can be
broken down to the following key features:

1. Massive parallel LOD algorithm. We generate an adap-
tively simplified model at run-time with an object-level paral-
lel LOD selection and a triangle-level parallel geometric ref-
ormation.

2. Parallel occluder selection & conservatively culling. We
perform the parallel algorithm of conservative occlusion
culling with a novel metric of dynamic occluder selection.
As a result, a significant number of hidden objects can be re-
moved efficiently.

The rest of the paper is organized as follows. In Section 2, we
briefly review some related works. Section 3 gives an overview
of our approach. We describe the stat-of-art of LOD algorithms
in Section 4. Our contribution to the LOD selection is presented in
Section 5, and the contribution to the occlusion culling in Section 6.
In Section 7, we describe the out-of-core methods for CPU-GPU
data streaming. Our implementation and experimental results are
shown in Section 8. We conclude our work in Section 9.

2 Related Works

In this section, we discuss some previous works that focus on mesh
simplification, occlusion culling and their integrations.

2.1 Mesh Simplification

The techniques of mesh simplification have been studied for a
few decades. Traditional simplification algorithms were based
on a sequence of topological modifications, such as collapsing
edges [Hoppe 1997; Garland and Heckbert 1997] and remeshing
with geometry images [Gu et al. 2002; Sander et al. 2003].

Recently, GPU parallel architectures caught researchers’ attention
to speed up run-time computations for mesh simplification. The
researchers focused on how to eliminate the data dependencies in-
troduced in traditional algorithms. [DeCoro and Tatarchuk 2007]
presented a vertex clustering method using the shader-based fixed
GPU graphics pipeline. The representative vertex position for each
cluster can be independently computed through geometry shader
stage. [Hu et al. 2009] introduced a GPU-based approach for view-
dependent Progressive Meshes, where vertex dependencies were
not fully considered during a cascade of vertex splitting events.
[Derzapf et al. 2010] encoded the dependency information of Pro-
gressive Meshes into a GPU-friendly compact data structure. [Peng
and Cao 2012] eliminated the dependency by simply using an ar-
ray structure and supported triangle-level parallelism. They also
claimed that the limited GPU memory is an important issue for

simplification, so that they integrated their parallel simplification
method and GPU out-of-core to render large and complex models.

2.2 Occlusion Culling

Occlusion culling, one of the important topics in visibility research,
aims to remove the hidden objects (the objects obscured by oth-
ers) from the rendering process. Hierarchical Z-buffer (HZB) in-
troduced in [Greene et al. 1993] is an algorithm that uses an image-
space Z pyramid to quickly reject the hidden objects. [Hudson et al.
1997] used the shadow frusta to accelerate occlusion culling in ob-
ject space. [Zhang et al. 1997] presented a culling approach mixed
from a object-space bounding volume hierarchy and a image-space
hierarchy occlusion map.

GPU-based parallel designs have also been presented. [Morein
2000] accelerated HZB with hardware fixed functions. [Klosowski
and Silva 2001] designed a conservative culling algorithm based
on the Prioritized-Layered Projection (PLP) with the support of
OpenGL extensions. [Govindaraju et al. 2003] used a dual-GPU
occlusion-switch approach to overcome the performance issues.
But additional latency was introduced when exchanging data be-
tween GPUs. [Bittner et al. 2004] proposed an optimized version
of hardware occlusion queries to improve the culling efficiency and
performance.

One important research question of occlusion culling is how to ef-
ficiently and dynamically find the optimal occluders that can reject
the hidden objects as many as possible. This problem was not sat-
isfactorily solved by previous culling approaches. Also, although
parallel solutions have been proposed in previous works, they tar-
geted only culling-related computation.

2.3 Integration

The Integration of mesh simplification and occlusion culling is nec-
essary for rendering complex models. [El-Sana et al. 2001] used the
View-Dependence Tree to integrate them in a simple and intuitive
fashion. Similarly, [Andújar et al. 2000] provided the Visibility Oc-
tree to estimate the degree of visibility of each object, which was
also contributed to the LOD selection in the integration. [Yoon et al.
2003] decomposed the 3D scene into a cluster hierarchy, where the
simplification algorithm was applied to the set of visible clusters.
The culling accuracy was dependent on the temporal coherence.
Later, [Yoon et al. 2004] improved their cluster-based integration
approach for out-of-core rendering massive models. [Gobbetti and
Marton 2005] represented the data with a volume hierarchy, by
which their approach tightly integrated LOD, culling and out-of-
core data management for massive model rendering.

These integrated approaches rely on the hierarchical data represen-
tations. The hierarchy is traversed in a top-down manner to perform
the operations for both LOD and culling. But for parallel designs,
the dependency between levels of the hierarchy have to be elimi-
nated before an efficient GPU algorithm can be carried on. In this
paper, we believe that the integration of simplification and culling
on GPU parallel architecture is an important step for the next gen-
eration of rendering systems, especially for the systems that inter-
actively visualize complex 3D models.

3 Overview

In a general case, a complex 3D environment model consists of
many disconnected objects that are unorganized, irregularly shaped
and interweaving detailed in 3D space. In order to efficiently render
the model, our approach conducts two computing stages, data pre-
processing and run-time processing, as illustrated in Figure 2.

Complex
3D Model

LOD
Selection

CPU-GPU
Streaming for

Visible Objects
LOD Model
Generating

LOD Model
Rendering

Runtime
processing:

Data
preprocessing:

Vertex &
Triangle Data

AABBs

Collapsing
Information

Collapsing
Criteria

On CPU memory

On GPU memory

Parallel processing

Occluder
Selection

Culling Hidden
Objects

CPU-GPU
Streaming for

Occluders

For LOD processing

For Occlusion culling

Occlusion Culling LOD Processing

Spatial
occupancy

rules

Figure 2: The overview of our approach.

In the pre-processing stage, we perform a sequence of edge-
collapsing operations to simplify the input model. The order of
these operations is used to re-arrange the storage of vertices and
triangles. Also, to better prepare for occlusion culling, we exam-
ine the qualification of each object to be an occluder by evaluating
its spatial occupancy. We also generate Axis-Aligned Bounding
Boxes (AABBs) of the objects.

At run-time, two computation components, occlusion culling and
LOD processing, are performed based upon a series of parallel pro-
cessing steps. we select a set of adaptive occluders, transfer them to
GPU memory space, and rasterize them into a Z-depth image. The
objects hidden behind the occluders are then eliminated by testing
them against the depth image. After that, the remaining objects are
passed through the component of LOD processing, where each ob-
ject’s geometric complexity is determined to be used for reforming
the object into a new shape. At the end, the reformed objects are
rendered with OpenGL Vertex Buffer Objects (VBO).

4 State-of-Art in Parallel Mesh Simplification

Traditional approaches rely on hierarchical data representations for
complex model simplification, such as [Yoon et al. 2004; Cignoni
et al. 2004]. A hierarchy is usually built in a bottom-up node-
merging manner. However, the major limitation of a hierarchical
representation is that inter-dependency is introduced between levels
of the hierarchy, which would not be suitable for data parallel com-
puting. Most recently, [Peng and Cao 2012] built dependency-free
data representations that allow triangle-level parallelism to generate
LOD models on GPU. Our simplification method is extended from
Peng and Cao’s work, and we would like to give more details of
their work in the rest of this section.

Edge-collapsing is the basic operation in the process of simplifica-
tion. Edges are collapsed iteratively; at each iteration, two vertices
of an edge are merged, and the corresponding triangles are elimi-
nated, and consequently mesh topology is modified. Because each
object of the model maintains its own mesh topology without con-
nection to any others, it can be simplified independently. In order
for a faithful look on a low-poly object, rules for choosing an op-
timal edge at an iteration have been well studied, such as [Melax
1998; Garland and Heckbert 1998], to make sure the visual changes
are minimized when collapsed.

The collapsing operations indicate how the details of a 3D object
are reduced. These operations are recorded in an array structure.
Each element in the array corresponds to a vertex, and its value is
the index of the target vertex that it merges to. According to the

order of collapsing operations, Storage of vertices and triangles are
re-arranged. In practice, the first removed vertex during collaps-
ing is re-stored to the last position in the vertex data set; and the
last removed vertex is re-stored to the first position. The same re-
arrangement is applied to the triangle data set as well. As a result,
the order of storing re-arranged data reflects the levels of details. If
needing a coarse version of the model, a small number of contin-
uous vertices and triangles are sufficient by selecting them starting
from the first element in the sets.

Since the size of GPU memory is usually not large enough to hold
the complex model, the run-time selected portion of vertices and tri-
angles has to be streamed to GPU from CPU main memory. Then,
each GPU thread is asked to reshape one triangle, where its three
vertex indices are replaced with appropriate target ones by walking
backward through the pre-recored collapsing operation array.

5 LOD Selection

Now, the question is how to determine the desired level of detail (or
the desired geometric complexity) of the objects at a given view-
point. This problem is known as LOD Selection. Conceptually, an
object can be rendered at any level of detail. But because GPU
memory is limited, the total number of polygon primitives must be
budgeted based on the memory capability. Also, allocating this to-
tal number to the objects needs to be well-considered, so that both
memory constraints and visual requirements can be satisfied.

Ideally, an object far away from the viewpoint deserves a lower
lever of detail. In practice, people usually examine the size of the
screen region occupied by an object. The larger size of the region,
the higher level the object’s detail should be. Based on this idea,
for multi-object models, [Funkhouser and Séquin 1993] solved the
LOD Selection as a discrete optimization problem. Nowadays, the
complexity of a gigabyte-scale 3D environment has been signif-
icantly increased. The objects in the 3D environment may have
dramatically different shapes with widely varying spatial ratios. It
is possible that a far-away object, which deserves a lower level of
detail, has a much larger projected area than a closer object. In
addition, objects usually come with different number of triangles
due to the nature of original design. The object that has more tri-
angles should rationally be approximated with a higher detail level
than those that have fewer, though the former one may be farther
away from the viewpoint. By considering all these aspects, We re-
evaluate the LOD Selection and provide a closed-form expression
to solve it cheaply and reasonably. Below, we explain our solution
in detail.

(a) (b) (c)

Figure 3: A LOD example of the Boeing 777 model (originally 332M triangles). The number of triangles and vertices in each scene
(triangle / vertex) is: (a) 4.35M/3.18M ; (b) 1.01M/0.83M ; (c) 0.42M/0.35M , where PET is set to 2 pixels.

LOD Selection Metric. In a multi-object model, the desired level
of detail of the ith object is represented with a pair of vertex count
and triangle count. We denote them as vci and tci, respectively. We
compute vci using Equation 1.

vci = N
w

1
α
i∑m

i=1 w
1
α
i

,where wi = β
Ai
Di
P βi , β = α− 1 (1)

N is the user-defined maximal count. vci is computed out of total
m objects. Ai denotes the projected area of the object on image
plane. To compute Ai efficiently, we estimate it using the area of
the screen bounding rectangle of the projected axis-aligned bound-
ing box (AABB) of the object. The exponent, 1

α
, is a factor aiming

to estimate the object’s contributions for model perception, refer
to the benefit function detailed in [Funkhouser and Séquin 1993].
Di is the shortest Z-depth distance from the corner points of the
AABB. Pi is the number of available vertices of the object.

We know that, in the pre-processing step, we record the remain-
ing number of triangles after each collapsing iteration. Thus, at
run-time, when vci is computed, the corresponding tci can be eas-
ily retrieved from the pre-recored information. We use NVIDIA
CUDA-based Thrust library to implement Equation 1 on GPU.

Pixel Error Threshold. As we know, no matter how large or com-
plex an object is, the object’s shape is scan-converted into pixels.
At a position long-distance to the viewpoint, a very large object
may be projected to a very small region of the screen (e.g. less
than one pixel), so that the object might not be captured by peo-
ple’s visual perception. Based on this nature, we introduce a Pixel
Error Threshold (PET) as a complementary criteria for our metric
of LOD selection. If Ai in Equation 1 is below a given PET, vci
is set to zero. By doing this, only the objects large enough on the
screen will be allocated a cut from the overall detail budget. This
constraint meets the workflow of view-dependent rendering, and
removes the objects without losing visual fidelity. In Figure 3, we
show the example renderings with our metric of LOD Selection.

6 Parallel Occlusion Culling Design

In Equation 1, N is an important factor impacting on the overall
performance and visual quality. N tells how many vertices and
triangles will be processed by GPU cores. A large value of N re-
sults in a heavy GPU workload, and consequently results in a low
performance. We can decrease the value of N to ensure a desired
performance, but a small N will result in the loss of visual quality.

One way to preserve the visual quality at a given small N is by
adding visibility culling algorithms. At a specific viewpoint, many

objects are invisible but they obtain the pieces of N . It would be
more reasonable that these pieces should be distributed to the visi-
ble objects, so that we can increase their detail levels. Generating
the simplified versions of invisible objects is a waste of GPU stor-
age and computation resources, and definitely decrease the level of
overall visual fidelity.

Hardware occlusion queries available in the 3D API (OpenGL or
Direct3D) were popularly used to check whether or not objects are
visible. Unfortunately, this feature is not suitable for our applica-
tion because of three reasons: (1) occlusion queries use static set of
occluders, rather than view-dependently selected; (2) because the
previous frame depth buffer is used for occlusion testing in the cur-
rent frame, “flickering” artifacts might occur; (3) occlusion query
technique is an independent and fixed function module that is im-
possible to integrate with any LOD method.

Therefore, in this section, we introduce a novel parallel approach
for occlusion culling. Our approach seamlessly integrates with the
parallel LOD, and rejects the invisible objects before the LOD bud-
get allocation step.

6.1 Pre-processing

In a model, not all objects are suitable to be occluders. Most exist-
ing systems use simple criteria to examine an object’s qualification,
such as the size of AABB and the number of triangles. But some
complex models contain the irregularly shaped objects (e.g. ca-
sually curved long wires in the Boeing 777 airplane model), that
should not be qualified as occluders at any viewpoint. In our work,
we use a spatial occupancy criteria to determine the qualification of
an object. Specifically, we measure its compactness in object space.
We calculate a tight Object-Orientated Bounding Box(OOBB) for
each object. Equation 2 returns the value of compactness that indi-
cates how well the object fills the OOBB’s space.

compactness =
Ax

Px
Rx

+Ay
Py
Ry

+Az
Pz
Rz

Ax +Ay +Az
. (2)

We use projection-based method to compute the object’s compact-
ness. In Equation 2, we denote A to be the orthogonally projected
area of OOBB along its local axises; P is the number of pixels oc-
cupied by the object on the corresponding projection; R is the total
number of pixels occupied by the OOBB on the projection.

The objects are then sorted based on their compactness values. The
storage of the objects are re-arranged by moving those with higher
compactness to the front. The higher a value is, the better the ob-
ject is deserved to be an occluder. We use a Compactness Thresh-
old (CT) to find out the objects suitable to be occluders. The CT

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

COS

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

Objects outside
view frustum0.68 0.00 0.52 0.34 0.72 0.00 0.22 0.00

O5 O1 O3 O4 O7 O2 O6 O8 O9 O10 O11 O12 O13 O14 O15 O16

AOS

Objects as active
occluders

View-frustum
culling

Weighting
candidate occluders

Identifying the AOS

Figure 4: An example of parallel occluder selection. Assuming
that the input model are composed of 18 objects, and 8 of them are
classified into the COS. The size of AOS is fixed to be 3 objects.

defines the lower bound compactness. The objects whose compact-
ness values are above the CT will be added into the Candidate Oc-
cluder Set (COS).

6.2 Occluder Selection

At run-time, for each frame, a group of occluders from the COS
is view-dependently selected. We denote it as Active Occluder
Set (AOS). Selecting the exact occluders is usually computation-
ally intensive. Thus, we develop an efficient method to esti-
mate the AOS, which will be sufficient and effective for occlu-
sion culling. We perform three steps to decide the AOS: (1) view-
frustum culling: we test each object’s AABB against the view frus-
tum, so that the object is invisible if its AABB outside the frustum;
(2) weighting candidate occluders: we weight the objects in the
COS to determine any one suitable to be in the AOS. (3) identify-
ing the AOS: We identify the objects with higher weights and select
them into the AOS. An example of these three steps is illustrate in
Figure 4.

View-frustum culling. We ask one GPU thread to handle one ob-
ject. By testing its AABB against the view frustum of the camera,
the objects outside the frustum will not be passed into the render-
ing pipe. They of course will loss the opportunity to be selected
into the AOS though they may have high compactness value in the
COS. Each object of the model is processed by one GPU computa-
tion thread. The reason that we use AABBs instead of OOBBs is
because an AABB allows a faster execution and has less memory
requirements.

Weighting candidate occluders. The objects in both the COS and
the view frustum still hold their candidate status to be active oc-
cluders. But we certainly do not want to select all of them to the
AOS, because the number of them most-likely is large and many of
them may actually be occluded. For example, in the Boeing model,
the COS contains 362 thousand objects with the CT equal to 0.63
(50.4% out of totally 718 thousand objects). Hence, we need to
select less but optimal candidates from the COS. Our idea is to
make sure that the selected objects are spatially large and closed
to the viewpoint. We develop a weighting metric to determine the
AOS. we pre-assign a direction vector to each object. The vec-
tor is perpendicular to the largest face of the object’s OOBB. Then
the object’s weight is computed based on its viewing direction, its
distance to the viewpoint and the size of its bounding volume, as
shown in Equation 3.

weight =
V ||
−→
N ·
−→
E ||

D3
(3)

V is the volume size of the object’s AABB;
−→
N is the direction vec-

tor of the object; E is the direction vector of the viewpoint; D is
the closest distance between the AABB and the viewpoint position.
In general, an occluder will perform the best occlusion when its
vector N faces to the viewpoint. In Equation 3, we use the dot
product to capture this property. As shown in the second step of
Figure 4, weighting the objects of the COS can be executed with
a object-level parallelism. If a candidate object is inside the view
frustum, its weight will be computed using Equation 3; otherwise,
it will be assigned to zero and lose the opportunity to be in the AOS.
Note that we always use AABBs during run-time, since they are less
of memory requirement for storing the conner points comparing to
OOBBs.

Identifying the AOS. In order to quickly identify the optimal can-
didate objects for the AOS, we sort the COS based on the descend-
ing order of the weights of its members. The higher weight the ob-
ject has, the better this object is added into the AOS. We constrain
the AOS to be the fixed size, so that the number of active occluders
will not be changed during the entire run-time. Although it is also
reasonable to use the alterable number of active occluders, such as
by setting the lower bound weight threshold, the size of AOS could
be very large. We consider that the objects in the AOS are signifi-
cantly visible, and we will use their full details for both culling and
rendering. If the size of AOS is very large, the active occluders may
overburdens the GPU memory capability and the rendering work-
loads. For instance, the test made by [Aila and Miettinen 2004]
shows that selecting 30% of the visible objects from a model con-
sisted of only hundreds of millions of polygon primitives will result
in up to many hundreds of megabytes of storage. Hence, we use the
fixed small number of active occluders as long as it is effective for
occlusion culling. Because the COS is sorted, we can identify the
AOS at a constant speed by selecting the subset of the COS starting
from the beginning element.

6.3 Conservative Culling with Hierarchical Z-Map

Conservative culling is to determine a set of objects that are po-
tentially visible, which is commonly known as Potentially Visible
Set (PVS). The objects in the AOS definitely belong to the PVS.
For all other objects, we determine whether or not they belong to
PVS by checking whether or not they are obscured by the AOS.
To do this, we build the hierarchical Z-map (HZM) from the depth
image of the active occluders.

Similar to the methods used in [Greene et al. 1993; Zhang et al.
1997], the HZM is constructed by recursively down-sampling the
fine-grained depth image in an octree manner. Each level of HZM
is an intermediate depth image, which is down-sampled from the
one-level higher image by merging its 2×2 blocks of pixels. For
example, if the original image dimensions are 512×512, the num-
ber of levels is log2512 + 1 = 10. The highest level image is the
original one; and the lowest level image contains only one pixel.

At each building step, all 2×2 pixel blocks are operated in paral-
lel; and each block is merged and replaced by the pixel with the
maximal depth value in the block. Note that, the memory space for
HZM is allocated on GPU at initialization time. The size of HZM
is computed using Equation 5, where W is the dimension of the
render frame.

HZM size =
1− (1/4)k

3/4
×W 2,where k = log2W + 1 (4)

Once the HZM is constructed, we determine the visibilities of the
objects. we use a bounding square of the object’s projected area as

(b) HZM

(a) Viewpoint

(c) Tested Object

(d) Selected Level from HZM

Figure 5: The concept of culling with the HZM. (a) The view-
point for the rendering frame. The green lines define the view frus-
tum, and the redline defines the viewing direction from the camera
position; (b) The HZM constructed based on the active occluders
(the purple objects in (a)) rendered in 512 × 512 resolution; (c)
The visibility of the object is being tested by using the HZM; (d) The
image represents the selected level in the HZM. The red square rep-
resents the projected size of the object on the screen, and it overlaps
with the four green blocks, which represent the four depth pixels.

the approximation to test against an appropriate level of HZM. This
appropriate level can be determined by Equation 5, where R repre-
sents the dimension of the bounding square in pixels; L represents
the total levels of HZM.

level = L− log2
W

R
, (R ≥ 1) (5)

By doing this, the area covered by the square is guaranteed in a
range of pixel size of (1, 4) at the chosen level, see Figure 5(d). We
unify the depth values in the square region with the AABB’s min-
imal depth value. If the depth value is larger than all of these four
pixels, the object is surely occluded; otherwise, it will be labeled as
a potentially visible object into PVS.

7 GPU Out-of-Core for Data Streaming

CPU main memory has been well developed to cache large datasets.
It has become feasible to allocate tens of gigabytes memory on
RAMs in a PC platform. However, the increased size of GPU mem-
ory does not catch up the same storage capability. Thus, run-time
CPU-GPU data streaming is unavoidable for rendering complex
models.

Meanwhile, the low bandwidth of most modern GPUs is a major
drawback that will significantly slow down the overall performance
if a large amount of data needs to be transferred. Although the oc-
clusion culling and LOD processing can largely reduce the amount
of data required by GPU, the remaining data is usually still too large
to be streamed efficiently.

Our streaming method is based on the coherence-based GPU Out-
of-Core presented in [Peng and Cao 2012]. We conduct two phases
of streaming: streaming the AOS and streaming the PVS. To per-
form occlusion culling, the AOS are streamed to GPU for the depth-
buffer rendering. We do not simplify the objects in the AOS, since
we consider them as the most significantly visible objects. After
finishing the culling stage, we simplify the objects in the PVS so
that they will not require too much GPU memory. Then, by uti-
lizing frame-to-frame coherence, the frame-different data need to

Table 1: Parameter Configurations.

Model α N Pixel Error Compactness Size of
Threshold (PET) Threshold (CT) the AOS

Boeing 777 3.0 12.2M 1 pixel 0.55 20
Power Plant 3.0 3.5M 1 pixel 0.88 15

Table 2: The results of preprocessing. Two models are prepro-
cessed on a single PC.

Model Data File Collapsing Simp. Occupancy Comp.
Tri/Vert Num. Size ECol Size Time Size Time

Boeing 777 332M / 223M 6.7GB 582.5MB 952min 2.9MB 38min
Power Plant 12M / 6M 0.5GB 14.2 MB 40min 0.6MB 5min

be identified on CPU for the preparation of streaming. However,
identifying frame-different data requires to check the objects se-
quentially. To reduce the cost on the sequential execution, we uti-
lize a CPU multithreading method to evenly distribute the workload
among available CPU cores.

8 Experimental Results

We have implemented our approach on a workstation equipped with
an AMD Phenom X6 1100T 3.30GHz CPU (6 cores), 8 GBytes of
RAM and a Nvidia Quadro 5000 graphics card with 2.5 GBytes of
GDDR5 device memory. Our approach is developed using C++,
Nvidia CUDA Toolkit v4.2 and OpenGL on a 64-bit Windows
system. We have tested two complex 3D models for our experi-
ments. One is the Boeing 777 airplane model composed of about
332 million triangles and 223 million vertices. Another is the Coal
Fired Power Plant model composed of about 12 million triangles
and 6 million vertices. We have maintained all AABBs and edge-
collapsing information (ECols) on GPU memory during run-time,
which consume about 17 MBytes and 447 MBytes memory for
Boeing 777 model, respectively. Since Power Plant model is rel-
atively small and can be fit into the GPU memory, we can com-
pletely avoid the step of CPU-GPU streaming. The parameter con-
figurations used in our system are listed in Table 1. We also used
the Screen-Space Ambient Occlusion to provide realistic rendering
quality.

8.1 Pre-processing Performance

In our system, the pre-processing includes two parts: simplifica-
tion for recording the collapsing information and computation of
the objects’ spatial occupancy. We execute them on a single CPU-
core for both test models. The performance results are shown in
Table 2. The simplification costs more time than the computation
of spatial occupancy. On average, the throughput performance of
our pre-processing method is 5K triangles/sec. Comparing to other
approaches, [Yoon et al. 2004] computed the CHPM structure at
3K triangles/sec; [Cignoni et al. 2004] constructed the multireso-
lution of the static LODs at 30k triangles/sec on a network of 16
CPUs; [Gobbetti and Marton 2005] built their volumetric structure
at 1K triangles/sec on a single CPU. Our method is at least 66.7%
faster in single CPU execution. In terms of memory complexity,
we have generated the addition data which is only 8.7% and 3.0%
of the original data sizes for the Boeing model and the Power Plant
model, respectively.

8.2 Run-time Performance

We created the camera navigation paths to evaluate run-time per-
formance. The movements of the cameras along the paths are

Table 3: Run-time Performance. We show the average breakdown
of frame time for the two benchmarks. The results are averaged
over the total number of frames in the created paths of each model.
The models are rendered in 512×512 resolutions.

Model FPS Occlusion Culling LOD Processing Rendering
Boeing 777 14.5 7.9 ms (11.4%) 34.6 ms (50.1%) 26.5 ms (38.4%)
Power Plant 78.3 4.8 ms (37.5%) 2.9 ms (22.7%) 5.1 ms (39.8%)

Table 4: Effectiveness of Occlusion culling (OC) over the Boe-
ing 777 model.

Total Object Objects culled by OC OC Accuracy Memory
Num. Our Approach Exact (Our Approach) Released
718K 63K (8.8%) 108K (15.0%) 58.3% 348.6MB

demonstrated in our complementary video. The results show that
we can render at the interactive rates of 8-35 fps for the Boeing 777
model (Figure 1(a-b)) and 27-234 fps for the Power Plant model
(Figure 1(c-d)). In Table 3, we show the breakdown of the av-
eraged computation times of all three run-time components. For
the Boeing model rendering, the computation time spent on GPU
Out-of-Core has been added to components. Although the frame-
to-frame coherence has been applied in LOD processing, the high
cost of CPU-GPU communication still make LOD processing to be
the major performance bottleneck because of the large size of the
transferred data. On the other hand, because the size of the AOS
is small, transferring the active occluders is not expensive, and the
HZM construction on GPU is also very efficient. We use OpenGL
Vertex Buffer Objects (VBOs) for rendering, which is not the per-
formance bottleneck, even rendering more than 10 million triangles
and vertices.

Comparison with previous approaches. Our run-time method can
reach an average throughput of 110M triangles/sec. In contrast,
[Cignoni et al. 2004] performed an average of 70M triangles/sec
using their TetraPuzzle method. [Gobbetti and Marton 2005] sus-
tained an average of 45M voxels/sec with their Fast Voxel method.
Thus, we gain the advantages of using GPUs in terms of the perfor-
mance of processing triangles. We also compare the run-time per-
formance of our approach to the approach of [Peng and Cao 2012].
We set the value of N and the camera movements to be the same
in both of the approaches. Figure 7 plots the frame rates over 350
frames. Although we use the CPU multithreading to reduce the cost
of out-of-core in the LOD processing, we pay the extra computa-
tional cost of occlusion culling, which make the frame rates of our
approach not significantly increased.

Effectiveness of occlusion culling. We evaluate the effectiveness
of our occlusion culling method by comparing it to the exact occlu-
sion culling. Table 4 shows that our heuristic method cannot de-
liver the result identical to the result of the exact occlusion culling,
but our culling method still achieved a fairly high quality. “Mem-
ory Released” indicates the memory was occupied by the hidden
objects, and now is released by our occlusion culling method for
rendering the visible objects. Figure 6 demonstrates the results of
occlusion culling for the Boeing model.

Performance of LOD processing. In the test with Boeing model,
an average of 0.02% of the original triangles is transferred, which
is 0.68% of the LOD selected triangles. We also discover that the
time of the LOD processing scales linearly over the numbers of
selected triangles and vertices. The triangle reformation process is
very efficient, it can reform one million triangles at 1.2 milliseconds
in average.

Fr
am

es
Pe

rS
ec

on
d

(F
PS

)

Our Approach

[Peng and Cao 2012]

Rendered Frames

Figure 7: The run-time performance comparison.

9 Conclusions and Future Work

We have presented a GPU-based parallel approach that seamlessly
integrated LOD, occlusion culling and GPU out-of-core for render-
ing Gigabyte-scale complex 3D models at highly interactive frame
rates.

There are several aspects to strengthen our work in the future. Ren-
dering quality is sensitive to the metrics used for LOD selection and
occluder selection. We would like to explore other metrics that can
deliver better performance and rendering qualities. We also would
like to improve the current streaming method. We believe that, with
a few changes, our approach will be able to be applied for rendering
3D-scanned surface models.

References

AILA, T., AND MIETTINEN, V. 2004. dpvs: An occlusion
culling system for massive dynamic environments. IEEE Com-
put. Graph. Appl. 24 (March), 86–97.

ANDÚJAR, C., SAONA-VÁZQUEZ, C., NAVAZO, I., AND
BRUNET, P. 2000. Integrating occlusion culling and levels of
detail through hardly-visible sets. Computer Graphics Forum
19, 3, 499–506.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent hierarchical culling: Hardware oc-
clusion queries made useful. Computer Graphics Forum 23, 3,
615–624.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2004. Adaptive tetrapuzzles:
efficient out-of-core construction and visualization of gigantic
multiresolution polygonal models. In ACM SIGGRAPH 2004
Papers, ACM, New York, NY, USA, SIGGRAPH ’04, 796–803.

DECORO, C., AND TATARCHUK, N. 2007. Real-time mesh sim-
plification using the gpu. In Proceedings of the 2007 symposium
on Interactive 3D graphics and games, ACM, New York, NY,
USA, I3D ’07, 161–166.

DERZAPF, E., MENZEL, N., AND GUTHE, M. 2010. Parallel
view-dependent refinement of compact progressive meshes. In
Eurographics Symposium on Parallel Graphics and Visualiza-
tion, 53–62.

EL-SANA, J., SOKOLOVSKY, N., AND SILVA, C. T. 2001. In-
tegrating occlusion culling with view-dependent rendering. In
Proceedings of the conference on Visualization ’01, IEEE Com-
puter Society, Washington, DC, USA, VIS ’01, 371–378.

(a) (b) (c) (d)

Figure 6: The occlusion culling result on Boeing 777 model. (a) The rendered frame. (b) The reference view. The dark green line indicates
the view frustum. The objects marked purple are the active occluders. The red boxes represent the occluded objects. (c) The view showing
the active occluders and the occluded objects. (d) The view showing the occluded objects only.

FUNKHOUSER, T. A., AND SÉQUIN, C. H. 1993. Adaptive dis-
play algorithm for interactive frame rates during visualization
of complex virtual environments. In Proceedings of the 20th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’93, 247–254.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifi-
cation using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’97, 209–216.

GARLAND, M., AND HECKBERT, P. 1998. Simplifying surfaces
with color and texture using quadric error metrics. In Ninth IEEE
Visualization(VIS ’98), pp.264.

GOBBETTI, E., AND MARTON, F. 2005. Far voxels: a mul-
tiresolution framework for interactive rendering of huge com-
plex 3d models on commodity graphics platforms. In ACM SIG-
GRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH
’05, 878–885.

GOVINDARAJU, N. K., SUD, A., YOON, S.-E., AND MANOCHA,
D. 2003. Interactive visibility culling in complex environments
using occlusion-switches. In Proceedings of the 2003 symposium
on Interactive 3D graphics, ACM, New York, NY, USA, I3D
’03, 103–112.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical
z-buffer visibility. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’93, 231–238.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. ACM Trans. Graph. 21, 3 (July), 355–361.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’97,
189–198.

HU, L., SANDER, P. V., AND HOPPE, H. 2009. Parallel view-
dependent refinement of progressive meshes. In Proceedings
of the 2009 symposium on Interactive 3D graphics and games,
ACM, New York, NY, USA, I3D ’09, 169–176.

HUDSON, T., MANOCHA, D., COHEN, J., LIN, M., HOFF, K.,
AND ZHANG, H. 1997. Accelerated occlusion culling using
shadow frusta. In Proceedings of the thirteenth annual sympo-

sium on Computational geometry, ACM, New York, NY, USA,
SCG ’97, 1–10.

KLOSOWSKI, J. T., AND SILVA, C. T. 2001. Efficient conser-
vative visibility culling using the prioritized-layered projection
algorithm. IEEE Transactions on Visualization and Computer
Graphics 7 (October), 365–379.

MELAX, S. 1998. A simple, fast, and effective polygon reduction
algorithm. In Game Developer, 44–49.

MOREIN, S. 2000. Ati radeon hyperz technology. In In Graphics
Hardware 2000.

PENG, C., AND CAO, Y. 2012. A gpu-based approach for mas-
sive model rendering with frame-to-frame coherence. Computer
Graphics Forum 31, 2.

PENG, C., PARK, S., CAO, Y., AND TIAN, J. 2011. A real-time
system for crowd rendering: Parallel lod and texture-preserving
approach on gpu. In Motion in Games, J. Allbeck and P. Falout-
sos, Eds., vol. 7060 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 27–38.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND
HOPPE, H. 2003. Multi-chart geometry images. In Proceed-
ings of the 2003 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SGP ’03, 146–155.

YOON, S.-E., SALOMON, B., AND MANOCHA, D. 2003. In-
teractive view-dependent rendering with conservative occlusion
culling in complex environments. In Proceedings of the 14th
IEEE Visualization 2003 (VIS’03), IEEE Computer Society,
Washington, DC, USA, VIS ’03, 22–.

YOON, S.-E., SALOMON, B., GAYLE, R., AND MANOCHA, D.
2004. Quick-vdr: Interactive view-dependent rendering of mas-
sive models. In Proceedings of the conference on Visualization
’04, IEEE Computer Society, Washington, DC, USA, VIS ’04,
131–138.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, III,
K. E. 1997. Visibility culling using hierarchical occlusion
maps. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’97,
77–88.

