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Abstract— Real-time visualization is an important tool for
immediately inspecting results for scientific simulations.
Graphics Processing Units (GPUs) as commodity computing
devices offer massive parallelism that can greatly improve
performance for data-parallel applications. However, a sin-
gle GPU provides limited support which is only suitable
for smaller scale simulations. Multi-GPU computing, on the
other hand, allows concurrent computation of simulation
and rendering carried out on separate GPUs. However, use
of multiple GPUs can introduce workload imbalance that
decreases utilization and performance. This work proposes
load balancing for in-situ visualization for multiple GPUs
on a single system. We demonstrate the effectiveness of the
load balancing method with an N-body simulation and a
ray tracing visualization by varying input size, supersam-
pling, and simulation parameters. Our results show that the
load balancing method can accurately predict the optimal
workload balance between simulation and ray tracing to
significantly improve performance.

Keywords: Multi-GPU Computing, Load Balancing, In-situ Vi-
sualization, N-body Simulation, Ray Tracing

1. Introduction

GPU computing offers massively parallel processing that
can greatly accelerate a variety of data parallel applications.
Use of multiple GPUs can lead to even greater performance
gains by overlapping computations by executing multiple
tasks on different GPUs. This provides an opportunity for
handling larger scale problems that a single GPU cannot
process in real-time. The resulting increase in runtime speeds
can allow for real-time navigation and interaction, which
can lead to a much more effective visualization experience.
By designing effective algorithms to run on multiple GPUs,
a considerable improvement in computational power can
be realized. Effective load balancing can greatly increase
utilization and performance in a multi-GPU environment by
distributing workloads equally.

These properties make multiple GPUs suitable for in-situ
visualization applications that use the GPU for concurrent
simulation and rendering for interactive visualization. N-
body simulation is one such application that involves com-
putation of the interaction among a group of bodies. The
N-body problem can be solved by computing the force of
all bodies on each other. This problem is used in many
domains, including biomolecular and physics applications.

As in the work of [1], the gravitational N-body problem can
be expressed as
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where F; is the computed force for body ¢, m; is the mass
of body 1, r;; is the vector from body 4 to j, and G is the
gravitational constant.

In a molecular simulation, an N-body simulation algo-
rithm can be used to compute the interaction of each atom
in the molecule. This application can benefit from use of
multiple GPUs to both compute new frames of simulation
and render these new frames in parallel. Computation of
simulation with rendering in real-time allows for interactive
update in visualization applications. This can result in a
smooth interaction experience with use of increased process-
ing power to accelerate computing.

While multiple GPUs can offer a large performance
gain in visualization applications, many challenges exist
in scheduling multiple tasks. Load imbalance can lead to
underutilization of available resources and reduced perfor-
mance in the visualization. Multi-GPU computing can there-
fore benefit from a method for load balancing to improve
workload distribution. Load balancing needs to account for
performance in order to maximize use of available resources.
Use of the load balancing method in an N-body simulation
accounts for workload differences between simulation and
rendering to maintain more equal workload distribution.
Visualization algorithms such as ray tracing can be com-
putationally expensive, so specific techniques to distribute
and load balance rendering workloads can offer considerable
performance gains for visualization applications. Taking
advantage of concurrent computations of visualizations with
simulation can lead to a significant performance improve-
ment to maintain interactivity in these applications.

While load balancing can improve performance when
using multiple GPUs, several factors need to be accounted
for in visualization. The cost of simulation and rendering can
depend on the chosen algorithms for each. The input data
size may differ for applications, which can have a varying
effect on simulation and rendering time. Accuracy of simula-
tion can be improved by using more accurate techniques or
by decreasing the timestep in simulation. In visualization,
image quality is important to produce a better result for
interactive viewing. Ray tracing is a rendering method that
can produce realistic results on the GPU for visualization.



Supersampling can further improve image quality by using
multiple samples per pixel that can decrease aliasing. Use
of ray tracing with supersampling can greatly improve the
results in interactive visualization but significantly increases
computations that can be accelerated through use of mul-
tiple GPUs. Supersampling and improving the accuracy of
simulation can vary the cost of computations, which will
require adjusting load balancing for multi-GPU processing.
Our method addresses this issue to improve performance
with multi-GPU visualization.

Due to the significant gains possible with use of multiple
GPUs, we implement load balancing for multi-GPU visu-
alization applications. Our work provides several contribu-
tions, including:

o Acceleration of an N-body simulation and ray tracing

application using multiple GPUs

o Performance analysis of workload variation based on

multiple input parameters

« A load balancing method to predict optimal workload

distribution and significantly improve performance

2. Related Work

There have been several related areas of previous research,
including multi-GPU computing and visualization using the
GPU.

Previous work in multi-GPU visualization has included
several applications that use multiple GPUs for rendering.
Fogal et al. present a system for visualizing volume datasets
on a GPU cluster [2]. However, their work could benefit from
additional load balancing between GPU tasks that could
provide more flexible and effective workload distribution
for simulation and rendering. Monfort et al. present an
analysis of split frame and alternate frame with multiple
GPUs for a game engine [3]. They present an analysis of
load balancing for a combined rendering mode to improve
utilization of multiple GPUs. Binotto et al. present work in
load balancing in a CFD simulation application [4]. They
use both an initial static analysis followed by adaptive load
balancing based on various factors including performance
results. While these previous works present load balancing
techniques, they do not focus on load balancing for in-situ
visualization based on rendering and simulation tasks. We
present a performance model and load balancing technique
for simulation and rendering that allows improved load
balancing and accounts for the pipelining process necessary
in a multi-GPU environment.

Other work has focused on streaming for out-of-core
rendering. Gobbetti et al. present Far Voxels, a visualization
framework for out-of-core rendering of large datasets using
level-of-detail and visibility culling [5]. Crassin et al. present
GigaVozxels, an out-of-core rendering framework for volume
rendering of massive datasets using a view-dependent data
representation [6]. While our load balancing method also
uses multiple GPUs and similar pipelining to visualize

datasets, we focus specifically on load balancing for in-situ
visualization using ray tracing.

Several other frameworks have been proposed that use
multiple GPUs for general-purpose computations. Harmony
presents a framework that dynamically schedules kernels [7].
Merge provides a framework heterogeneous scheduling that
exposes a map-reduce interface [8]. DCGN is another frame-
work that allows for dynamic communication with a message
passing API [9]. However, these works focus on providing
a general framework not specific to visualization and could
benefit from additional tools for load balancing. We employ
similar techniques to improve multi-GPU performance, but
we provide improved load balancing in a visualization and
simulation application.

Other previous work has focused on GPU computing in
molecular dynamics applications, relating to the N-body
simulation and visualization used in our work. Past work
has included Amber, a molecular dynamics software package
that offers tools for molecular simulation [10]. This simula-
tion can be used to compute the change in atoms over time
due to an N-body simulation. Other research in molecular
dynamics has included work by Anandakrishnan et al. to use
an N-body simulation to compute the interaction of atoms in
a molecule [11]. Humphrey et al. present Visual Molecular
Dynamics (VMD), a software package for visualization of
molecular datasets [12]. However, VMD provides primarily
off-line rendering that does not simulate and render each
frame interactively to allow for real-time user interaction.
Stone et al. present work that computes molecular dynamics
simulations on multi-core CPUs and GPUs [13]. Further-
more, they visualize molecular orbitals in an interactive
rendering in VMD. We also apply our work to an N-body
simulation, but we focus on load balancing using multiple
GPUs for both simulation and rendering while their work
focuses on data parallel algorithms on single GPUs. Chen
et al. present work in multi-GPU load balancing applied
to molecular dynamics that uses dynamic load balancing
with a task queue [14]. Their framework focuses on fine-
grained load balancing usable within a single GPU, while
our work focuses on coarse-grained task scheduling among
GPUs for both simulation and visualization. While there
has been considerable work in visualization and multi-
GPU computing, we focus on a method for load balancing
between simulation and rendering to improve utilization in
the pipelined memory model useful for in-situ visualization.

3. Methods

Our approach addresses the issue of workload imbalance
for in-situ visualization applications. We will first describe
the problems in this application area, and then we present
our load balancing method for solving these issues.



3.1 Multi-GPU Architecture

In comparison with a single GPU, a multi-GPU imple-
mentation has several advantages. Most notably, multiple
GPUs can overlap concurrent computations on several GPUs
at once. However, unlike a single GPU, memory transfers
are required to ensure that a GPU has the required data.
Figure 1 shows the multi-GPU configuration used with our
application. It identifies how multiple GPUs can be used for
overlapping computation between simulation and rendering,
while host memory is used to transfer results among GPUs.
For in-situ visualization applications, the simulation data
must be transferred to rendering tasks to render the resulting
image. This data is first transferred to the host and then
transferred to the recipient GPU. This creates a pipelined
model of execution where multiple GPUs can process data
concurrently but must transfer data through host memory.

Vis GPU 1

SimGPU1 ...

Sim GPU N4

..|Vis GPU N3

Multiple GPUs
simulate and
transfer data to
host

Multiple GPUs
transfer data

from host and
render

Host Memory

Fig. 1: Diagram of multi-GPU configuration: "Sim" refers
to simulation and "Vis" refers to visualization

3.2 Multi-GPU Workload Imbalance

While use of multiple GPUs can greatly increase the
available processing power and improve performance by
overlapping computation, use of multiple GPUs introduces
issues of workload distribution among processors. This
workload imbalance results from the synchronization neces-
sary through host memory. Each task either sends or receives
data through a buffer. However, use of a single buffer would
require simulation tasks to wait for rendering tasks to read
this data before writing the next frame. This can result
in significant idle times that can decrease utilization and
performance. Multiple buffers can allow one task to read
or write data to multiple buffers before having to wait for
other tasks to process the data as shown in Figure 2. Thus,
having multiple buffers can improve load balance at the cost
of additional memory.

The amount of host memory is finite, however, which
requires the tasks to eventually wait if workload imbalance is
significant. If simulation of a single frame requires less time
than rendering, host memory eventually becomes full, which
requires simulation to wait for rendering. When rendering of
a single frame takes less time than simulation, the buffers
in host memory become increasingly empty, which requires
rendering tasks to wait for simulation. Figure 3 shows
the case where performance can decrease due to improper
workload distribution. Since rendering GPUs need to read
simulation data before simulation can overwrite it, idle
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Results

Fig. 2: Memory transfers between host and GPU memory

time can be introduced if simulation time is shorter than
rendering.
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Fig. 3: Simulation tasks must wait for ray tracing to read
results. "W1" refers to writing data to the first buffer in host
memory from a GPU, while "R2" refers to reading data from
the second buffer in host memory

Accounting for workload imbalance can eliminate this
idle time by distributing work equally among available
processors as shown in Figure 4. Load balance among
tasks allows tasks to send and receive data at an equal
rate and thus improve utilization. However, this requires
formulating a method for load balancing. Varying workloads
for tasks creates issues for the problem of load balancing.
For example, the type of rendering technique or number
of samples in supersampling can change the workload and
introduce additional idle time. Factors of simulation such
as accuracy or type of simulation could also affect runtime,
resulting in a different optimal workload balance as well.
These various issues demonstrate the important need for load
balancing for in-situ visualization. Given an initial set of
characteristics for rendering and simulation for a specific
visualization, finding the optimal load balance can reduce
idle time and improve performance.

3.3 Load Balancing

The use of our multi-GPU implementation allows for
load balancing techniques for in-situ visualization. Our test
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Fig. 4: Use of load balancing reduces idle time

application uses a gravitational N-body simulation based
on the method of [1] to compute interactions of particles,
while ray tracing renders the results. Particle position data
is transferred through the host using multiple buffers in order
to pipeline position data between simulation and rendering.
Since simulation and rendering may have different amounts
of workload, it is important to address the possibility of
workload imbalance between the tasks.

In this application load balancing requires partitioning the
dataset in order to distribute work to GPUs. Two types of
work partitioning are possible with the application: inter-
frame and intra-frame. Inter-frame partitioning involves
distributing complete frames of data in order to achieve
load balancing. Ray tracing in this implementation uses
inter-frame partitioning to render entire frames in order
to avoid communication in combining results and improve
performance. Intra-frame partitioning distributes parts of a
single frame to GPUs for processing. The N-body simulation
utilizes intra-frame partitioning by having each GPU update
only a subset of the particles for a single frame of data. Since
each frame of simulation requires previous data, simulation
cannot be computed out of order. Thus, multiple GPUs can
only accelerate simulation by having each GPU update a
subset of the dataset. Intra-frame partitioning for simulation
is therefore necessary to apply load balancing. While this re-
quires communication to combine the results for each frame,
the computation can be distributed among multiple GPUs.
Thus, this load balancing method uses groups of GPUs
to compute frames of data for simulation while rendering
has single GPUs separately compute rendering results for
consecutive frames. The partitioning of both rendering and
simulation tasks allow for load balancing in the visualization
application. As more processors are dedicated to simulation,
fewer are dedicated to rendering consecutive frames. The
total visualization time for a frame is used to determine
the optimal load balance between rendering and simulation
among the available processors.

To address the issue of workload imbalance, we present
a load balancing method to achieve the optimal distri-
bution of work to improve performance. We present a

three-dimensional parameter matrix M that can be used
to determine the appropriate balance for the visualization
application. The input dimensions of M include the number
of samples for supersampling, the number of iterations for
simulation, and the input size, while the associated output
values are performance times for these configurations. Our
method first collects performance results for this matrix and
then computes the desired workload balance for a new set of
input parameters. Thus, we find the solution to the function:

f(ias’p) =g ()

where f is the function to compute optimal workload
distribution, i is the number of iterations for simulation, s is
the number of samples for supersampling, p is the number
of particles in the simulation, and g is the number of GPUs
allocated for rendering versus simulation. The predicted
optimal load balance is computed based on previous results
through trilinear interpolation. Given known optimal work-
load distributions for sets of input parameters, our model
predicts the optimal load balancing result g for a new set of
input parameters:
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where L is the optimal load balance, i is the number of
simulation iterations, s is the number of samples for ray
tracing, and p is the number of particles. Here, i, s, and p
are normalized to the range [0, 1] for interpolation, and the
result g is rounded to the nearest integer. This result gives
a prediction for the optimal load balance for a given set of
input parameter values.

4. Results

The multi-GPU load balancing method was tested with an
N-body simulation and ray tracing of thousands of spheres.
All tests were done on a single computer with eight GTX
295 graphics cards.

The final result of the visualization and the differences
in supersampling can be seen in Figure 6. Aliasing artifacts
due to inadequate sampling can be seen in the image on the
left with one sample per pixel. Using sixteen samples per
pixel in a random fashion, however, significantly improves
the results.

While supersampling improves the quality of the final
image, it comes at a performance cost as shown in Table 1.
The increase in execution time for a greater number of sam-
ples for supersampling is linear. Thus, the tradeoff between
performance and image quality must be considered when



Fig. 5: Comparison of single sample (left) and 16 sample
randomized supersampling (right)

Table 1: GPU execution time (ms) for ray tracing based on

number of samples for supersampling for 1000 particles

1 sample 4 samples | 8 samples | 12 samples | 16 samples
46.082 ms | 163.82 ms | 316.56 ms | 469.39 ms 621.60 ms

choosing an appropriate number of samples for supersam-
pling.

Table 2 shows the performance time for simulation when
performing multiple iterations with a smaller timestep. The
performance of simulation shows a linear increase in time
with an increase in number of iterations. While a smaller
timestep provides more accurate simulations, it introduces
additional computations for each frame. Thus, using a
smaller timestep but increasing the number of iterations
leads to an increase in performance. Table 3 shows the
percent difference in positions of simulation from 12000
iteration simulation, which uses the smallest timestep. Each
simulation is carried out over the same total time, with a
smaller timestep for simulations run for more iterations.
With a smaller timestep, the accuracy of the simulation is
improved due to the finer granularity used for integration in
the N-body simulation.

Table 4 shows a linear decrease in the execution time
for simulation when partitioning the dataset to simulate on
multiple GPUs. Due to slight constant overhead of launching
the kernel, etc., six GPUs gain a slightly less than six times
speedup over use of one GPU.

Ray tracing has a longer execution time than simulation
for smaller dataset sizes. Simulation takes less time for
smaller datasets, but with an increased number of simulation
iterations this cost can exceed that of ray tracing with
fewer samples. These differences in workload affect the final
optimal load balance.

Table 2: GPU execution time for simulation based on number

of iterations

20 iterations
31.87 ms

80 iterations
122.86 ms

60 iterations
92.70 ms

40 iterations
62.56 ms

Table 3: Percent difference in positions of simulation from
12000 iteration simulation

Iterations | 2000 4000 6000 8000
Percent 58.07 | 35.37 | 26.87 | 21.81

10000 | 12000
14.94 0.00

Table 4: Execution time for simulation based on number of

GPUs used
1 GPU 2 GPUs 3 GPUs 4 GPUs | 5 GPUs | 6 GPUs
31.87ms | 16.69ms | 11.52ms | 932 ms | 7.58 ms | 6.44 ms

4.1 Workload Characteristics

The multiple input parameters for this application result in
many possibilities for workloads. These varying workloads
can introduce a performance penalty if not accounted for
in distribution of work. Figure 7 shows the trends for
performance times for different workloads (number of ray
tracing tasks) with varying dataset sizes with 16 sample ray
tracing and 80 iteration simulation. The cost of simulation
increases more as dataset size increases due to the nature
of the N-body simulation, while ray tracing scales linearly
with dataset size. This causes the overall performance to be
increasingly limited by simulation time for larger datasets.

Total Time with Varying Data Size
(16 Samples, 80 lterations)
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Fig. 6: Performance time for various input sizes with 16
samples, 80 iterations

Figure 8 shows performance for different input sizes with
a varying workload distribution for four sample ray tracing
and 80 iterations for simulation. This graph shows that
allocating more GPUs for simulation when the number of
samples is low can result in performance gain. The difference
in the trend from Figure 7 also demonstrates that different
input parameters can lead to significantly different optimal
workload distributions that requires load balancing.

4.2 Load Balancing

Figure 9 shows a trend of optimal load balance based on
the number of iterations for simulation. As shown, increasing
the number of iterations requires a greater number of GPUs
dedicated to simulation to achieve optimal load balance.
With the fewest iterations for simulation, the majority of
GPUs should be allocated for ray tracing due to the greater
cost of ray tracing.

Increasing the number of samples for supersampling in-
creases the cost of ray tracing and also impacts the load
balancing scheme. Figure 10 shows that increasing the
number of samples for supersampling results in need of
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Fig. 7: Performance time for various input sizes with four
samples, 80 iterations
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Fig. 8: Load balancing for various simulation iterations with
four samples, 3000 particles

additional ray tracing tasks to improve workload balance.
A larger dataset size requires fewer GPUs for ray tracing
due to the smaller increase in cost of ray tracing with larger
datasets.

Figure 11 shows the trend for varying dataset size and
number of samples with a constant simulation. With a larger
dataset size, simulation becomes increasingly expensive
while ray tracing cost increases at a linear rate. Therefore, it
becomes necessary to compute simulation on an increasing
number of GPUs with larger datasets to maintain workload
balance.

These results demonstrate that significant workload im-
balance can be introduced based on differing workloads
of rendering and simulation. Each configuration leads to
a different optimal load balancing configuration. A load
balancing method must be able to account for these varying
trends in order to achieve effective performance.

4.3 Performance Model

We now present a summary of the results of applying
our load balancing method. Table 5 shows the percent error
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Fig. 9: Load balancing for various numbers of samples for
ray tracing with changing dataset size
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Fig. 10: Load balancing for various dataset sizes with 80
simulation iterations

in our proposed prediction model when compared to the
actual optimal load balanced configuration. The performance
model was tested by computing the average percent error for
40 values for varying one dimension (simulation iterations),
20 for varying two dimensions (iterations and samples),
and 12 for varying three dimensions (iterations, samples,
and data size). These results show that the average percent
difference is below 5 percent for two and three dimensions,
and below 10 percent for all categories. Interpolation with
fewer dimensions yields a larger error due to discretization
error with selection of number of GPUs for load balancing.
Using a larger number of data points with more dimensions
in interpolation decreases this discretization error.

The performance of our load balancing method was also
compared against the worst and average case workload
distribution. Figure 12 shows the speedup of using the load

Table 5: Percent error in load balancing model for a varying

number of dimensions
1 dimension
9.88%

3 dimensions
1.67%

2 dimensions
2.67%




balancing method. These results show that by using the
model, a significant speedup can consistently be achieved
with different parameter configurations.

Average Load Balancing Speedup
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Fig. 11: Load balancing speedup over the average and worst
cases

5. Conclusions and Future Work

We have proposed a multi-GPU load balancing solution
for in-situ visualization. We have presented an analysis
of the workload properties and load balancing results in
an N-body simulation and ray tracing visualization. Our
results show that workloads can vary greatly for different
sets of input parameters, which demonstrates the need for
load balancing in multi-GPU computing. Our multi-GPU
implementation demonstrates the use of intra- and inter-
frame task partitioning for scheduling of GPU tasks to allow
the use of load balancing. The results of our tests show that
the load balancing method can accurately predict optimal
workload balance to significantly improve performance by
increasing utilization of available resources.

This work could be extended in multiple ways in future
work. Our load balancing approaches could be extended to
additional visualization applications, where other rendering
and simulation methods with varying workloads could also
be addressed. Different performance models may be useful
for other applications as well. The pipelining model used
in this application would also be useful for out-of-core
rendering of massive models.
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