CS 4204 Computer Graphics

2D Transformations

Yong Cao
Virginia Tech

References:
“Introduction to Computer Graphics” course notes by Doug Bowman
Interactive Computer Graphics, Fourth Edition, Ed Angle

Transformations

What are they?

» changing something to something else via rules

* mathematics: mapping between values in a range set
and domain set (function/relation)

» geometric: translate, rotate, scale, shear,...

Why are they important to graphics?
» moving objects on screen / in space

* mapping from model space to world space to camera
space to screen space

 specifying parent/child relationships

Translation

Moving an object is called a translation. We translate a point by
adding to the x and y coordinates, respectively, the amount the
point should be shifted in the x and y directions. We translate

an object by translating each vertex in the object.

Xnew — Xold * tx; Ynew = Youd * ty

Scaling

Changing the size of an object is called a scale. We scale an object by
scaling the x and y coordinates of each vertex in the object.

S. = Mg

new

Ynew = Syyold

Rotation about the origin

Consider rotation about the origin by q
degrees

 radius stays the same, angle increases by g

X’=rcos (¢ +0)
y’=rsin (¢ + 0)

X’=X cos O —y sin O
y’=xsm0+ycos0

X =T COS ¢
y =r18In ¢

Rotation about the origin (cont.)

From the double angle formulas:

sin (A + B) = sinAcosB + cosAsinB
cos (A+B) = cosAcosB - sinAsinB

Transformations as matrices

Scale:

Xnew = SxXoId
V4 new — yy old
Rotation:

X

new = Xo/dCOSO - V148N O

cos® —sin0 xcosH—ySinH}

; sinf cos0 xsinf + ycos6
Ynew = XoigSIN 0 + Y 514COS 6

Translation:

Homogeneous Coordinates

In order to represent a translation as a matrix multiplication
operation we use 3 x 3 matrices and pad our points to become 3
x 1 matrices. This coordinate system (using three values to
represent a 2D point) is called homogeneous coordinates.

cosf -—-sinf@ O

sinf@ cosf@ O

Composite Transformations

Suppose we wished to perform multiple transformations on a point:

M= R30S2,2T3,1
P = MP

e Matrix multiplication is associative, not commutative!

e Transform matrices must be

e The first transformation you want to perform will be at the far
right, just before the point

Remember:

Composite Transformations -
Scaling

Given our three basic transformations we can create other
transformations.

Scaling with a fixed point

A problem with the scale transformation is that it also moves the
object being scaled.

Scale a line between (2, 1) (4,1) to twice its length.

Composite Transforms -
Scaling (cont.)

If we scale a line between (0,0) & (2,0) to twice its length, the
left-hand endpoint does not move.

Before

(0,0) is known as a fixed point for the basic scaling transformation.
We can use composite transformations to create a scale
transformation with different fixed points.

Fixed Point Scaling

Scale by 2 with fixed point = (2,1)
Translate the point (2,1) to the origin
Scale by 2

Translate origin to point (2,1) Before

01234567 8910

After

012345678910

Example of 2D transformation

Rotate around an arbitraty point O:

Rotate around an arbitraty point

Rotate around an arbitraty point

We know how to rotate around the origin

cosd —sinf O P,
sin cosf® O Py

1

Rotate around an arbitraty point

...but that is not what we want to do!

y

So what do we do?

Transform it to a known case

Translate(-Ox,-Oy)

Second step: Rotation

Translate(-Ox,-Oy)
Rotate(-90)
F)

Final: Put everything back

Translate(-Ox,-Oy)
Rotate(90)

P
Translate(Ox,Oy)

Rotation about arbitrary point

IMPORTANT!: Order
M = T(Ox,0y)R(-90) T(-Ox,-Oy)
© P

¢

Rotation about arbitrary point

Rotation of 6 Degrees About Point (x,y)
Consist of 3 translations:

1. Translate (x,y) to origin

2. Rotate

3. Translate origin to (-x,-y)

1 0 x][cos@ -sin@ O][1 O
C=10 1 y||sinf@ cosf@ 0|0 1
0 0 1

0 1{[O O
T R T

X,y v} -X,-y

Shears

R B oo

Original Data y Shear x Shear

1 0 O 1 0
a 1 0 0 0
0 0 1 0 1

Reflections

Reflection about the y-axis Reflection about the x-axis

More Reflections

Reflection about the origin Reflection about the line y=x

|—100

Transformations as a change in
coordinate system

All transformations we have looked at
Involve transforming points (vertices) in a
fixed coordinate system (CS).

Can also think of them as a transformation
of the CS itself

Transforming the CS - examples

- Translate(4,4)

: - Rotate(180°)

Why transform the CS?

Objects often defined in a “natural” or
“convenient” CS

| (2,2)

To draw objects trans;‘ormed by T, we could:

* Transform each vertex by T, then draw

* Or, draw vertices In a transformed CS

Drawing in transformed CS

Tell system once how to draw the object,
then draw in a transformed CS to transform

the object

House drawn in a CS
that's been translated,
rotated, and scaled

M=5RqTyxy

Mapping between systems

Given:
» The vertices of an object in CS,

» A transformation matrix M that transforms CS, to CS,

What are the coordinates of the object’s
vertices in CS,?

Mapping example

- Translate(4,4)

R

Point P is at (0,0) in the transformed CS
(CS,). Where is it in CS;?

Answer: (4,4)
*Note: (4,4) = Ty, P

Mapping rule

In general, if CS, is transformed by a matrix
M to form CS,, a point P in CS, is
represented by MP in CS,

Another example

A Translate(4,4), then
3, Scale(0.5, 0.5)

Where is P in CS;? (2,2)
Where is P in CS,? Sosos (2,2) = (1,1)
Where is P in CS,? T,4(1,1) = (5,5)

*Note: to go directly from CS; to CS; we can
calculate T, 4 Sy 545 (2,2) = (5,5)

General mapping rule

If CS, Is transformed consecutively by M.,
M, ..., M, to form CS,,,, then a point P in
CS, ., Iis represented by

M, M, ... M, Pin CS,.

To form the composite transformation
between CSs, you each
successive transformation matrix.

Exercises

What is the position of
point P with respect to
three coordinate
system O, 4, and B?

In frame O, (3, 1)
In frame A4, (1, 0.5)

In frame B, (0.5, -0.5)

Exercises

What is the
transformation matrix

that transform system
Oto A7

Translate(2, 0),

Scale (2, 2),

Sheer,(-1).
Tr(2,0)5(2,2)Sh,(2) =
' 12 o olf
0 2 0

110 0 1]

OpenGL Transformations

Learn how to carry out transformations in
OpenGL

+ Rotation
* Translation

» Scaling

Introduce OpenGL matrix modes
* Model-view

* Projection

OpenGL Matrices

In OpenGL matrices are part of the state

Multiple types

* Model-View (GL_MODELVIEW)

° Projection (GL._PROJECTION)

» Texture (GL_TEXTURE) (ignore for now)
° Color(GL_COLOR) (ignore for now)

Single set of functions for manipulation
Select which to manipulated by

* glMatrixMode (GL MODELVIEW) ;
° glMatrixMode (GL PROJECTION) ;

Current Transformation Matrix
(CTM)

Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is applied
to all vertices that pass down the pipeline

The CTM is defined in the user program and loaded
into a transformation unit

C
p P’
vertices - > vertices

CTM operations

The CTM can be altered either by loading a new
CTM or by

Load an identity matrix: C <= I
Load an arbitrary matrix: C < M

Load a translation matrix: C < T
Load a rotation matrix: C < R
Load a scaling matrix: C <= S

Postmultiply by an arbitrary matrix: C < CM
Postmultiply by a translation matrix: C <= CT
Postmultiply by a rotation matrix: C < C R
Postmultiply by a scaling matrix: C <= C S

Rotation about a Fixed Point

Start with identity matrix: C <[
Move fixed point to origin: C <— CT
Rotate: C < CR

Move fixed point back: C <— CT !

Result: C = TR T -1 which is backwards.

This result is a consequence of doing

Let’s try again.

Reversing the Order

WewantC=T'RT
so we must do the operations in the following order

C<1

€ =1
C < CR
C < CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first executed
In the program

CTM in OpenGL

OpenGL has a model-view and a projection
matrix in the pipeline which are
concatenated together to form the CTM

Can manipulate each by first setting the
correct matrix mode

Vertices . o Vertices
Model-view ——m» Projection

I—'—l

Rotation, Translation, Scaling

Load an identity matrix:

glLoadIdentity ()

Multiply on right:
glRotatef (theta, vx, vy, VvVZz)

in degrees, define axis of rotation

glTranslatef (dx, dy, dz)

glScaler (sx, sy, sSz)

Each has a float (f) and double (d) format (glScaled)

Example

Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

glMatrixMode (GL MODELVIEW) ;
glLoadIdentity () ;

glTranslatef (1.0, 2.0, 3.0);
glRotatef (30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

Remember that last matrix specified in the program
is the first applied

Arbitrary Matrices

Can load and multiply by matrices
defined in the application program

glLoadMatrixf (m)
glMultMatrixf (m)

The matrix m Is a one dimension array of
16 elements which are the components
of the desired 4 x 4 matrix stored by
columns

In g1MultMatrixf, m multiplies the
existing matrix on the right

Transformations in OpenGL

OpenGL makes it easy to do transformations
to the CS, not the object

Sequence of operations:

» Set up a routine to draw the object in its “base” CS

» Call transformation routines to transform the CS

* Object drawn In transformed CS

OpenGL transformation example

drawHouse () { drawTransformedHouse () {
glBegin (GL _LINE LOOP) ; glMatrixMode (GL MODELVIEW) ;
glVertex2i(0,0); glTranslatef (4.0, 4.0, 0.0);
glVertex2i (0,2); glScalef (0.5, 0.5, 1.0);,

drawHouse () ;

Draws basic house Draws transformed house

A

Matrix Stacks

In many situations we want to save
transformation matrices for use later

» Traversing hierarchical data structures

» Avoiding state changes when executing display lists

OpenGL maintains stacks for each type of matrix

* Access present type (as set by glMatrixMode) by

glPushMatrix ()
glPopMatrix ()

OpenGL matrix stack
example

glLoadMatrixf (mO0);
glPushMatrix();
glMultMatrixf(ml);
glPushMatrix();
glMultMatrixf(m4);
render chair2;
glPopMatrix(); ‘\\\\
glPushMatrix();
glMultMatrixf (m3);
render chairl;
glPopMatrix();
render table;
glPopMatrix();
glPushMatrix();
glMultMatrixf(m2);
render rug;
glPopMatrix()
render room;

