
CS 4204 Computer Graphics

3D Viewing and Projection3D Viewing and Projection
Yong CaoYong Cao

Virginia TechVirginia Tech

Objective

•We will develop methods to camera
through scenes.

 •We will develop mathematical tools to
handle perspective projection.

••We will develop methods to camera We will develop methods to camera
through scenes.through scenes.

••We will develop mathematical tools to We will develop mathematical tools to
handle perspective projection.handle perspective projection.

The Camera and Perspective
Projection

•The camera has an eye (or view reference point

VRP) at some
point in space.

 •Its view volume is a portion of a pyramid, whose apex is at
the eye. The straight line from a point P

to the eye is called

the projector of P. (All projectors of a point meet at the eye.)
•The axis of the view volume is called the view plane normal,
or VPN.
•The opening of the pyramid is set by the viewangle θ

(see

part b of the figure).

••The camera has an The camera has an eyeeye ((or view reference poinor view reference pointt

VRPVRP) at some) at some
point in space.point in space.
••Its Its view volumeview volume is a portion of a pyramid, whose apex is at is a portion of a pyramid, whose apex is at
the eye. The straight line from a point the eye. The straight line from a point PP

to the eye is called to the eye is called

the the projectorprojector of of PP. (All projectors of a point meet at the eye.) . (All projectors of a point meet at the eye.)
••The axis of the view volume is called the The axis of the view volume is called the view plane normalview plane normal, ,
or or VPNVPN. .
••The opening of the pyramid is set by the The opening of the pyramid is set by the viewangleviewangle θθ

(see (see

part b of the figure). part b of the figure).

The Camera and Perspective
Projection (Refer to the picture on next slide)

Three planes are defined perpendicular to the VPN: the near
plane, the view plane, and the far plane.

Where the planes intersect the VPN they form rectangular
windows. The windows have an aspect ratio which can be set
in a program.

OpenGL clips points of the scene lying outside the view
volume. Points P inside the view volume are projected onto
the view plane to a corresponding point P’ (part c).

Finally, the image formed on the view plane is mapped into
the viewport (part c), and becomes visible on the display
device.

Three planes are defined perpendicular to the VPN: the Three planes are defined perpendicular to the VPN: the near near
planeplane, the , the view planeview plane, and the, and the far planefar plane..

Where the planes intersect the VPN they form rectangular Where the planes intersect the VPN they form rectangular
windows. The windows have an windows. The windows have an aspect ratioaspect ratio which can be set which can be set
in a program.in a program.

OpenGL clips points of the scene lying outside the view OpenGL clips points of the scene lying outside the view
volume. Points volume. Points PP inside the view volume are projected onto inside the view volume are projected onto
the the viewview planeplane to a corresponding point to a corresponding point PP’’ (part c). (part c).

Finally, the image formed on the view plane is mapped into Finally, the image formed on the view plane is mapped into
the viewport (part c), and becomes visible on the display the viewport (part c), and becomes visible on the display
device. device.

The Camera and Perspective
Projection

Setting the View Volume

•The default camera position has the eye at
the origin and the VPN aligned with the z-

 axis.
•The programmer defines a look

point as a

point of particular interest in the scene, and
together the two points eye and look define
the VPN as eye –

look.

•

This is later normalized to become the vector n, which
is central in specifying the camera properly. (VPN
points from look to eye.)

••The default camera position has the eye at The default camera position has the eye at
the origin and the the origin and the VPNVPN aligned with the aligned with the zz--

 axis. axis.
••The programmer defines a The programmer defines a looklook

point as a point as a

point of particular interest in the scene, and point of particular interest in the scene, and
together the two points eye and look define together the two points eye and look define
the VPN the VPN as as eye eye ––

looklook. .

••

This is later normalized to become the vector This is later normalized to become the vector n, n, which which
is central in specifying the camera properly. (VPN is central in specifying the camera properly. (VPN
points from points from looklook to to eyeeye.) .)

Setting the View Volume (2)

Setting the View Volume (3)
•To view a scene, we move the camera and aim it in
a particular direction.
•To do this, perform a rotation and a translation,
which become part of the modelview matrix.
•Set up the camera’s position and orientation in
exactly

the same way we did for the parallel-

 projection camera.

glMatrixMode(GL_MODELVIEW);
// make the modelview

matrix current

glLoadIdentity(); // start with a unit matrix
gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y, up.z);

••To view a scene, we move the camera and aim it in To view a scene, we move the camera and aim it in
a particular direction. a particular direction.
••To do this, perform a rotation and a translation, To do this, perform a rotation and a translation,
which become part of the which become part of the modelviewmodelview matrixmatrix. .
••Set up the cameraSet up the camera’’s position and orientation in s position and orientation in
exactlyexactly

the same way we did for the parallelthe same way we did for the parallel--

 projection camera. projection camera.

glMatrixMode(GL_MODELVIEW);
// make the modelview

matrix current

glLoadIdentity(); // start with a unit matrix
gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y, up.z);

Setting the View Volume (4)

•As before, this moves the camera so its eye
resides at point eye, and it “looks”

towards

the point of interest, look.
•The “upward”

direction is generally

suggested by the vector up, which is most
often set simply to (0, 1, 0).

••As before, this moves the camera so its eye As before, this moves the camera so its eye
resides at point resides at point eyeeye, and it , and it ““lookslooks””

towards towards

the point of interest, the point of interest, looklook. .

••The The ““upwardupward””

direction is generally direction is generally
suggested by the vector suggested by the vector upup, which is most , which is most
often set simply to (0, 1, 0). often set simply to (0, 1, 0).

Camera with Arbitrary Orientation
and Position

•A camera can have any position and
orientation in the scene.
•Imagine a transformation that picks up the
camera and moves it somewhere in space,
then rotates it around to aim it as desired.
•To do this we need a coordinate system
attached to the camera: u, v, and n.

••A camera can have any position and A camera can have any position and
orientation in the scene. orientation in the scene.

••Imagine a transformation that picks up the Imagine a transformation that picks up the
camera and moves it somewhere in space, camera and moves it somewhere in space,
then rotates it around to aim it as desired. then rotates it around to aim it as desired.

••To do this we need a coordinate system To do this we need a coordinate system
attached to the camera: attached to the camera: uu, , vv, and , and nn..

Camera with Arbitrary Orientation
and Position (2)

v points vertically upward, n away from the view
volume, and u at right angles to both n and v. The
camera looks toward -n. All are normalized.

vv points vertically upward, points vertically upward, nn away from the view away from the view
volume, and volume, and uu at right angles to both at right angles to both nn and and vv. The . The
camera looks toward camera looks toward --nn. All are normalized.. All are normalized.

gluLookAt

and the Camera
Coordinate System
gluLookAt

takes the points eye and look, and the

vector up
n must be parallel to eye -

look, so it sets n = eye -

 look
 u points "off to the side", so it makes u

perpendicular to both n and up:

u = up x n
v must be perpendicular to n and u, so it lets v = n x
u
Note that v and up are not necessarily in the same
direction, since v must be perpendicular to n, and
up need not be.

gluLookAtgluLookAt

takes the points eye and look, and the takes the points eye and look, and the
vector vector upup
nn must be parallel to eye must be parallel to eye --

look, so it sets look, so it sets nn = eye = eye --

 looklook
uu points "off to the side", so it makes points "off to the side", so it makes uu
perpendicular to both perpendicular to both nn and and upup::

uu = = upup x x nn

vv must be perpendicular to must be perpendicular to nn and and uu, so it lets , so it lets vv = = n n x x
uu
Note that Note that vv and and upup are not necessarily in the same are not necessarily in the same
direction, since direction, since vv must be perpendicular to must be perpendicular to nn, and , and
upup need not be.need not be.

gluLookAt

and the Camera
Coordinate System (2)

Effect of gluLookAt

(Demo)Effect of Effect of gluLookAtgluLookAt

(Demo)(Demo)

gluLookAt

and the Camera
Coordinate System (3)

The view matrix V created by gluLookAt

is

where dx

= -eye·u, dy

= -eye·v, dz

=

-eye·n
V is postmultiplied

by M to form the modelview

 matrix VM.

The view matrix V created by The view matrix V created by gluLookAtgluLookAt

isis

where where ddxx

= = --eyeeye··uu, , ddyy

= = --eyeeye··vv, , ddzz

==

--eyeeye··nn
V is V is postmultipliedpostmultiplied

by M to form the by M to form the modelviewmodelview

 matrix VM.matrix VM.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0000
zzyx

yzyx

xzyx

dnnn
dvvv
duuu

V

Perspective Projections of 3-D
Objects

The graphics pipeline: vertices start in world
coordinates; after MV, in eye coordinates, after P,
in clip coordinates; after perspective division, in
normalized device coordinates; after V, in screen
coordinates.

The graphics pipeline: vertices start in world The graphics pipeline: vertices start in world
coordinates; after MV, in eye coordinates, after P, coordinates; after MV, in eye coordinates, after P,
in clip coordinates; after perspective division, in in clip coordinates; after perspective division, in
normalized device coordinates; after V, in screen normalized device coordinates; after V, in screen
coordinates.coordinates.

Perspective Projections of 3-D
Objects (2)

•Each vertex v

is multiplied by the modelview
 matrix (VM), containing all of the modeling

transformations for the object; the viewing part (V)
accounts for the transformation set by the
camera’s position and orientation. When a vertex
emerges from this matrix it is in eye coordinates,
that is, in the coordinate system of the eye.

 •The figure shows this system: the eye is at the
origin, and the near plane is perpendicular to the

z-

 axis, located at z

= -N.

••Each vertex Each vertex vv

is multiplied by the is multiplied by the modelviewmodelview
 matrix (matrix (VMVM), containing all of the modeling), containing all of the modeling

transformations for the object; the viewing part (transformations for the object; the viewing part (VV))
accounts for the transformation set by the accounts for the transformation set by the
cameracamera’’s position and orientation. When a vertex s position and orientation. When a vertex
emerges from this matrix it is in emerges from this matrix it is in eye coordinateseye coordinates, ,
that is, in the coordinate system of the eye.that is, in the coordinate system of the eye.
••The figure shows this system: the eye is at the The figure shows this system: the eye is at the
origin, and the near plane is perpendicular to theorigin, and the near plane is perpendicular to the

zz--

 axis, located at axis, located at zz

= = --NN. .

Perspective Projections of 3-D
Objects (3)
A vertex located at P

in eye coordinates is passed

through the next stages of the pipeline where it is
projected to a certain point (x*, y*) on the near plane,
clipping is carried out, and finally the surviving vertices
are mapped to the viewport on the display.

A vertex located at A vertex located at PP

in eye coordinates is passed in eye coordinates is passed
through the next stages of the pipeline where it is through the next stages of the pipeline where it is
projected to a certain point (projected to a certain point (xx*, *, yy*) on the near plane, *) on the near plane,
clipping is carried out, and finally the surviving vertices clipping is carried out, and finally the surviving vertices
are mapped to the viewport on the display.are mapped to the viewport on the display.

Perspective Projections of 3-D
Objects (4)

We erect a local coordinate system on the near
plane, with its origin on the camera’s z-axis. Then it
makes sense to talk about the point x* units right of
the origin, and y* units above the origin.

We erect a local coordinate system on the near We erect a local coordinate system on the near
plane, with its origin on the cameraplane, with its origin on the camera’’s s zz--axis. Then it axis. Then it
makes sense to talk about the point x* units right of makes sense to talk about the point x* units right of
the origin, and y* units above the origin.the origin, and y* units above the origin.

Perspective Projections of 3-D
Objects (5)

(Px

, Py

, Pz

) projects to (x*, y*).

x*/Px

= N/(-Pz

) and y*/Py

= N/(-Pz

) by similar triangles.

Thus P* = (x*, y*) = (N Px

/(-Pz

), N Py

/(-Pz

)).

((PPxx

, , PPyy

, , PPzz

) projects to (x*, y*).) projects to (x*, y*).

x*/x*/PPxx

= N/(= N/(--PPzz

) and y*/) and y*/PPyy

= N/(= N/(--PPzz

) by similar triangles.) by similar triangles.

Thus P* = (x*, y*) = (N Thus P* = (x*, y*) = (N PPxx

/(/(--PPzz

), N), N PPyy

/(/(--PPzz

)).)).

Perspective Projection Properties

•|Pz

| is larger for points further away from the eye,
and, because we divide by it, causes objects
further away to appear smaller (perspective
foreshortening).

 •We do not want Pz

≥

0; generally these points (at
or behind eye) are clipped.

 •Projection to a plane other than N simply scales
P*; since the viewport matrix will scale anyway, we
might as well project to N.

••||PPzz

| is larger for points further away from the eye, | is larger for points further away from the eye,
and, because we divide by it, causes objects and, because we divide by it, causes objects
further away to appear smaller (perspective further away to appear smaller (perspective
foreshortening).foreshortening).

••We do not want We do not want PPzz

≥≥

0; generally these points (at 0; generally these points (at
or behind eye) are clipped.or behind eye) are clipped.

••Projection to a plane other than N simply scales Projection to a plane other than N simply scales
P*; since the viewport matrix will scale anyway, we P*; since the viewport matrix will scale anyway, we
might as well project to N.might as well project to N.

Perspective Projection Properties (2)
•Straight lines project to straight lines. Consider the line between
A

and B. A

projects to A’ and B

projects to B’.
•In between: consider the plane formed by A, B,

and the origin.
Since any two planes intersect in a straight line, this plane
intersects the near plane in a straight line. Thus line segment AB

 projects to line

segment

A’B’.

••Straight lines project to straight lines. Consider the line betwStraight lines project to straight lines. Consider the line between een
AA

and and BB. . AA

projects to projects to AA’’

and and BB

projects to projects to BB’’. .
••In between: consider the plane formed by In between: consider the plane formed by AA, , B,B,

and the origin. and the origin.
Since any two planes intersect in a straight line, this plane Since any two planes intersect in a straight line, this plane
intersects the near plane in a straight line. Thus line segment intersects the near plane in a straight line. Thus line segment ABAB

 projects to projects to lineline

segmentsegment

AA’’BB’’..

Example Projections of the Barn
•View #1: The near plane coincides with the front of the barn.
•In camera coordinates all points on the front wall of the barn
have Pz

= -1 and those on the back wall have Pz

= -2. So any
point (Px

, Py

, Pz

) on the front wall projects to P’ = (Px

, Py

) and
any point on the back wall projects to P’ = (Px

/2, Py

/ 2).
 •The foreshortening factor is two for points on the back wall.

Note that edges on the rear wall project at half their true length.
Also note that edges of the barn that are actually parallel in 3D
need

not

project as parallel.

••View #1View #1: The near plane coincides with the front of the barn. : The near plane coincides with the front of the barn.
••In camera coordinates all points on the front wall of the barn In camera coordinates all points on the front wall of the barn
have have PPzz

= = --1 and those on the back wall have 1 and those on the back wall have PPzz

= = --2. So any 2. So any
point (point (PPxx

, , PPyy

, , PPzz

) on the front wall projects to) on the front wall projects to PP’’

= (= (PPxx

, , PPyy

) and) and
any point on the back wall projects to any point on the back wall projects to PP’’

= (= (PPxx

/2, /2, PPyy

/ 2)./ 2).
••The foreshortening factor is two for points on the back wall. The foreshortening factor is two for points on the back wall.
Note that edges on the rear wall project at half their true lengNote that edges on the rear wall project at half their true length. th.
Also note that edges of the barn that are actually parallel in 3Also note that edges of the barn that are actually parallel in 3D D
needneed

notnot

project as parallel. project as parallel.

Example (2)

In part b, the camera has been moved right, but
everything else is the same.

In part b, the camera has been moved right, but In part b, the camera has been moved right, but
everything else is the same.everything else is the same.

Example (3)

In part c, we look down from above and right
on the barn.
In part c, we look down from above and right In part c, we look down from above and right
on the barn. on the barn.

Perspective Projection of Lines
•Straight lines are transformed to straight lines.
•Lines that are parallel in 3D project to lines, but
not necessarily parallel lines. If not parallel, they
meet at some vanishing point.

 •If Pz

≥

0, lines that pass through the camera
undergo a catastrophic "passage through infinity";
such lines must be clipped.

 •Perspective projections usually produce
geometrically realistic pictures. But realism is
strained for very long lines parallel to the
viewplane.

••Straight lines are transformed to straight lines. Straight lines are transformed to straight lines.
••Lines that are parallel in 3D project to lines, but Lines that are parallel in 3D project to lines, but
not necessarily parallel lines. If not parallel, they not necessarily parallel lines. If not parallel, they
meet at some vanishing point.meet at some vanishing point.
••If If PPzz

≥≥

0, lines that pass through the camera 0, lines that pass through the camera
undergo a catastrophic undergo a catastrophic ""passage through infinitypassage through infinity""; ;
such lines must be clipped.such lines must be clipped.
••Perspective projections usually produce Perspective projections usually produce
geometrically realistic pictures. But realism is geometrically realistic pictures. But realism is
strained for very long lines parallel to the strained for very long lines parallel to the
viewplaneviewplane..

Projection of Straight Lines (2)
•Effect of projection → on parallel lines: P = A + ct → p(t) =
-N ([Ax

+ cx

t]/[Az

+ cz

t], [Ay

+ cy

t]/[Az

+ cz

t]) = -

N/[Az

+
cz

t] (Ax

+ cx

t, Ay

+ cy

t).
 •

N is the distance from the eye to the near plane.

•Point A → p(0) = -

N/Az

(Ax

, Ay

).
•If the line is parallel to plane N, cz

= 0, and p(t) = -

N/Az

(Ax

+ cx

t, Ay

+ cy

t).
 •This is a line with slope cy

/cx

and all lines with direction
c→ a line with this slope.

 •Thus if two lines in 3D are parallel to each other and

to the
viewplane, they project to two parallel lines.

••Effect of projection Effect of projection →→

on parallel lines: P = A + on parallel lines: P = A + cct t →→

p(tp(t) =) =
--N ([AN ([Axx

+ + ccxx

t]/[At]/[Azz

+ + cczz

tt], [A], [Ayy

+ + ccyy

t]/[At]/[Azz

+ + cczz

tt]) =]) = --

N/[N/[AAzz

+ +
cczz

tt] (A] (Axx

+ + ccxx

tt, A, Ayy

+ + ccyy

tt).).
••

N is the distance from the eye to the near plane.N is the distance from the eye to the near plane.

••Point A Point A →→

p(0) = p(0) = --

N/N/AAzz

(A(Axx

, A, Ayy

).).
••If the line is parallel to plane N, If the line is parallel to plane N, cczz

= 0, and = 0, and p(tp(t) =) = --

N/N/AAzz

(A(Axx

+ + ccxx

tt, A, Ayy

+ + ccyy

tt).).
••This is a line with slope cThis is a line with slope cyy

//ccxx

and all lines with direction and all lines with direction
cc→→

a line with this slope.a line with this slope.

••Thus if two lines in 3D are parallel to each other Thus if two lines in 3D are parallel to each other andand

to the to the
viewplaneviewplane, they project to two parallel lines., they project to two parallel lines.

Projection of Straight Lines (3)
If the line is not parallel to plane N (near plane), look at
limit as t becomes

∞

for p(t), which is -N/cz

(cx

, cy

), a
constant.

 •

All lines with direction c

reach this point as t becomes ∞; it is
called the vanishing point.

 Thus all parallel lines share
the same vanishing point.

In particular, these lines
project to lines that are
not

parallel.

If the line is not parallel to plane N (near plane), look at If the line is not parallel to plane N (near plane), look at
limit as t limit as t becomesbecomes

∞∞

for for p(tp(t), which is), which is --N/N/cczz

((ccxx

, c, cyy

), a), a
constant.constant.
••

All lines with direction All lines with direction cc

reach this point as t reach this point as t becomes becomes ∞∞; it is ; it is

called the vanishing point.called the vanishing point.

Thus all parallel lines share Thus all parallel lines share
the same vanishing point. the same vanishing point.

In particular, these lines In particular, these lines
project to lines that are project to lines that are
notnot

parallel.parallel.

Projection of Straight Lines (≤)

•Geometry of
vanishing point: A

 projects to A’, B
 projects to B’, etc.

Very remote points
on the line project to
VP

as shown.

 •Line from eye to VP
becomes parallel to
line AB.

••Geometry of Geometry of
vanishing point: vanishing point: AA

 projects to projects to AA’’, , BB
 projects to projects to BB’’, etc. , etc.

Very remote points Very remote points
on the line project to on the line project to
VPVP

as shown.as shown.

••Line from eye to VP Line from eye to VP
becomes parallel to becomes parallel to
line AB. line AB.

Example: horizontal grid in
perspective

Projection of Straight Lines (5)
Lines that pass behind
the eye have a different
geometry for the
vanishing point; as C
approaches the eye
plane, its projection
moves infinitely far to
the right.

 When it reaches the eye
plane, it jumps infinitely
far to the left and starts
moving right.

Lines that pass behind Lines that pass behind
the eye have a different the eye have a different
geometry for the geometry for the
vanishing point; as C vanishing point; as C
approaches the eye approaches the eye
plane, its projection plane, its projection
moves infinitely far to moves infinitely far to
the right.the right.
When it reaches the eye When it reaches the eye
plane, it jumps infinitely plane, it jumps infinitely
far to the left and starts far to the left and starts
moving right.moving right.

Incorporating Perspective in the
Graphics Pipeline

•We need to add depth information
(destroyed by projection).

 •Depth information tells which surfaces are
in front of other surfaces, for hidden surface
removal.

••We need to add depth information We need to add depth information
(destroyed by projection).(destroyed by projection).

••Depth information tells which surfaces are Depth information tells which surfaces are
in front of other surfaces, for hidden surface in front of other surfaces, for hidden surface
removal. removal.

Incorporating Perspective in the
Graphics Pipeline (2)
Instead of Euclidean distance, we use a
pseudodepth, -1 ≤

Pz

' ≤

1 for -N >z >-F. This
quantity is faster to compute than the Euclidean
distance.

 We use a projection point (x*, y*, z*) = [N/(-Pz

)][NPx

,
NPy

, N (a + bPz

)],

and choose a and b so that Pz

' = -1
when Pz

= -N and 1 when Pz

= -F.
Result: a = -(F + N)/(F -

N), b = -2FN/(F -

N).

Pz

' increases (becomes more positive) as Pz
decreases (becomes more negative, moves further
away).

Instead of Euclidean distance, we use a Instead of Euclidean distance, we use a
pseudodepthpseudodepth, , --1 1 ≤≤

PPzz

' ' ≤≤

1 for 1 for --N N >>z z >>--F. This F. This
quantity is faster to compute than the Euclidean quantity is faster to compute than the Euclidean
distance.distance.
We use a projection point We use a projection point (x*, y*, z*) = [N/((x*, y*, z*) = [N/(--PPzz

)][NP)][NPxx

, ,
NPNPyy

, N (a + , N (a + bPbPzz

)],)],

and choose a and b so that and choose a and b so that PPzz

' = ' = --1 1
when when PPzz

= = --N and 1 when N and 1 when PPzz

= = --F. F.
Result: Result: a = a = --(F + N)/(F (F + N)/(F --

N), b = N), b = --2FN/(F 2FN/(F --

N).N).

PPzz

' increases (becomes more positive) as ' increases (becomes more positive) as PPzz
decreases (becomes more negative, moves further decreases (becomes more negative, moves further
away). away).

Illustration of Pseudo-depth Values

Incorporating Perspective in the
Graphics Pipeline (3)

Pseudodepth

values bunch together as -Pz
 gets closer to F, causing difficulties for

hidden surface removal.
 When N

is much smaller than F,

as it

normally will be, pseudodepth

can be
approximated by

PseudodepthPseudodepth

values bunch together as values bunch together as --PPzz
 gets closer to gets closer to FF, causing difficulties for , causing difficulties for

hidden surface removal.hidden surface removal.

When When NN

is much smaller than is much smaller than F,F,

as it as it
normally will be, normally will be, pseudodepthpseudodepth

can be can be

approximated by approximated by
pseudodepth N

Pz

≈ +1 2

Perspective Transformation and
Homogeneous Coordinates

We have used homogeneous coordinates for
points and vectors. Now we want to extend
them to work with perspective
transformations.

 Point P for any w ≠

0 is given by
•

Before we display a point, we divide
all 4 coordinates by w.

•

Affine transformations do not change w, since the last
row of an affine transformation matrix is (0, 0, 0, 1).

We have used homogeneous coordinates for We have used homogeneous coordinates for
points and vectors. Now we want to extend points and vectors. Now we want to extend
them to work with perspective them to work with perspective
transformations.transformations.
Point P for any w Point P for any w ≠≠

0 is given by 0 is given by

••

Before we display a point, we divide Before we display a point, we divide
all 4 coordinates by w.all 4 coordinates by w.

••

Affine transformations do not change w, since the last Affine transformations do not change w, since the last
row of an affine transformation matrix is (0, 0, 0, 1).row of an affine transformation matrix is (0, 0, 0, 1).

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

w
wP
wP
wP

P
z

y

x

Perspective Transformation and
Homogeneous Coordinates (2)

•For example, the point (1, 2, 3) has the
representations (1, 2, 3, 1), (2, 4, 6, 2), (0.003, 0.006,
0.009, 0.001), (-1, -2, -3, -1), etc.

•To convert a point from ordinary coordinates

to
homogeneous coordinates, append a 1.

 •To convert a point from

homogeneous coordinates
 to ordinary coordinates, divide all components by

the last component and discard the fourth
component.

••For example, the point (1, 2, 3) has the For example, the point (1, 2, 3) has the
representations (1, 2, 3, 1), (2, 4, 6, 2), (0.003, 0.006, representations (1, 2, 3, 1), (2, 4, 6, 2), (0.003, 0.006,
0.009, 0.001), (0.009, 0.001), (--1, 1, --2, 2, --3, 3, --1), etc. 1), etc.

••To convert a point from To convert a point from ordinary coordinatesordinary coordinates

to to
homogeneous coordinateshomogeneous coordinates, append a 1., append a 1.

••To convert a point fromTo convert a point from

homogeneous coordinateshomogeneous coordinates
 to to ordinary coordinatesordinary coordinates, divide all components by , divide all components by

the last component and discard the fourth the last component and discard the fourth
component.component.

Perspective Transformation and
Homogeneous Coordinates (3)

Suppose we multiply a point in this new form
by a matrix with the last row (0, 0, -1, 0).
(The perspective projection matrix will have
this form.)

Suppose we multiply a point in this new form Suppose we multiply a point in this new form
by a matrix with the last row (0, 0, by a matrix with the last row (0, 0, --1, 0). 1, 0).
(The perspective projection matrix will have (The perspective projection matrix will have
this form.)this form.)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− z

z

y

x

z

y

x

wP
baPw

wNP
wNP

w
wP
wP
wP

ba
N

N

)(
0100

00
000
000

Perspective Transformation and
Homogeneous Coordinates (4)

The resulting point corresponds (after dividing
through by the 4th

component) to (x*, y*, z*) =

Using homogeneous coordinates allows us to
capture perspective using a matrix multiplication.

 To make it work, we must always divide through by
the fourth component, a step which is called
perspective division.

The resulting point corresponds (after dividing The resulting point corresponds (after dividing
through by the 4through by the 4thth

component) to (x*, y*, z*) =component) to (x*, y*, z*) =

Using homogeneous coordinates allows us to Using homogeneous coordinates allows us to
capture perspective using a matrix multiplication.capture perspective using a matrix multiplication.

To make it work, we must always divide through by To make it work, we must always divide through by
the fourth component, a step which is called the fourth component, a step which is called
perspective divisionperspective division. .

),,(
z

z

z

y

z

x

P
baP

P
P

N
P

PN
−
+

−−

Perspective Transformation and
Homogeneous Coordinates (5)

•A matrix that has values other than (0,0,0,1) for its
fourth row does not perform an affine
transformation. It performs a more general class of
transformation called a perspective transformation.

•It is a transformation, not a projection. A
projection reduces the dimensionality of a point, to
a 3-tuple or a 2-tuple, whereas a perspective
transformation takes a 4-tuple and produces a 4-

 tuple.

••A matrix that has values other than (0,0,0,1) for its A matrix that has values other than (0,0,0,1) for its
fourth row does not perform an affine fourth row does not perform an affine
transformation. It performs a more general class of transformation. It performs a more general class of
transformation called a transformation called a perspective transformationperspective transformation. .

••It is a transformation, not a projection. A It is a transformation, not a projection. A
projection reduces the dimensionality of a point, to projection reduces the dimensionality of a point, to
a 3a 3--tuple or a 2tuple or a 2--tuple, whereas a perspective tuple, whereas a perspective
transformation takes a 4transformation takes a 4--tuple and produces a 4tuple and produces a 4--

 tuple. tuple.

Perspective Transformation and
Homogeneous Coordinates (6)

Where does the projection part come into play?
•

The first two components of this point are used for drawing: to
locate in screen coordinates the position of the point to be
drawn.

•

The third component is used for depth testing.

As far as locating the point on the screen is
concerned, ignoring the third component is
equivalent to replacing it by 0; this is the projection
part (as in orthographic projection, Ch. 5).

Where does the projection part come into play? Where does the projection part come into play?
••

The first two components of this point are used for drawing: to The first two components of this point are used for drawing: to
locate in screen coordinates the position of the point to be locate in screen coordinates the position of the point to be
drawn. drawn.

••

The third component is used for depth testing. The third component is used for depth testing.

As far as locating the point on the screen is As far as locating the point on the screen is
concerned, ignoring the third component is concerned, ignoring the third component is
equivalent to replacing it by 0; this is the projection equivalent to replacing it by 0; this is the projection
part (as in orthographic projection, Ch. 5).part (as in orthographic projection, Ch. 5).

Perspective Transformation and
Homogeneous Coordinates (7)

(perspective projection) = (perspective
transformation) + (orthographic projection).

OpenGL does the transformation step
separately from the projection step.
It inserts clipping, perspective division, and
one additional mapping between them.

(perspective projection) = (perspective (perspective projection) = (perspective
transformation) + (orthographic projection).transformation) + (orthographic projection).

OpenGL does the transformation step OpenGL does the transformation step
separately from the projection step. separately from the projection step.

It inserts clipping, perspective division, and It inserts clipping, perspective division, and
one additional mapping between them. one additional mapping between them.

Perspective Transformation and
Homogeneous Coordinates (7)

•When we wish to display a mesh model we must
send thousands or even millions of vertices down
the graphics pipeline.
•Clearly it will be much faster if we can subject
each vertex to a single

matrix multiplication rather

than to a sequence of matrix multiplications.
•This is what OpenGL does: it multiplies all of the
required matrices into a single matrix once

and

then multiplies each vertex by this combined
matrix.

••When we wish to display a mesh model we must When we wish to display a mesh model we must
send thousands or even millions of vertices down send thousands or even millions of vertices down
the graphics pipeline. the graphics pipeline.
••Clearly it will be much faster if we can subject Clearly it will be much faster if we can subject
each vertex to a each vertex to a singlesingle

matrix multiplication rather matrix multiplication rather

than to a sequence of matrix multiplications. than to a sequence of matrix multiplications.
••This is what OpenGL does: it multiplies all of the This is what OpenGL does: it multiplies all of the
required matrices into a single matrix required matrices into a single matrix onceonce

and and

then multiplies each vertex by this combined then multiplies each vertex by this combined
matrix. matrix.

Geometry of Perspective
Transformation
•The perspective transformation alters 3D point P into another
3D point, to prepare it for projection. It is useful to think of

it as

causing a warping of 3D space and to see how it warps one
shape into another.
•Very importantly, it preserves straightness and flatness, so
lines transform into lines, planes into planes, and polygonal
faces into other polygonal faces.
•It also preserves in-between-ness, so if point a is inside an
object, the transformed point will also be inside the
transformed object.
•

Our choice of a suitable pseudodepth

function was guided by

the need to preserve these properties.

••The perspective transformation alters 3D point P into another The perspective transformation alters 3D point P into another
3D point, to prepare it for projection. It is useful to think of3D point, to prepare it for projection. It is useful to think of

it as it as

causing a warping of 3D space and to see how it warps one causing a warping of 3D space and to see how it warps one
shape into another. shape into another.
••Very importantly, it preserves straightness and flatness, so Very importantly, it preserves straightness and flatness, so
lines transform into lines, planes into planes, and polygonal lines transform into lines, planes into planes, and polygonal
faces into other polygonal faces. faces into other polygonal faces.
••It also preserves inIt also preserves in--betweenbetween--nessness, so if point a is inside an , so if point a is inside an
object, the transformed point will also be inside the object, the transformed point will also be inside the
transformed object. transformed object.
••

Our choice of a suitable Our choice of a suitable pseudodepthpseudodepth

function was guided by function was guided by

the need to preserve these properties.the need to preserve these properties.

Geometry of Perspective
Transformation (2)

How does it
transform the
camera view
volume?

 We must clip
to this
volume.

How does it How does it
transform the transform the
camera view camera view
volume?volume?

We must clip We must clip
to this to this
volume.volume.

Geometry of Perspective
Transformation (3)

•The near plane W at z

= -N

maps into the plane W’
 at z

= -1, and the far plane maps to the plane at z

=

+1.
•The top wall T

is tilted into the horizontal plane T’

 so that it is parallel to the z-axis.
 •The bottom wall S

becomes the horizontal S’, and

the two side walls become parallel to the z-axis.
•The camera’s view volume is transformed into a
parallelepiped.

••The near plane The near plane WW

at at zz

= = --NN

maps into the plane maps into the plane WW’’
 at at zz

= = --1, and the far plane maps to the plane at 1, and the far plane maps to the plane at zz

= =

+1. +1.
••The top wall The top wall TT

is tilted into the horizontal plane is tilted into the horizontal plane TT’’

 so that it is parallel to the so that it is parallel to the zz--axis.axis.
••The bottom wall The bottom wall SS

becomes the horizontal becomes the horizontal SS’’, and , and

the two side walls become parallel to the the two side walls become parallel to the zz--axis. axis.
••The cameraThe camera’’s view volume is transformed into a s view volume is transformed into a
parallelepiped.parallelepiped.

Geometry of Perspective
Transformation (4)

Lines through the eye map into lines parallel
to the z-axis.
•

Proof: All points of such a line project to a single
point, say (x*, y*), on the viewplane. So all of the
points along the line transform to all of the points (x, y,
z) with x = x*, y = y*, and z taking on all pseudodepth

 values between -1 and 1.

Lines through the eye map into lines parallel Lines through the eye map into lines parallel
to the zto the z--axis. axis.
••

ProofProof: All points of such a line project to a single : All points of such a line project to a single
point, say (point, say (xx*, *, yy*), on the *), on the viewplaneviewplane. So all of the . So all of the
points along the line transform to all of the points (points along the line transform to all of the points (xx, , yy, ,
zz) with) with xx = = xx*, *, yy = = yy*, and *, and zz taking on all taking on all pseudodepthpseudodepth

 values between values between --1 and 1. 1 and 1.

Geometry of Perspective
Transformation (5)

Lines perpendicular to
the z-axis map to lines
perpendicular to the z-

 axis.
•

Proof:

All points along

such a line have the
same z-coordinate, so
they all map to points
with the same
pseudodepth

value.

Lines perpendicular to Lines perpendicular to
the the zz--axis map to lines axis map to lines
perpendicular to the perpendicular to the zz--

 axis. axis.
••

Proof:Proof:

All points along All points along

such a line have the such a line have the
same same zz--coordinate, so coordinate, so
they all map to points they all map to points
with the same with the same
pseudodepthpseudodepth

valuevalue..

Geometry of Perspective
Transformation (6)

The transformation also warps objects into
new shapes.
The perspective transformation warps
objects so that, when viewed with an
orthographic projection, they appear the
same as the original objects do when viewed
with a perspective projection.

The transformation also warps objects into The transformation also warps objects into
new shapes. new shapes.

The perspective transformation warps The perspective transformation warps
objects so that, when viewed with an objects so that, when viewed with an
orthographic projection, they appear the orthographic projection, they appear the
same as the original objects do when viewed same as the original objects do when viewed
with a perspective projection.with a perspective projection.

Geometry of Perspective
Transformation (7)
•We want to put some numbers on the dimensions
of the view volume before and after it is warped.
•Consider the top plane, and suppose it passes
through the point (left, top, -N) at z

= -N.

•It is composed of lines that pass through the eye
and through points in the near plane all of which
have a y-coordinate of top, so

it must transform to

the plane y

= top. Similarly,the

bottom plane
transforms to the y

= bott

plane; the left plane

transforms to the x

= left

plane; and the right plane
transforms to the x

= right plane.

••We want to put some numbers on the dimensions We want to put some numbers on the dimensions
of the view volume before and after it is warped. of the view volume before and after it is warped.
••Consider the top plane, and suppose it passes Consider the top plane, and suppose it passes
through the point through the point ((leftleft, , toptop, , --NN))

at at zz

= = --NN. .

••It is composed of lines that pass through the eye It is composed of lines that pass through the eye
and through points in the near plane all of which and through points in the near plane all of which
have a have a yy--coordinate of coordinate of top, sotop, so

it must transform to it must transform to

the plane the plane yy

= = toptop. . Similarly,theSimilarly,the

bottom plane bottom plane
transforms to the transforms to the yy

= = bottbott

plane; the left plane plane; the left plane

transforms to the transforms to the xx

= = leftleft

plane; and the right plane plane; and the right plane
transforms to the transforms to the xx

= = right right plane.plane.

Geometry of Perspective
Transformation (8)
We now know the transformed view volume precisely: a
parallelepiped with dimensions that are related to the camera’s
properties in a very simple way.
This is a splendid shape to clip against as we shall see,
because its walls are parallel to the coordinate planes, but it
would be even better for clipping if its dimensions didn’t
depend on the particular camera being used.
OpenGL composes the perspective transformation with
another mapping that scales and translates this parallelepiped
into the canonical view volume, a cube that extends from -1 to 1
in each dimension.

 Because this scales things differently in the x- and y-

dimensions, it introduces some distortion, but the distortion
will be eliminated in the final viewport transformation.

We now know the transformed view volume precisely: a We now know the transformed view volume precisely: a
parallelepiped with dimensions that are related to the cameraparallelepiped with dimensions that are related to the camera’’s s
properties in a very simple way. properties in a very simple way.
This is a splendid shape to clip against as we shall see, This is a splendid shape to clip against as we shall see,
because its walls are parallel to the coordinate planes, but it because its walls are parallel to the coordinate planes, but it
would be even better for clipping if its dimensions didnwould be even better for clipping if its dimensions didn’’t t
depend on the particular camera being used. depend on the particular camera being used.
OpenGL composes the perspective transformation with OpenGL composes the perspective transformation with
another mapping that scales and translates this parallelepiped another mapping that scales and translates this parallelepiped
into the into the canonical view volumecanonical view volume, a cube that extends from , a cube that extends from --1 to 1 1 to 1
in each dimension.in each dimension.
Because this scales things differently in the Because this scales things differently in the xx--

and and yy--

 dimensions, it introduces some distortion, but the distortion dimensions, it introduces some distortion, but the distortion
will be eliminated in the final viewport transformation. will be eliminated in the final viewport transformation.

Perspective Projection Matrix used
by OpenGL

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−
+−

−
+

−

−
+

−

=

0100

2)(00

020

002

NF
FN

NF
NF

bottomtop
bottomtop

bottomtop
N

leftright
leftright

leftright
N

R

Perspective Projection Matrix (2)

Recall that gluPerspective(viewAngle, aspect, N, F)
 is usually used instead, as its parameters are more

intuitive.
gluPerspective()

sets up the same matrix, after

computing values for top, bott, etc. using

bott

= -top, right

= top

* aspect, and left

= -
 right.

Recall that Recall that gluPerspective(viewAnglegluPerspective(viewAngle, aspect, N, F), aspect, N, F)
 is usually used instead, as its parameters are more is usually used instead, as its parameters are more

intuitive. intuitive.
gluPerspectivegluPerspective()()

sets up the same matrix, after sets up the same matrix, after

computing values for computing values for toptop, , bottbott, etc. using, etc. using

bottbott

= = --toptop, , rightright

= = toptop

* * aspectaspect, and , and leftleft

= = --
 right.right.

top N viewAngle= tan(/)π
180

2

The Graphics Pipeline in OpenGL

model in world coordinates → modelview
 matrix (eye coordinates) → projection matrix

(canonical view volume coordinates) →
 clipper → perspective division → viewport

matrix →display (screen coordinates)

model in world coordinates model in world coordinates →→

modelviewmodelview
 matrix (eye coordinates) matrix (eye coordinates) →→

projection matrix projection matrix

(canonical view volume coordinates) (canonical view volume coordinates) →→
 clipper clipper →→

perspective division perspective division →→

viewport viewport

matrix matrix →→display (screen coordinates)display (screen coordinates)

The Graphics Pipeline in OpenGL (2)
•Following clipping perspective division is finally done and the 3-

 tuple (x, y, z) is passed through the viewport transformation.
•The perspective transformation squashes the scene into the
canonical cube. If the aspect ratio of the camera’s view volume
(that is, the aspect ratio of the window on the near plane) is 1.5,
there is obvious distortion introduced.
•But the viewport transformation can undo this distortion by
mapping a square into a viewport of aspect ratio 1.5. We
normally set the aspect ratio of the viewport to be the same as
that of the view volume.

••Following clipping Following clipping perspective divisionperspective division is finally done and the 3is finally done and the 3--
 tuple (tuple (xx, , yy, , zz) is passed through the viewport transformation.) is passed through the viewport transformation.

••The perspective transformation squashes the scene into the The perspective transformation squashes the scene into the
canonical cube. If the aspect ratio of the cameracanonical cube. If the aspect ratio of the camera’’s view volume s view volume
(that is, the aspect ratio of the window on the near plane) is 1(that is, the aspect ratio of the window on the near plane) is 1.5, .5,
there is obvious distortion introduced. there is obvious distortion introduced.
••But the viewport transformation can undo this distortion by But the viewport transformation can undo this distortion by
mapping a square into a viewport of aspect ratio 1.5. We mapping a square into a viewport of aspect ratio 1.5. We
normally set the aspect ratio of the viewport to be the same as normally set the aspect ratio of the viewport to be the same as
that of the view volume.that of the view volume.

Distortion and Its Removal

glViewport(x, y, wid, ht)

specifies that the
viewport will have lower left corner (x,y) in
screen coordinates and will be wid

pixels

wide and ht pixels high. It thus specifies a
viewport with aspect ratio wid/ht.
The viewport transformation also maps
pseudodepth

from the range -1 to 1 into the

range 0 to 1.

glViewport(xglViewport(x, y, , y, widwid, ht), ht)

specifies that the specifies that the
viewport will have lower left corner (viewport will have lower left corner (x,yx,y) in) in
screen coordinates and will be screen coordinates and will be widwid

pixels pixels

wide and ht pixels high. It thus specifies a wide and ht pixels high. It thus specifies a
viewport with aspect ratio viewport with aspect ratio widwid/ht. /ht.

The viewport transformation also maps The viewport transformation also maps
pseudodepthpseudodepth

from the range from the range --1 to 1 into the 1 to 1 into the

range 0 to 1.range 0 to 1.

Distortion and Its Removal (2)

Steps in the Pipeline: Each Vertex P
Undergoes Operations Below
•P is extended to a homogeneous 4-tuple by appending a 1, and
this 4-tuple is multiplied by the modelview matrix, producing a 4-

tuple giving the position in eye coordinates.

 •The point is then multiplied by the projection matrix, producing
a 4-tuple in clip coordinates.

 •The edge having this point as an endpoint is clipped.
•Perspective division is performed, returning a 3-tuple.
•The viewport transformation multiplies the 3-tuple by a matrix;
the result (sx

, sy

, dz

) is used for drawing and depth
calculations. (sx

, sy

) is the point in screen coordinates to be
displayed; dz

is a measure of the depth of the original point
from the eye of the camera.

••P P is is extendedextended to a homogeneous 4to a homogeneous 4--tuple by appending a 1, and tuple by appending a 1, and
this 4this 4--tuple is multiplied by the tuple is multiplied by the modelviewmodelview matrixmatrix, producing a 4, producing a 4--

 tuple giving the position in eye coordinates.tuple giving the position in eye coordinates.
••The point is then multiplied by the The point is then multiplied by the projection matrixprojection matrix, producing , producing
a 4a 4--tuple in clip coordinates.tuple in clip coordinates.
••The edge having this point as an endpoint is The edge having this point as an endpoint is clippedclipped..
••Perspective divisionPerspective division is performed, returning a 3is performed, returning a 3--tuple.tuple.
••The The viewport transformationviewport transformation multiplies the 3multiplies the 3--tuple by a matrix; tuple by a matrix;
the result (the result (ssxx

, , ssyy

, , ddzz

) is used for drawing and depth) is used for drawing and depth
calculations. (calculations. (ssxx

, , ssyy

) is the point in screen coordinates to be) is the point in screen coordinates to be
displayed; displayed; ddzz

is a measure of the depth of the original point is a measure of the depth of the original point
from the eye of the camera.from the eye of the camera.

	Slide Number 1
	Objective
	The Camera and Perspective Projection
	The Camera and Perspective Projection (Refer to the picture on next slide)
	The Camera and Perspective Projection
	Setting the View Volume
	Setting the View Volume (2)
	Setting the View Volume (3)
	Setting the View Volume (4)
	Camera with Arbitrary Orientation and Position
	Camera with Arbitrary Orientation and Position (2)
	gluLookAt and the Camera Coordinate System
	gluLookAt and the Camera Coordinate System (2)
	gluLookAt and the Camera Coordinate System (3)
	Perspective Projections of 3-D Objects
	Perspective Projections of 3-D Objects (2)
	Perspective Projections of 3-D Objects (3)
	Perspective Projections of 3-D Objects (4)
	Perspective Projections of 3-D Objects (5)
	Perspective Projection Properties
	Perspective Projection Properties (2)
	Example Projections of the Barn
	Example (2)
	Example (3)
	Perspective Projection of Lines
	Projection of Straight Lines (2)
	Projection of Straight Lines (3)
	Projection of Straight Lines (≤)
	Example: horizontal grid in perspective
	Projection of Straight Lines (5)
	Incorporating Perspective in the Graphics Pipeline
	Incorporating Perspective in the Graphics Pipeline (2)
	Illustration of Pseudo-depth Values
	Incorporating Perspective in the Graphics Pipeline (3)
	Perspective Transformation and Homogeneous Coordinates
	Perspective Transformation and Homogeneous Coordinates (2)
	Perspective Transformation and Homogeneous Coordinates (3)
	Perspective Transformation and Homogeneous Coordinates (4)
	Perspective Transformation and Homogeneous Coordinates (5)
	Perspective Transformation and Homogeneous Coordinates (6)
	Perspective Transformation and Homogeneous Coordinates (7)
	Perspective Transformation and Homogeneous Coordinates (7)
	Geometry of Perspective Transformation
	Geometry of Perspective Transformation (2)
	Geometry of Perspective Transformation (3)
	Geometry of Perspective Transformation (4)
	Geometry of Perspective Transformation (5)
	Geometry of Perspective Transformation (6)
	Geometry of Perspective Transformation (7)
	Geometry of Perspective Transformation (8)
	Perspective Projection Matrix used by OpenGL
	Perspective Projection Matrix (2)
	The Graphics Pipeline in OpenGL
	The Graphics Pipeline in OpenGL (2)
	Distortion and Its Removal
	Distortion and Its Removal (2)
	Steps in the Pipeline: Each Vertex P Undergoes Operations Below

