CS 4204 Computer Graphics

Vector and Matrix Yong Cao Virginia Tech

Vectors

N-tuple:

 $\mathbf{v} = (x_1, x_2, \dots, x_n), \ x_i \in \Re$

Vectors

N-tuple:

Magnitude:

Unit vectors

Normalizing a vector

$$\mathbf{y} = (x_1, x_2, \dots, x_n), \ x_i \in \Re$$

$$\mathbf{v}| = \sqrt{x_1^2 + \ldots + x_n^2}$$

$$\mathbf{v}$$
 : $|\mathbf{v}|=1$

$$\widehat{\mathbf{v}} = rac{\mathbf{v}}{|\mathbf{v}|}$$

Operations with vectors

Addition

Multiplication with scalar (scaling)

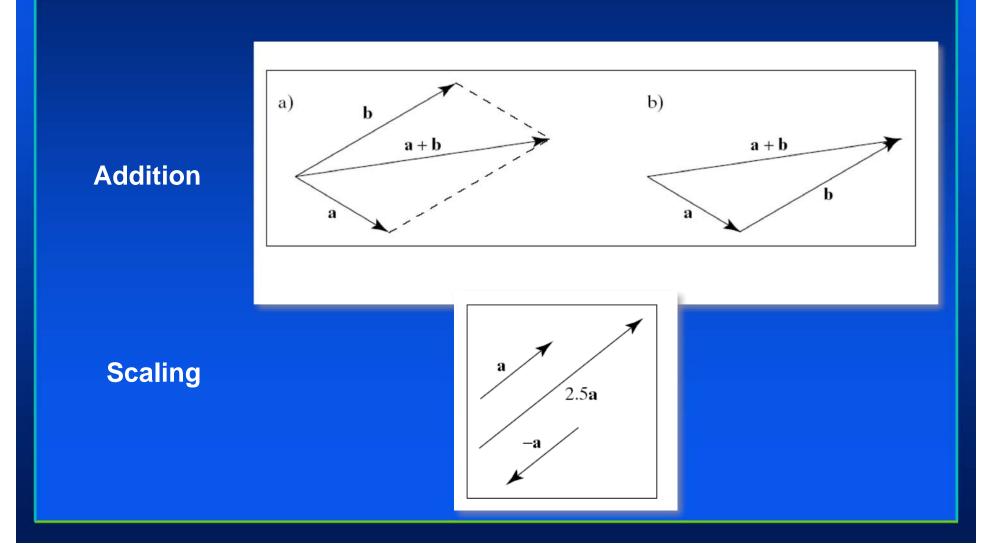
Properties

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$a\mathbf{x} = (ax_1, \ldots, ax_n), \ a \in \Re$$

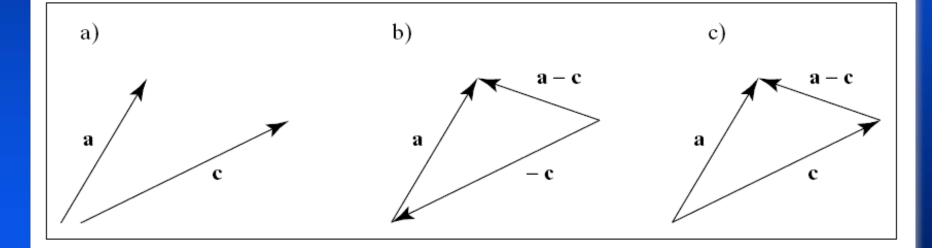
u + v = v + u(u + v) + w = u + (v + w) $a(u + v) = au + av, a \in \Re$ u - u = 0

Visualization for 2D and 3D vectors



Subtraction

Adding the negatively scaled vector



Linear combination of vectors

Definition

A linear combination of the m vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a vector of the form:

 $w = a_1 v_1 + ... a_m v_m, a_1, ..., a_m$ in R

Special cases

Linear combination $w = a_1 v_1 + ... a_m v_m, \quad a_1, ..., a_m \text{ in } \mathbb{R}$ Affine combination: A linear combination for which $a_1 + ... + a_m = 1$ Convex combination An affine combination for which $a_i \ge 0$ for i = 1, ..., m

Linear Independence

For vectors $v_1, ..., v_m$ If $a_1v_1+...a_mv_m = 0$ iff $a_1=a_2=...=a_m=0$ then the vectors are linearly independent.

Generators and Base vectors

How many vectors are needed to generate a vector space?

- Any set of vectors that generate a vector space is called a generator set.
- Given a vector space Rⁿ we can prove that we need minimum n vectors to generate all vectors v in Rⁿ.
- A generator set with minimum size is called a base for the given vector space.

Standard unit vectors

$$\mathbf{v} = (x_1, \ldots, x_n), \ x_i \in \Re$$

$$(x_1, x_2, \dots, x_n) = x_1(1, 0, 0, \dots, 0, 0) + x_2(0, 1, 0, \dots, 0, 0) \dots + x_n(0, 0, 0, \dots, 0, 1)$$

Standard unit vectors

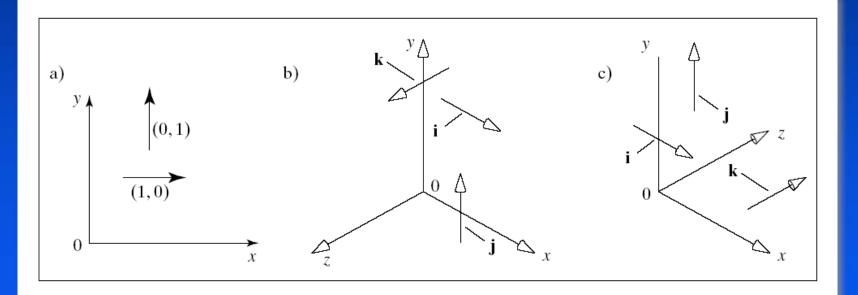
For any vector space Rⁿ:

$$egin{aligned} \mathbf{i}_1 &= (1,0,0,\ldots,0,0) \ \mathbf{i}_2 &= (0,1,0,\ldots,0,0) \ &\ldots \ \mathbf{i}_n &= (0,0,0,\ldots,0,1) \end{aligned}$$

The elements of a vector v in Rⁿ are the scalar coefficients of the linear combination of the base vectors.

Standard unit vectors in 3D

i = (1,0,0)j = (0,1,0)k = (0,0,1)



Right handed

Left handed

Representation of vectors through basis vectors

Given a vector space Rⁿ, a set of basis vectors B {b_i in Rⁿ, i=1,...n} and a vector v in Rⁿ we can always find scalar coefficients such that:

 $\mathbf{v} = a_1 \mathbf{b}_1 + \dots + a_n \mathbf{b}_n$ So, \mathbf{v} with respect to B is: $\mathbf{v}_B = (a_1, \dots, a_n)$

Dot Product

Definition:

Properties

 $\mathbf{w}, \mathbf{v} \in \Re^n$ $\mathbf{w} \cdot \mathbf{v} = \sum_{i=1}^n w_i v_i$

- 1. Summetry: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- 2. Linearity: $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$
- 3. Homogeneity: $(s\mathbf{a}) \cdot \mathbf{b} = s(\mathbf{a} \cdot \mathbf{b})$

4.
$$|\mathbf{b}|^2 = \mathbf{b} \cdot \mathbf{b}$$

5. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| cos(\theta)$

Dot product and perpendicularity

From Property 5:

Perpendicular vectors

Definition Vectors **b** and **c** are perpendicular iff **b**-**c** = 0 Also called normal or orthogonal It is easy to see that the standard unit vectors form an orthogonal basis: i - j = 0, j - k = 0, i - k = 0

Cross product

Defined only for 3D Vectors and with respect to the standard unit vectors

Definition

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y)\mathbf{i} + (a_z b_x - a_x b_z)\mathbf{j} + (a_x b_y - a_y b_x)\mathbf{k}$$

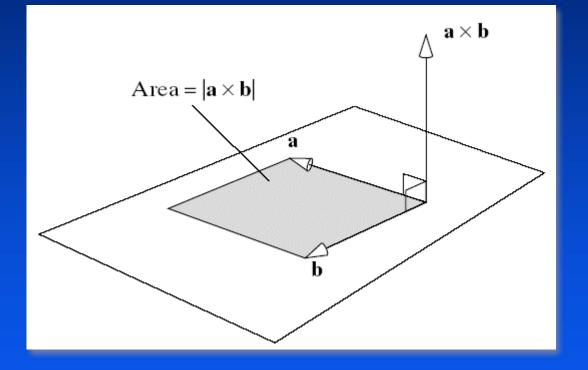
$$\mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \end{bmatrix}$$

Properties of the cross product

- 1. $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{i} \times \mathbf{j} = \mathbf{k}$.
- 2. Antisymmetry: $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.
- 3. Linearity: $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.
- 4. Homogeneity: $(sa) \times b = s(a \times b)$.

5. The cross product is normal to both vectors: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$. 6. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|sin(\theta)$.

Geometric interpretation of the cross product



Recap

Vector spaces

Operations with vectors

Representing vectors through a basis

 $v = a_1 b_1 + ... a_n b_n$, $v_B = (a_1, ..., a_n)$

Standard unit vectors

Dot product

Perpendicularity

Cross product

Normal to both vectors

Points vs Vectors

What is the difference?

Points vs Vectors

What is the difference?

Points have location but no size or direction.

Vectors have size and direction but no location.

Problem: we represent both as triplets!

Relationship between points and vectors

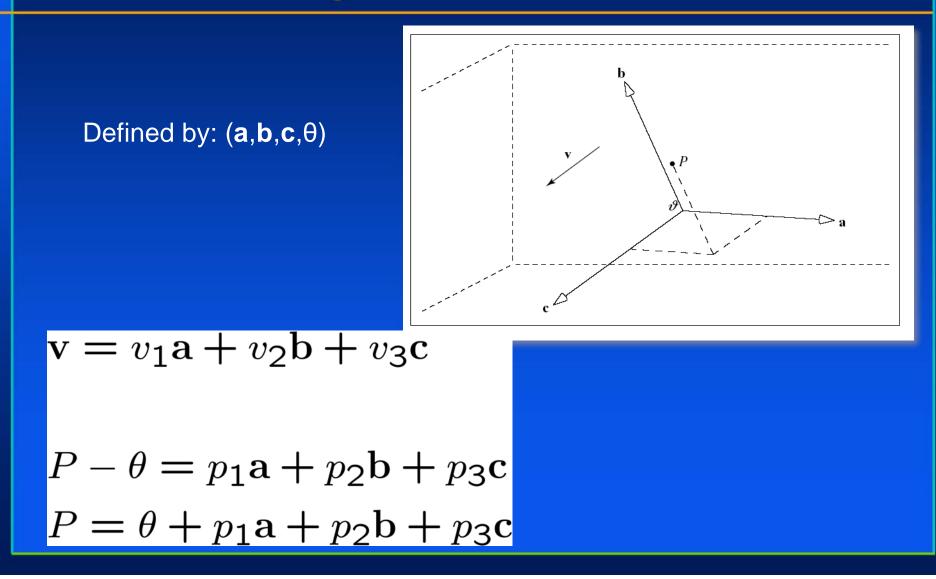
A difference between two points is a vector:

Q - P = v

We can consider a point as a point plus an offset

Q = P + v

Coordinate systems



The homogeneous representation of points and vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \rightarrow \mathbf{v} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix}$$
$$P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \rightarrow P = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Switching coordinates

Normal to homegeneous:

 Vector: append as fourth coordinate 0

 Point: append as fourth coordinate 1

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \to \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix}$$
$$P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \to \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Switching coordinates

Homegeneous to normal:

Vector: remove fourth coordinate (0)

Point: remove fourth coordinate (1)

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix} \to \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
$$P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix} \to \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

Does the homogeneous representation support operations?

Operations :



Linear combination of points

Points P, R scalars f,g:

 $fP+gR = f(p_1, p_2, p_3, 1) + g(r_1, r_2, r_3, 1)$ = $(fp_1+gr_1, fp_2+gr_2, fp_3+gr_3, f+g)$

What is this?

Linear combination of points

Points P, R scalars f,g: $fP+gR = f(p_1, p_2, p_3, 1) + g(r_1, r_2, r_3, 1)$ $= (fp_1+gr_1, fp_2+gr_2, fp_3+gr_3, f+g)$

What is this?

- If (f+g) = 0 then vector!
- If (f+g) = 1 then point!

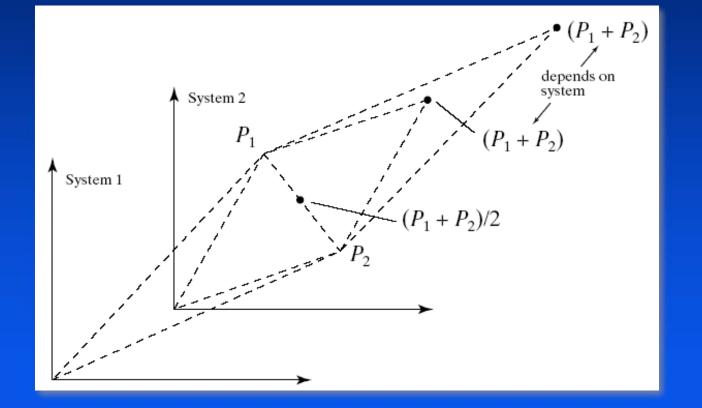
Affine combinations of points

Definition:

Points P_i: i = 1,...,n Scalars f_i: i = 1,...,n $f_1P_1 + ... + f_nP_n$ iff $f_1 + ... + f_n = 1$

Example: $0.5P_1 + 0.5P_2$

Geometric explanation



Recap

Vector spaces Dot product Cross product Coordinate systems Homogeneous representations of points and vectors

Matrices

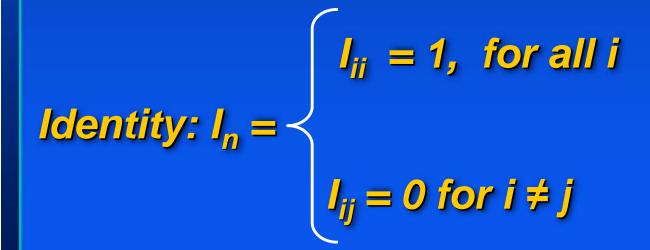
Rectangular arrangement of elements:

$$A_{3\times3} = \begin{pmatrix} -1 & 2.0 & 0.5 \\ 0.2 & -4.0 & 2.1 \\ 3 & 0.4 & 8.2 \end{pmatrix}$$
$$A = (A_{ij})$$

Special square matrices

Symmetric: $(A_{ij})_{n \times n} = (A_{ji})_{n \times n}$

Zero: $A_{ij} = 0$, for all i,j



Operations with matrices

Addition:

$$A_{m \times n} + B_{m \times n} = (a_{ij} + b_{ij})$$

Properties:

1.
$$A + B = B + A$$
.
2. $A + (B + C) = (A + B) + C$.
3. $f(A + B) = fA + fB$.
4. Transpose: $A^T = (a_{ij})^T = (a_{ji})$.

Multiplication

Definition:

 $C_{m \times l} = A_{m \times n} B_{n \times r}$ $(C_{ij}) = \left(\sum_{k}^{n} a_{ik} b_{kj}\right)$

Properties:

1.
$$AB \neq BA$$
.
2. $A(BC) = (AB)C$.
3. $f(AB) = (fA)B$.
4. $A(B+C) = AB + AC$,
 $(B+C)A = BA + CA$.
5. $(AB)^T = B^T A^T$.

Inverse of a square matrix

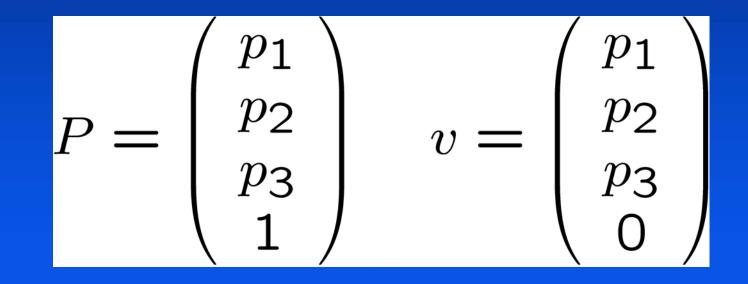
Definition

 $MM^{-1} = M^{-1}M = I$

Important property (AB)⁻¹= B⁻¹ A⁻¹

Convention

Vectors and points are represented as column matrices.



Dot product as a matrix multiplication

A vector is a column matrix

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

= $(a_1, a_2, a_3) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$
= $a_1 b_1 + a_2 b_2 + a_3 b_3.$

Lines and Planes

Lines

Line (in 2D)

- Explicit
- Implicit

$$y = \frac{dy}{dx}(x - x_0) + y_0$$

$$F(x,y) = (x - x_0)dy - (y - y_0)dx$$

if	F(x,y)=0	then	(x, y) is on line
	F(x,y) > 0		(x, y) is below line
	F(x,y) < 0		(x, y) is above line

Parametric (extends to 3D)

)
$$\begin{aligned} x(t) &= x_0 + t(x_1 - x_0) \\ y(t) &= y_0 + t(y_1 - y_0) \\ t &\in [0, 1] \end{aligned}$$
$$\begin{aligned} P(t) &= P_0 + t(P_1 - P_0), \text{ or } \\ P(t) &= (1 - t)P_0 + tP_1 \end{aligned}$$

Planes

Plane equations

Implicit

 $F(x, y, z) = Ax + By + Cz + D = \mathbf{N} \bullet P + D$ Points on Plane F(x, y, z) = 0

Parametric

 $Plane(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0)$ P_0, P_1, P_2 not colinear or

 $Plane(s,t) = (1 - s - t)P_0 + sP_1 + tP_2$ $Plane(s,t) = P_0 + sV_1 + tV_2 \text{ where } V_1, V_2 \text{ basis vectors}$

Explicit

$$z = -(A/C)x - (B/C)y - D/C, C \neq 0$$

