CS 4204 Computer Graphics

Vector and Matrix Yong Cao
Virginia Tech

Vectors

N-tuple:

$$
\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad x_{i} \in \Re
$$

Vectors

N-tuple:

$$
\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad x_{i} \in \Re
$$

Magnitude:

$$
|\mathbf{v}|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

Unit vectors

$$
\mathbf{v}:|\mathbf{v}|=1
$$

Normalizing a vector

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

Operations with vectors

Addition

$$
\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

Multiplication with

$$
a \mathbf{x}=\left(a x_{1}, \ldots, a x_{n}\right), \quad a \in \Re
$$ scalar (scaling)

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

Properties

$$
\begin{aligned}
& (\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
& a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}, a \in \Re \\
& \mathbf{u}-\mathbf{u}=\mathbf{0}
\end{aligned}
$$

Visualization for 2D and 3D vectors

Addition

b)

Scaling

Subtraction

Adding the negatively scaled vector

Linear combination of vectors

Definition

A linear combination of the m vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is a vector of the form:

$$
w=a_{1} \mathbf{v}_{1}+\ldots a_{m} \mathbf{v}_{m}, \quad a_{1}, \ldots, a_{m} \text { in } R
$$

Special cases

Linear combination
$\mathbf{w}=a_{1} \mathbf{v}_{1}+\ldots a_{m} \mathbf{v}_{\mathrm{m}}, \quad a_{1}, \ldots, a_{m}$ in R
Affine combination:
A linear combination for which $a_{1}+\ldots+a_{m}=1$
Convex combination
An affine combination for which $a_{i} \geq 0$ for $i=1, \ldots, m$

Linear Independence

For vectors v_{1}, \ldots, v_{m}
If $a_{1} \mathbf{v}_{1}+\ldots a_{m} \mathbf{v}_{m}=\mathbf{0}$ iff $a_{1}=a_{2}=\ldots=a_{m}=0$
then the vectors are linearly independent.

Generators and Base vectors

How many vectors are needed to generate a vector space?

- Any set of vectors that generate a vector space is called a generator set.
- Given a vector space \mathbf{R}^{n} we can prove that we need minimum n vectors to generate all vectors \mathbf{v} in \mathbf{R}^{n}.
- A generator set with minimum size is called a base for the given vector space.

Standard unit vectors

$$
\begin{aligned}
& \mathbf{v}=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \Re \\
&\left(x_{1}, x_{2}, \ldots, x_{n}\right)= x_{1}(1,0,0, \ldots, 0,0) \\
&+x_{2}(0,1,0, \ldots, 0,0) \\
& \ldots \\
&+x_{n}(0,0,0, \ldots, 0,1)
\end{aligned}
$$

Standard unit vectors

For any vector space R^{n} :

$$
\begin{aligned}
& \mathbf{i}_{1}=(1,0,0, \ldots, 0,0) \\
& \mathbf{i}_{2}=(0,1,0, \ldots, 0,0) \\
& \ldots \\
& i_{n}=(0,0,0, \ldots, 0,1)
\end{aligned}
$$

The elements of a vector v in R^{n} are the scalar coefficients of the linear combination of the base vectors.

Standard unit vectors in 3D

$$
\begin{aligned}
& \mathrm{i}=(1,0,0) \\
& \mathrm{j}=(0,1,0) \\
& \mathrm{k}=(0,0,1)
\end{aligned}
$$

Right handed
Left handed

Representation of vectors through basis vectors

Given a vector space R^{n}, a set of basis vectors $B\left\{\mathrm{~b}_{i}\right.$ in $\left.R^{n}, i=1, \ldots, \ldots\right\}$ and a vector v in R^{n} we can always find scalar coefficients such that:

$$
\mathbf{v}=a_{1} b_{1}+\ldots+a_{n} b_{n}
$$

So, \mathbf{v} with respect to B is:

$$
v_{B}=\left(a_{1}, \ldots, a_{n}\right)
$$

Dot Product

Definition:

$$
\begin{aligned}
& \mathbf{w}, \mathbf{v} \in \Re^{n} \\
& \mathbf{w} \cdot \mathbf{v}=\sum_{i=1}^{n} w_{i} v_{i}
\end{aligned}
$$

Properties

1. Summetry: $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
2. Linearity: $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c}$
3. Homogeneity: $(s \mathbf{a}) \cdot \mathbf{b}=s(\mathbf{a} \cdot \mathbf{b})$
4. $|\mathrm{b}|^{2}=\mathrm{b} \cdot \mathrm{b}$
5. $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)$

Dot product and perpendicularity

From Property 5:

b $\cdot \mathrm{c}>0$
b $\cdot \mathbf{c}=\mathbf{0}$
b $\cdot \mathrm{c}<0$

Perpendicular vectors

Definition

Vectors \mathbf{b} and \mathbf{c} are perpendicular iff $\mathbf{b} \cdot \mathbf{c}=\mathbf{0}$
Also called normal or orthogonal

It is easy to see that the standard unit vectors form an orthogonal basis:

$$
i \cdot j=0, \quad j \cdot k=0, \quad i \cdot k=0
$$

Cross product

Defined only for 3D Vectors and with respect to the standard unit vectors
Definition

$$
\begin{aligned}
& \mathbf{a} \times \mathbf{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k} \\
& \mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
\end{aligned}
$$

Properties of the cross product

1. $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{i} \times \mathbf{j}=\mathbf{k}$.
2. Antisymmetry: $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$.
3. Linearity: $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$.
4. Homogeneity: $(s \mathbf{a}) \times \mathbf{b}=s(\mathbf{a} \times \mathbf{b})$.
5. The cross product is normal to both vectors: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}=0$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$.
6. $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin (\theta)$.

Geometric interpretation of the cross product

Recap

Vector spaces

Operations with vectors
Representing vectors through a basis
$\mathbf{v}=a_{1} \mathbf{b}_{1}+\ldots a_{n} \mathbf{b}_{n}, \mathbf{v}_{\mathbf{B}}=\left(\mathbf{a}_{1}, \ldots, a_{n}\right)$
Standard unit vectors
Dot product
Perpendicularity
Cross product
Normal to both vectors

Points vs Vectors

What is the difference?

Points vs Vectors

What is the difference?

Points have location but no size or direction.

Vectors have size and direction but no location.
Problem: we represent both as triplets!

Relationship between points and vectors

A difference between two points is a vector:

$$
Q-P=v
$$

We can consider a point as a point plus an offset
$\mathrm{Q}=\mathrm{P}+\mathrm{v}$

Coordinate systems

Defined by: (a,b,c, θ)

$\mathbf{v}=v_{1} \mathbf{a}+v_{2} \mathbf{b}+v_{3} \mathbf{c}$

$$
\begin{aligned}
& P-\theta=p_{1} \mathbf{a}+p_{2} \mathbf{b}+p_{3} \mathbf{c} \\
& P=\theta+p_{1} \mathbf{a}+p_{2} \mathbf{b}+p_{3} \mathbf{c}
\end{aligned}
$$

The homogeneous representation of points and vectors

$$
\begin{aligned}
& \mathbf{v}=v_{1} \mathbf{a}+v_{2} \mathbf{b}+v_{3} \mathbf{c} \rightarrow \mathbf{v}=(\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
0
\end{array}\right) \\
& P=\theta+p_{1} \mathbf{a}+p_{2} \mathbf{b}+p_{3} \mathbf{c} \rightarrow P=(\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta)\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
1
\end{array}\right)
\end{aligned}
$$

Switching coordinates

Normal to homegeneous:

- Vector: append as fourth coordinate 0

$$
\begin{aligned}
& \mathbf{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \rightarrow\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
0
\end{array}\right) \\
& P=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
1
\end{array}\right)
\end{aligned}
$$

Switching coordinates

Homegeneous to normal:

- Vector: remove fourth coordinate (0)

$$
\begin{aligned}
& \mathbf{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
0
\end{array}\right) \rightarrow\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
& P=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
1
\end{array}\right) \rightarrow\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
\end{aligned}
$$

- Point: remove fourth coordinate (1)

Does the homogeneous representation support operations?

Operations :

- $\mathbf{v}+\mathbf{w}=\left(v_{1}, v_{2}, v_{3}, 0\right)+\left(w_{1}, w_{2}, w_{3}, 0\right)=$ $\left(v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}, 0\right)$

Vector!

- $a \mathbf{v}=a\left(v_{1}, v_{2}, v_{3}, 0\right)=\left(a v_{1}, a v_{2}, a v_{3}, 0\right)$,

Vector!

- $a \mathbf{v}+b \mathbf{w}=a\left(v_{1}, v_{2}, v_{3}, 0\right)+b\left(w_{1}, w_{2}, w_{3}, 0\right)=$ $\left(a v_{1}+b w_{1}, a v_{2}+b w_{2}, a v_{3}+b w_{3}, 0\right)$ Vector!
- $P+\mathbf{V}=\left(p_{1}, p_{2}, p_{3}, 1\right)+\left(v_{1}, v_{2}, v_{3}, 0\right)=$

$$
=\left(p_{1}+v_{1}, p_{2}+v_{2}, p_{3}+v_{3}, 1\right)
$$

Point!

Linear combination of points

Points P, R scalars f, g :

$$
\begin{aligned}
f P+g R & =f\left(p_{1}, p_{2}, p_{3}, 1\right)+g\left(r_{1}, r_{2}, r_{3}, 1\right) \\
& =\left(f p_{1}+g r_{1}, f p_{2}+g r_{2}, f p_{3}+g r_{3}, f+g\right)
\end{aligned}
$$

What is this?

Linear combination of points

Points P, R scalars f, g :

$$
\begin{aligned}
f P+g R & =f\left(p_{1}, p_{2}, p_{3}, 1\right)+g\left(r_{1}, r_{2}, r_{3}, 1\right) \\
& =\left(f p_{1}+g r_{1}, f p_{2}+g r_{2}, f p_{3}+g r_{3}, f+g\right)
\end{aligned}
$$

What is this?

- If $(f+g)=0$ then vector!
- If $(f+g)=1$ then point!

Affine combinations of points

Definition:

Points $P_{i}: i=1, \ldots, n$
Scalars $f_{:}: i=1, \ldots, n$

$$
f_{1} P_{1}+\ldots+f_{n} P_{n} \quad \text { iff } \quad f_{1}+\ldots+f_{n}=1
$$

Example: $0.5 \mathrm{P}_{1}+0.5 \mathrm{P}_{2}$

Geometric explanation

Recap

Vector spaces
Dot product
Cross product
Coordinate systems
Homogeneous representations of points and vectors

Matrices

Rectangular arrangement of elements:

$$
\begin{aligned}
& A_{3 \times 3}=\left(\begin{array}{ccc}
-1 & 2.0 & 0.5 \\
0.2 & -4.0 & 2.1 \\
3 & 0.4 & 8.2
\end{array}\right) \\
& A=\left(A_{i j}\right)
\end{aligned}
$$

Special square matrices

Symmetric: $\left(A_{i j}\right)_{n \times n}=\left(A_{i j}\right)_{n \times n}$

Zero: $\boldsymbol{A}_{i j}=0$, for all i, j
Identity: $I_{n}=\left\{\begin{array}{l}I_{i j}=1, \text { for all } i \\ I_{i j}=0 \text { for } i \neq j\end{array}\right.$

Operations with matrices

Addition:

$$
A_{m \times n}+B_{m \times n}=\left(a_{i j}+b_{i j}\right)
$$

Propertiles:

1. $A+B=B+A$.
2. $A+(B+C)=(A+B)+C$.
3. $f(A+B)=f A+f B$.
4. Transpose: $A^{T}=\left(a_{i j}\right)^{T}=\left(a_{j i}\right)$.

Multiplication

Definition:

Properties:

$$
\begin{aligned}
C_{m \times l} & =A_{m \times n} B_{n \times r} \\
\left(C_{i j}\right) & =\left(\sum_{k}^{n} a_{i k} b_{k j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } A B \neq B A . \\
& \text { 2. } A(B C)=(A B) C . \\
& \text { 3. } f(A B)=(f A) B . \\
& \text { 4. } A(B+C)=A B+A C \text {, } \\
& (B+C) A=B A+C A . \\
& \text { 5. }(A B)^{T}=B^{T} A^{T} .
\end{aligned}
$$

Inverse of a square matrix

Definition

$\mathrm{MM}^{-1}=\mathrm{M}^{-1} \mathrm{M}=\mathrm{I}$

Important property
$(A B)^{-1}=B^{-1} A^{-1}$

Convention

Vectors and points are represented as column matrices.

Dot product as a matrix multiplication

A vector is a column matrix
$\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{T} \mathbf{b}$

$$
\begin{aligned}
& =\left(a_{1}, a_{2}, a_{3}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
& =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{aligned}
$$

Lines and Planes

Lines

Line (in 2D)

- Explicit

$$
y=\frac{d y}{d x}\left(x-x_{0}\right)+y_{0}
$$

- Implicit

$$
\begin{aligned}
& F(x, y)=\left(x-x_{0}\right) d y-\left(y-y_{0}\right) d x \\
& \text { if } \quad F(x, y)=0 \text { then }(x, y) \text { is on line } \\
& F(x, y)>0 \quad(x, y) \text { is below line } \\
& F(x, y)<0 \quad(x, y) \text { is above line }
\end{aligned}
$$

- Parametric (extends to 3D)

$$
\begin{gathered}
x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
y(t)=y_{0}+t\left(y_{1}-y_{0}\right) \\
t \in[0,1] \\
\\
P(t)=P_{0}+t\left(P_{1}-P_{0}\right), \text { or } \\
P(t)=(1-t) P_{0}+t P_{1}
\end{gathered}
$$

Planes

Plane equations

Implicit
$F(x, y, z)=A x+B y+C z+D=\mathbf{N} \cdot P+D$ Points on Plane $F(x, y, z)=0$

Parametric

$$
\operatorname{Plane}(s, t)=P_{0}+s\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{0}\right)
$$

P_{0}, P_{1}, P_{2} not colinear
or

$\operatorname{Plane}(s, t)=(1-s-t) P_{0}+s P_{1}+t P_{2}$
$\operatorname{Plane}(s, t)=P_{0}+s V_{1}+t V_{2}$ where V_{1}, V_{2} basis vectors
Explicit

$$
z=-(A / C) x-(B / C) y-D / C, C \neq 0
$$

