
CS 4204 Computer Graphics

OpenGL shading andOpenGL shading and blendingblending

Yong CaoYong Cao

Virginia TechVirginia Tech

Objectives

Introduce the OpenGL shading functionsIntroduce the OpenGL shading functions

Discuss polygonal shadingDiscuss polygonal shading

•• FlatFlat

•• SmoothSmooth

•• GouraudGouraud

Discuss blending in OpenGLDiscuss blending in OpenGL

Steps in OpenGL shading

•• Enable shading and select modelEnable shading and select model

•• Specify Specify normalsnormals

•• Specify material propertiesSpecify material properties

•• Specify lightsSpecify lights

Normals

In OpenGL the normal vector is part of the stateIn OpenGL the normal vector is part of the state

Set bySet by glNormalglNormal*()*()

•• glNormal3f(x, y, z);glNormal3f(x, y, z);

•• glNormal3fv(p);glNormal3fv(p);

Usually we want to set the normal to have unit length soUsually we want to set the normal to have unit length so

cosine calculations are correctcosine calculations are correct

•• Length can be affected by transformationsLength can be affected by transformations

•• Note that scaling does not preserved lengthNote that scaling does not preserved length

•• glEnable(GL_NORMALIZEglEnable(GL_NORMALIZE)) allows for allows for autonormalizationautonormalization at a at a

performance penaltyperformance penalty

Normal for Triangle

p0

pp11

p2

n

plane n ·(p - p0) = 0

n = (p2 - p0) (p1 - p0)

normalize n n/ |n|

p

Note that right-hand rule determines outward face

Enabling Shading

••Shading calculations are enabled byShading calculations are enabled by

•• glEnableglEnable(GL_LIGHTING)(GL_LIGHTING)

•• Once lighting is enabled, Once lighting is enabled, glColorglColor() ignored() ignored

••Must enable each light source individuallyMust enable each light source individually

•• glEnableglEnable((GL_LIGHTiGL_LIGHTi)) i=0,1 i=0,1……....

••Can choose light model parametersCan choose light model parameters

•• glLightModeliglLightModeli(parameter, GL_TRUE)(parameter, GL_TRUE)

–– GL_LIGHT_MODEL_LOCAL_VIEWER GL_LIGHT_MODEL_LOCAL_VIEWER do not use simplifying distantdo not use simplifying distant

viewer assumption in calculationviewer assumption in calculation

–– GL_LIGHT_MODEL_TWO_SIDED GL_LIGHT_MODEL_TWO_SIDED shades both sides of polygonsshades both sides of polygons

independentlyindependently

Defining a Point Light Source

For each light source, we can set an RGBA for theFor each light source, we can set an RGBA for the

diffuse, diffuse, specularspecular, and ambient components, and for the, and ambient components, and for the

positionposition

GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};

GL float ambient0[]={1.0, 0.0, 0.0, 1.0};

GL float specular0[]={1.0, 0.0, 0.0, 1.0};

Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightv(GL_LIGHT0, GL_POSITION, light0_pos);

glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);

glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

Distance and Direction

The source colors are specified in RGBAThe source colors are specified in RGBA

The position is given in homogeneous coordinatesThe position is given in homogeneous coordinates

•• If w =1.0, we are specifying a finite locationIf w =1.0, we are specifying a finite location

•• If w =0.0, we are specifying a parallel source with the givenIf w =0.0, we are specifying a parallel source with the given

direction vectordirection vector

The coefficients in the distance terms are by default a=1.0The coefficients in the distance terms are by default a=1.0

(constant terms), b=c=0.0 (linear and quadratic terms(constant terms), b=c=0.0 (linear and quadratic terms).).

Change byChange by

a= 0.80;

glLightf(GL_LIGHT0, GLCONSTANT_ATTENUATION, a);

Spotlights

Use Use glLightvglLightv to setto set

•• Direction Direction GL_SPOT_DIRECTIONGL_SPOT_DIRECTION

•• CutoffCutoff GL_SPOT_CUTOFF GL_SPOT_CUTOFF

•• AttenuationAttenuation GL_SPOT_EXPONENT GL_SPOT_EXPONENT

–– Proportional to Proportional to coscos

Global Ambient Light

Ambient light depends on color of lightAmbient light depends on color of light

sourcessources

•• A red light in a white room will cause a red ambientA red light in a white room will cause a red ambient

term that disappears when the light is turned offterm that disappears when the light is turned off

OpenGL also allows a global ambient termOpenGL also allows a global ambient term

that is often helpful for testingthat is often helpful for testing

•• glLightModelfvglLightModelfv(GL_LIGHT_MODEL_AMBIENT,(GL_LIGHT_MODEL_AMBIENT,

global_ambient)global_ambient)

Moving Light Sources

Light sources are geometric objects whoseLight sources are geometric objects whose

positions or directions are affected by the model-positions or directions are affected by the model-

view matrixview matrix

Depending on where we place the positionDepending on where we place the position

(direction) setting function, we can(direction) setting function, we can

•• Move the light source(s) with the object(s)Move the light source(s) with the object(s)

•• Fix the object(s) and move the light source(s)Fix the object(s) and move the light source(s)

•• Fix the light source(s) and move the object(s)Fix the light source(s) and move the object(s)

•• Move the light source(s) and object(s) independentlyMove the light source(s) and object(s) independently

Material Properties

Material properties are also part of the OpenGL state andMaterial properties are also part of the OpenGL state and

match the terms in the modified match the terms in the modified Phong Phong modelmodel

Set by Set by glMaterialvglMaterialv()()

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};

GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};

GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};

GLfloat shine = 100.0

glMaterialf(GL_FRONT, GL_AMBIENT, ambient);

glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);

glMaterialf(GL_FRONT, GL_SPECULAR, specular);

glMaterialf(GL_FRONT, GL_SHININESS, shine);

Front and Back Faces

The default is shade only front faces which works correctlyThe default is shade only front faces which works correctly

for convex objectsfor convex objects

If we set two sided lighting, OpenGL will shade both sides ofIf we set two sided lighting, OpenGL will shade both sides of

a surfacea surface

Each side can have its own properties which are set byEach side can have its own properties which are set by

using using GL_FRONTGL_FRONT, , GL_BACKGL_BACK, or , or GL_FRONT_AND_BACKGL_FRONT_AND_BACK in in

glMaterialfglMaterialf

back faces not visible back faces visible

Emissive Term

••We can simulate a light source in OpenGL byWe can simulate a light source in OpenGL by

giving a material an emissive componentgiving a material an emissive component

••This component is unaffected by any sources orThis component is unaffected by any sources or

transformationstransformations

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);

glMaterialf(GL_FRONT, GL_EMISSION, emission);

Transparency

••Material properties are specified as RGBA valuesMaterial properties are specified as RGBA values

••The A value can be used to make the surfaceThe A value can be used to make the surface

translucenttranslucent

••The default is that all surfaces are opaqueThe default is that all surfaces are opaque

regardless of Aregardless of A

••Later we will enable blending and use this featureLater we will enable blending and use this feature

Efficiency

••Because material properties are part of the state, if weBecause material properties are part of the state, if we
change materials for many surfaces, we can affectchange materials for many surfaces, we can affect
performanceperformance

••We can make the code cleaner by defining a materialWe can make the code cleaner by defining a material
structure and setting all materials during initializationstructure and setting all materials during initialization

••We can then select a material by a pointerWe can then select a material by a pointer

typedef struct materialStruct {

 GLfloat ambient[4];

 GLfloat diffuse[4];

 GLfloat specular[4];

 GLfloat shineness;

} MaterialStruct;

Polygonal Shading

Shading calculations are done for each vertexShading calculations are done for each vertex

•• Vertex colors become vertex shadesVertex colors become vertex shades

By default, vertex shades are interpolated acrossBy default, vertex shades are interpolated across

the polygonthe polygon

•• glShadeModelglShadeModel(GL_SMOOTH);(GL_SMOOTH);

If we use If we use glShadeModelglShadeModel(GL_FLAT);(GL_FLAT); the color at the the color at the

first vertex will determine the shade of the wholefirst vertex will determine the shade of the whole

polygonpolygon

Polygon Normals

••Polygons have a single normalPolygons have a single normal

•• Shades at the vertices as computed by the Shades at the vertices as computed by the Phong Phong model can bemodel can be

almost samealmost same

•• Identical for a distant viewer (default) or if there is no Identical for a distant viewer (default) or if there is no specularspecular

componentcomponent

••Consider model of sphereConsider model of sphere

••Want different normal atWant different normal at

each vertexeach vertex

Smooth Shading

We can set a new normal atWe can set a new normal at

each vertexeach vertex

Easy for sphere modelEasy for sphere model

•• If centered at originIf centered at origin n n = = pp

Now smooth shading worksNow smooth shading works

Note Note silhouette edgesilhouette edge

Mesh Shading

The previous example is not general because weThe previous example is not general because we

knew the normal at each vertex analyticallyknew the normal at each vertex analytically

For polygonal models, For polygonal models, Gouraud Gouraud proposed we useproposed we use

the average of the the average of the normals normals around a mesh vertexaround a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Gouraud and Phong Shading

GouraudGouraud Shading Shading

•• Find average normal at each vertex (vertex Find average normal at each vertex (vertex normalsnormals))

•• Apply modified Apply modified PhongPhong model at each vertex model at each vertex

•• Interpolate vertex shades across each polygonInterpolate vertex shades across each polygon

PhongPhong shading shading

•• Find vertex Find vertex normalsnormals

•• Interpolate vertex Interpolate vertex normalsnormals across edges across edges

•• Interpolate edge Interpolate edge normalsnormals across polygon across polygon

•• Apply modified Apply modified PhongPhong model at each fragment model at each fragment

Comparison

If the polygon mesh approximates surfaces with a highIf the polygon mesh approximates surfaces with a high

curvatures, curvatures, Phong Phong shading may look smooth while shading may look smooth while GouraudGouraud

shading may show edgesshading may show edges

Phong Phong shading requires much more work than shading requires much more work than GouraudGouraud

shadingshading

•• Until recently not available in real time systemsUntil recently not available in real time systems

•• Now can be done using fragment Now can be done using fragment shaders shaders (see Chapter 9)(see Chapter 9)

Both need data structures to represent meshes so we canBoth need data structures to represent meshes so we can

obtain vertex obtain vertex normalsnormals

Opacity and Transparency

Opaque surfaces permit no light to pass throughOpaque surfaces permit no light to pass through

Transparent surfaces permit all light to passTransparent surfaces permit all light to pass

Translucent surfaces pass some lightTranslucent surfaces pass some light

 translucency = 1 translucency = 1 –– opacity (opacity ())

opaque surface =1

Physical Models

Dealing with translucency in a physically correctDealing with translucency in a physically correct

manner is difficult due tomanner is difficult due to

•• the complexity of the internal interactions of light andthe complexity of the internal interactions of light and

mattermatter

•• Using a pipeline Using a pipeline rendererrenderer

Writing Model

Use A component of RGBA (or Use A component of RGBA (or RGBRGB) color to store opacity) color to store opacity

During rendering we can expand our writing model to useDuring rendering we can expand our writing model to use

RGBA valuesRGBA values

Color Buffer

destination

component

blend

destination blending

 factor

source blending factor
 source

component

Blending Equation

We can define source and destination blending factorsWe can define source and destination blending factors

for each RGBA componentfor each RGBA component

 s s = [= [ssrr, , ssgg, , ssbb, , ss]]

 d d = [= [ddrr, d, dgg, d, dbb, , dd]]

Suppose that the source and destination colors areSuppose that the source and destination colors are

 b b = [= [bbrr, , bbgg, b, bbb, , bb]]

 c c = [= [ccrr, c, cgg, , ccbb, c, c]]

Blend asBlend as

cc’’ = [= [bbr r ssrr+ + ccr r ddrr, , bbg g ssgg+ c+ cg g ddg g , b, bb b ssbb+ + ccb b ddb b , , bb ss + c+ c dd]]

OpenGL Blending and

Compositing

Must enable blending and pick source and destinationMust enable blending and pick source and destination

factorsfactors

 glEnableglEnable(GL_BLEND)(GL_BLEND)

 glBlendFuncglBlendFunc((source_factorsource_factor,,

 destination_factor) destination_factor)

Only certain factors supportedOnly certain factors supported

•• GL_ZERO, GL_ONEGL_ZERO, GL_ONE

•• GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHAGL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA

•• GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHAGL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

•• See Redbook for complete listSee Redbook for complete list

Example

••Suppose that we start with the opaque background colorSuppose that we start with the opaque background color

(R(R00,G,G00,B,B00,1),1)

•• This color becomes the initial destination colorThis color becomes the initial destination color

••We now want to blend in a translucent polygon withWe now want to blend in a translucent polygon with

color (Rcolor (R11,G,G11,B,B11,, 11))

••Select Select GL_SRC_ALPHAGL_SRC_ALPHA and and GL_ONE_MINUS_SRC_ALPHAGL_ONE_MINUS_SRC_ALPHA as as

the source and destination blending factorsthe source and destination blending factors

•• R R’’
1 1 = = 11 R R1 1 +(1- +(1- 11) R) R0, 0, …………

••Note this formula is correct if polygon is either opaqueNote this formula is correct if polygon is either opaque

or transparentor transparent

Clamping and Accuracy

••All the components (RGBA) are clamped and stayAll the components (RGBA) are clamped and stay

in the range (0,1)in the range (0,1)

••However, in a typical system, RGBA values areHowever, in a typical system, RGBA values are

only stored to 8 bitsonly stored to 8 bits

•• Can easily loose accuracy if we add many components togetherCan easily loose accuracy if we add many components together

•• Example: add together n imagesExample: add together n images

–– Divide all color components by n to avoid clampingDivide all color components by n to avoid clamping

–– Blend with source factor = 1, destination factor = 1Blend with source factor = 1, destination factor = 1

–– But division by n loses bitsBut division by n loses bits

Order Dependency

Is this image correct?Is this image correct?

•• Probably notProbably not

•• Polygons are renderedPolygons are rendered

in the order they passin the order they pass

down the pipelinedown the pipeline

•• Blending functionsBlending functions

are order dependentare order dependent

Opaque and Translucent

Polygons

••Suppose that we have a group of polygons some of whichSuppose that we have a group of polygons some of which

are opaque and some translucentare opaque and some translucent

••How do we use hidden-surface removal?How do we use hidden-surface removal?

••Opaque polygons block all polygons behind them andOpaque polygons block all polygons behind them and

affect the depth bufferaffect the depth buffer

••Translucent polygons should not affect depth bufferTranslucent polygons should not affect depth buffer

•• Render with Render with glDepthMaskglDepthMask(GL_FALSE)(GL_FALSE) which makes depth buffer which makes depth buffer

read-onlyread-only

••Sort polygons first to remove order dependencySort polygons first to remove order dependency

