CS 4204 Computer Graphics

OpenGL shading and blending

Yong Cao
Virginia Tech

Objectives

ntroduce the OpenGL shading functions

Discuss polygonal shading
» Fat
¢ Smooth

» Gouraud

Discuss blending Iin OpenGL

Steps in OpenGL shading

Enable shading and select model
Specify normals

Specify material properties

Specify lights

Normals

In OpenGL the normal vector is part of the state

Set by gINormal*()
- gINormal3f(x, vy, 2);
= glINormal3fv(p);

Usually we want to set the normal to have unit length so
cosine calculations are correct

» Length can be affected by transformations
» Note that scaling does not preserved length

= glEnable(GL_NORMALIZE) allows for autonormalization at a
performance penalty

Normal for Triangle

plane n-(p-p,)=0

N =(P2-Py) X(P1- Po)

normalize n < n/|n| Po

Note that right-hand rule determines outward face

Enabling Shading

*Shading calculations are enabled by
= glEnable(GL_LIGHTING)

» Once lighting is enabled, glColor() ignored
Must enable each light source individually
- glEnable(GL_LIGHT1) i=0,1
«Can choose light model parameters
= glLightModelr(parameter, GL _TRUE)

— GL_LIGHT _MODEL_LOCAL_VIEWER do not use simplifying distant
viewer assumption in calculation

— GL_LIGHT_MODEL_TWO_SIDED shades both sides of polygons
Independently

Defining a Point Light Source

For each light source, we can set an RGBA for the
diffuse, specular, and ambient components, and for the
position

GL float diffuseO[]={1.0,
GL float ambientO[]={1.0

0.0
0.0

GL float specularO[]={1.0, 0.0,
GIfloat lightO pos[]={1.0, 2.0,

glEnable(GL_LIGHTING);

glEnable(GL _LIGHTO);

glLightv(GL _LIGHTO, GL_POSITION, lightO_pos);
glLightv(GL _LIGHTO, GL_AMBIENT, ambientO);
glLightv(GL _LIGHTO, GL DIFFUSE, diffuseO);
glLightv(GL _LIGHTO, GL_SPECULAR, specular0O);

Distance and Direction

The source colors are specified in RGBA
The position is given in homogeneous coordinates
« If w=1.0, we are specifying a finite location

» If w=0.0, we are specifying a parallel source with the given
direction vector
The coefficients In the distance terms are by default a=1.0

(constant terms), b=c=0.0 (linear and quadratic terms).
Change by

a= 0.80;
glLightf(GL_LIGHTO, GLCONSTANT_ATTENUATION, a);

Spotlights

Use glLightv to set

* Direction GL_SPOT_DIRECTION
» Cutoff GL_SPOT CUTOFF 6

» Attenuation GL_SPOT EXPONENT

— Proportional to cos%¢

Global Ambient Light

Ambient light depends on color of light
sources

« A red light in a white room will cause a red ambient
term that disappears when the light is turned off

OpenGL also allows a global ambient term
that I1s often helpful for testing

< glLightModelfv(GL _LIGHT MODEL_ AMBIENT,
global _ambrent)

Moving Light Sources

Light sources are geometric objects whose
positions or directions are affected by the model-
view matrix

Depending on where we place the position
(direction) setting function, we can

» Move the light source(s) with the object(s)

s Fix the object(s) and move the light source(s)

» Fix the light source(s) and move the object(s)

» Move the light source(s) and object(s) independently

Material Properties

Material properties are also part of the OpenGL state and
match the terms in the modified Phong model

Set by gIMaterialv()

GLfloat ambient|[]
GLfloat diffuse|]
GLfloat specular[] =
GLfloat shine = 100.0

gIMaterial f(GL_FRONT, GL_AMBIENT, ambient);
gIMateritalf(GL _FRONT, GL DIFFUSE, diffuse);
gIMatertal f(GL _FRONT, GL_ SPECULAR, specular);
gIMaterial f(GL_FRONT, GL_SHININESS, shine);

Front and Back Faces

The default is shade only front faces which works correctly
for convex objects

If we set two sided lighting, OpenGL will shade both sides of
a surface

Each side can have its own properties which are set by

using GL_FRONT, GL_BACK, or GL_FRONT _AND_BACK in
giMaterial T

QO s

back faces not visible back faces visible

Emissive Term

*\We can simulate a light source in OpenGL by
giving a material an emissive component

*This component Is unaffected by any sources or
transformations

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);
gIMaterial F(GL_FRONT, GL_EMISSION, emission);

Transparency

Material properties are specified as RGBA values

eThe A value can be used to make the surface
translucent

*The default is that all surfaces are opaque
regardless of A

o ater we will enable blending and use this feature

Efficiency

Because material properties are part of the state, If we
change materials for many surfaces, we can affect
performance

*\We can make the code cleaner by defining a material
structure and setting all materials during initialization

typedef struct materialStruct {
GLfloat ambient[4];
GLfloat diffuse[4];
GLfloat specular|[4];
GLfloat shineness;
} MaterialStruct;

\Ne can then select a material by a pointer

Polygonal Shading

Shading calculations are done for each vertex

» Vertex colors become vertex shades

By default, vertex shades are interpolated across
the polygon

= glShadeModel (GL_SMOOTH) ;

If we use glShadeModel (GL_FLAT); the color at the
first vertex will determine the shade of the whole

polygon

Polygon Normals

Polygons have a single normal

» Shades at the vertices as computed by the Phong model can be
almost same

|dentical for a distant viewer (default) or If there is no specular
component

sConsider model of sphere

\WVant different normal at
each vertex

Smooth Shading

We can set a new normal at
each vertex

Easy for sphere model

« If centered at originn =p
Now smooth shading works

Note silhouette edge

Mesh Shading

The previous example is not general because we
knew the normal at each vertex analytically

For polygonal models, Gouraud proposed we use
the average of the normals around a mesh vertex

n = (NytNy+Nng+tn,)/ [ny+n,+ng+ny|

Gouraud and Phong Shading

Gouraud Shading
* Find average normal at each vertex (vertex normals)
« Apply modified Phong model at each vertex
* Interpolate vertex shades across each polygon
Phong shading
Find vertex normals
Interpolate vertex normals across edges
Interpolate edge normals across polygon

Apply modified Phong model at each fragment

Comparison

If the polygon mesh approximates surfaces with a high
curvatures, Phong shading may look smooth while Gouraud

shading may show edges

Phong shading requires much more work than Gouraud
shading

» Until recently not available in real time systems

» Now can be done using fragment shaders (see Chapter 9)

Both need data structures to represent meshes so we can
obtain vertex normals

Opacity and Transparency

Opaqgue surfaces permit no light to pass through
Transparent surfaces permit all light to pass
Translucent surfaces pass some light

translucency = 1 — opacity (a)

opaqk surfac

Physical Models

Dealing with translucency in a physically correct
manner is difficult due to

* the complexity of the internal interactions of light and
matter

e Using a pipeline renderer

Writing Model

Use A component of RGBA (or RGBa) color to store opacity

During rendering we can expand our writing model to use
RGBA values

blend
11 "LS0UTCE blending factor | destination

component component

Blending Equation

We can define source and destination blending factors
for each RGBA component

5= SRS sns ol
d=[d, d, dy, d,]
Suppose that the source and destination colors are
b = [b,, by, by, b,
c = [c,, ¢y Cp C,
Blend as

¢’ = [b,s+c.d, b,;S,+Cc,dy, byS,+Cc,dy, b,S,+¢C,d,]

g) =)) a - o

OpenGL Blending and
Compositing

Must enable blending and pick source and destination
factors

glEnable(GL_BLEND)
glBlendFunc(source_ factor,
destination_factor)
Only certain factors supported
- GL_ZERO, GL_ONE
= GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
- GL_DST_ALPHA, GL_ONE_MINUS DST_ALPHA

« See Redbook for complete list

Example

sSuppose that we start with the opaque background color
(Ry,Gg,Bg:1)

 This color becomes the initial destination color

\We now want to blend in a translucent polygon with
color (R;,G{,B,,&)

«Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA as
the source and destination blending factors

" Ri= oy R +H(1-) Ry

eNote this formula Is correct If polygon Is either opaque
or transparent

Clamping and Accuracy

*All the components (RGBA) are clamped and stay
In the range (0,1)
sHowever, In atypical system, RGBA values are
only stored to 8 bits
» (Can easlly loose accuracy If we add many components together
 Example: add together n images

— Divide all color components by n to avoid clamping

— Blend with source factor = 1, destination factor = 1

— But division by n loses bits

Order Dependency

Is this Image correct?
* Probably not

« Polygons are rendered
In the order they pass
down the pipeline

» Blending functions

are order dependent

Opaque and Translucent
Polygons

eSuppose that we have a group of polygons some of which
are opaque and some translucent

eHow do we use hidden-surface removal?

Opague polygons block all polygons behind them and
affect the depth buffer

*Translucent polygons should not affect depth buffer

Render with glDepthMask(GL _FALSE) which makes depth buffer
read-only

*Sort polygons first to remove order dependency

