CS 4204 Computer Graphics

Texture Mapping

Yong Cao
Virginia Tech

Objectives

Introduce Mapping Methods
» Texture Mapping

* Environment Mapping

 Bump Mapping

Consider basic strategies

» Forward vs backward mapping

» Point sampling vs area averaging

The Limits of Geometric
Modeling

Although graphics cards can render over
10 million polygons per second, that
number Is insufficient for many
phenomena

» Clouds
» (Grass
 Terrain

» SkKin

Modeling an Orange

Consider the problem of modeling an orange (the
fruit)

Start with an orange-colored sphere
» Too simple

Replace sphere with a more complex shape

» Does not capture surface characteristics (small dimples)

» Takes too many polygons to model all the dimples

Modeling an Orange (2)

Take a picture of a real orange, scan it, and
“paste” onto simple geometric model

» This process Is known as texture mapping

Still might not be sufficient because
resulting surface will be smooth

* Need to change local shape

« Bump mapping

Three Types of Mapping

Texture Mapping

« Uses images to fill inside of polygons

Environment (reflection mapping)

» Uses a picture of the environment for texture maps
» Allows simulation of highly specular surfaces
Bump mapping

» Emulates altering normal vectors during the rendering
Process

Texture Mapping

geometric model texture mapped

Environment Mapping

right front

hattom

Bump Mapping

Where does mapping take
place?

Mapping techniques are implemented at the end of the
rendering pipeline

» Very efficient because few polygons make it past the clipper

Geometric - N - :
Rasterization Dlsploy
processing

operations

Is it simple?

Although the idea Is simple---map an image
to a surface---there are 3 or 4 coordinate
systems involved

Coordinate Systems

Parametric coordinates

 May be used to model curves and surfaces
Texture coordinates

» Used to identify points in the image to be mapped
ODbject or World Coordinates

» Conceptually, where the mapping takes place

Window Coordinates

» Where the final image Is really produced

Texture Mapping

parametric coordinates

f
EEP—S

xture coordinates

. window coo
world coordinates

Mapping Functions

Basic problem is how to find the maps

Consider mapping from texture coordinates
to a point a surface

Appear to need three functions
X = X(s,1)

y = y(s,t)
Z=2(s,1)

But we really want
{0 go the other way.

Backward Mapping

We really want to go backwards

 Given a pixel, we want to know to which point on an object it
corresponds

» Glven a point on an object, we want to know to which point in
the texture it corresponds

Need a map of the form
s = s(X,y,2)

t =1t(x,y,2)
Such functions are difficult to find In general

Two-part mapping

One solution to the mapping problem is to first map
the texture to a simple intermediate surface

Example: map to cylinder

Cylindrical Mapping

parametric cylinder

X=rcos2mu
y =rsin 2mu
Z =V/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

S=u
t=v

maps from texture space

Spherical Map

We can use a parametric sphere

X =T COS 27tu
Yy = sin 2mu coSs 2mv
Z =T SIn 27U Sin 2wtV

In a similar manner to the cylinder
but have to decide where to put
the distortion

Spheres are used in environmental maps

Box Mapping

Easy to use with simple orthographic projection

Also used in environment maps

-

Second Mapping

Map from intermediate object to actual object
« Normals from intermediate to actual
« Normals from actual to intermediate

» \/ectors from center of intermediate
actual intermediate

())

Aliasing

Point sampling of the texture can lead to aliasing
errors

(or X,y,z) sf

Area Averaging

A better but slower option Is to use area averaging

preimage

Objectives

Introduce the OpenGL texture functions and
options

Basic Stragegy

Three steps to applying a texture

1. specify the texture
— read or generate image
— assign to texture

— enable texturing
2. assign texture coordinates to vertices
— Proper mapping function is left to application

3. Specify texture parameters

— wrapping, filtering

Texture Mapping

Texture Example

The texture (below) Is a 256
X 256 Image that has been
mapped to a rectangular
polygon which Is viewed In
perspective

Texture Mapping and the
OpenGL Pipeline

Images and geometry flow through separate
pipelines that join at the rasterizer

» “complex” textures do not affect geometric complexity

rasterizer

vertices —* geometry pipeline \

image ——»

pixel pipeline

Specifying a Texture Image

Define a texture image from an array of
texels (texture elements) in CPU memory

Glubyte my texels[512][512];
Define as any other pixel map
» Scanned image
» Generate by application code
Enable texture mapping
= glEnable(GL_TEXTURE 2D)

» OpenGL supports 1-4 dimensional texture maps

Define Image as a Texture

glTexImage2D(target, level, components,
w, h, border, format, type, texels);

target: type of texture, e.g. GL_TEXTURE_ 2D

level: used for mipmapping (discussed later)

components: elements per texel

w, h: width and height of texels In pixels
border: used for smoothing (discussed later)
format and type: describe texels

texels: pointer to texel array

glTexImage2D(GL_TEXTURE 2D, 0, 3, 512, 512, 0, GL RGB,
GL_UNSIGNED _BYTE, my_texels);

Converting A Texture Image

OpenGL requires texture dimensions to be powers of 2

If dimensions of Image are not powers of 2

gluScalelmage(format, w_in, h_in,
type _1n, *data in, w_out, h_out,
type out, *data out);

= data_In IS source image

= data_out Is for destination image

Image interpolated and filtered during scaling

Mapping a Texture

Based on parametric texture coordinates

glTexCoord*() specified at each vertex

Texture Space Object Space
(s, t) = (0.2, 0.8)

Typical Code

glBegin(GL_POLYGON) ;

glColor3f(r0, g0, b0); //1f no shading used
gINormal3f(u0, vO, wO0); // 1f shading used
glTexCoord2f(sO, tO);

glVertex3f(x0, y0, z0);

glColor3f(rli, gl, bl);

giNormal3f(ul, vi, wl);

glTexCoord2f(sl, tl);

glVertex3f(x1, yl, z1);

glEndQ);

Note that we can use vertex arrays to increase efficiency

Interpolation

OpenGL uses interpolation to find proper texels

from specified texture coordinates
texture stretched

Can be distortions over trapezoid
good selection poor selection showing effects of
of tex coordinates of tex coordinates pilinear interpolation

inlinni
Ail111111

Texture Parameters

OpenGL has a variety of parameters that determine
how texture is applied

Wrapping parameters determine what happens if s and t are
outside the (0,1) range

Filter modes allow us to use area averaging instead of point
samples

Mipmapping allows us to use textures at multiple resolutions

Environment parameters determine how texture mapping
Interacts with shading

Wrapping Mode

Clamping: if st>1use 1, if s,t <O use O

Wrapping: use s,t modulo 1

glTexParameteri(GL _TEXTURE_ 2D,
GL _TEXTURE _WRAP_S, GL_CLAMP)

glTexParameteri(GL _TEXTURE 2D,
GL_TEXTURE WRAP_T, GL_REPEAT)

GL_REPEAT GL_CLAMP
texture wrapping wrapping

Magnification and Minification

More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering

(2 x 2 filter) to obtain texture values

L]
Texture Polygon Texture Polygon
Magnification Minification

L1

Filter Modes

Modes determined by
 glTexParameteri(target, type, mode)

gl TexParameteri(GL_TEXTURE 2D, GL_TEXURE_MAG FILTER,
GL_NEAREST):

gl TexParameteri (GL_TEXTURE_2D, GL TEXURE_MIN_FILTER,
GL_LINEAR):

Note that linear filtering requires a border of an
extra texel for filtering at edges (border = 1)

Mipmapped Textures

Mipmapping allows for prefiltered texture maps of
decreasing resolutions

Lessens interpolation errors for smaller textured objects
Declare mipmap level during texture definition
glTexImage2D(GL_TEXTURE_*D, level, ..)

GLU mipmap builder routines will build all the textures
frem a given image

gluBur ld*DMrpmaps(..)

Example

point
sampling

mipmapped
point
sampling

BN
ot
/% ”

s

i
)

S\7
i

>

linear
filtering

mipmapped
linear
filtering

Texture Functions

Controls how texture is applied
glTexEnv{fi}[v](GL _TEXTURE ENV, prop, param)

GL_TEXTURE_ENV. MODE modes
= GL MODULATE: modulates with computed shade
= GL BLEND: bhlends with an environmental color

= GL REPLACE: use only texture color
= GL(GL _TEXTURE_ENV, GL_TEXTURE ENV_MODE, GL MODULATE);

Set blend color with GL_TEXTURE ENV. COLOR

Perspective Correction Hint

Texture coordinate and color interpolation
 either linearly in screen space

» or using depth/perspective values (slower)

Noticeable for polygons “on edge”
glHint(GL_PERSPECTIVE_CORRECTION HINT, hint)

where hint Is one of

— GL_DONT_CARE
— GL_NICEST
— GL_FASTEST

Generating Texture Coordinates

OpenGL can generate texture coordinates automatically
glTexGen{ifd}[Vv] O
specify a plane
» generate texture coordinates based upon distance from the plane

generation modes
= GL_OBJECT_ LINEAR

= GL_EYE LINEAR
= GL_SPHERE_MAP (used for environmental maps)

Texture Objects

Texture is part of the OpenGL state

* |f we have different textures for different objects, OpenGL
will be moving large amounts data from processor memory.
to texture memory

Recent versions of OpenGL have texture objects
> 0ne Image per texture object

» Texture memory can hold multiple texture objects

Applying Textures Il

specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

Supply texture coordinates for vertex

» coordinates can also be generated

