
CS 4204 Computer Graphics

Channel Data and Channel Data and KeyframingKeyframing
AnimationAnimation

Yong CaoYong Cao
Virginia TechVirginia Tech

Animation
When we speak of an When we speak of an ‘‘animationanimation’’, we , we

refer to the data required to pose a refer to the data required to pose a
skeleton over some range of timeskeleton over some range of time

This should include information to This should include information to
specify all necessary DOF values over specify all necessary DOF values over
the entire time rangethe entire time range

Sometimes, this is referred to as a Sometimes, this is referred to as a
‘‘clipclip’’ or even a or even a ‘‘movemove’’ (as (as ‘‘animationanimation’’
can be ambiguous)can be ambiguous)

Pose Space
If a character has N DOFs, then a pose can be thought of as a poIf a character has N DOFs, then a pose can be thought of as a point int

in Nin N--dimensional pose spacedimensional pose space

An animation can be thought of as a point moving through pose An animation can be thought of as a point moving through pose
space, or alternately as a fixed curve in pose spacespace, or alternately as a fixed curve in pose space

‘‘OneOne--shotshot’’ animations are an open curve, while animations are an open curve, while ‘‘looploop’’ animations animations
form a closed loopform a closed loop

Generally, we think of an individual Generally, we think of an individual ‘‘animationanimation’’ as being a as being a
continuous curve, but therecontinuous curve, but there’’s no strict reason why we couldns no strict reason why we couldn’’t have t have
discontinuities (cuts)discontinuities (cuts)

[]Nφφφ ...21=Φ

()tΦΦ =

Channels
If the entire animation is an NIf the entire animation is an N--dimensional curve in pose dimensional curve in pose

space, we can separate that into N 1space, we can separate that into N 1--dimensional curves, one dimensional curves, one
for each DOFfor each DOF

We call these We call these ‘‘channelschannels’’
A channel stores the value of a scalar function over some 1D A channel stores the value of a scalar function over some 1D

domain (either finite or infinite)domain (either finite or infinite)
A channel will refer to preA channel will refer to pre--recorded or prerecorded or pre--animated data for animated data for

a DOF, and does not refer to the more general case of a DOF a DOF, and does not refer to the more general case of a DOF
changing over time (which includes physics, procedural changing over time (which includes physics, procedural
animationanimation……))

()tii φφ =

Channels

tmin tmax
Time

Value

Channels
As a channel represents preAs a channel represents pre--recorded data, recorded data,

evaluating the channel for a particular value of evaluating the channel for a particular value of tt
should always return the same resultshould always return the same result

We allow channels to be discontinuous in value, We allow channels to be discontinuous in value,
but not in timebut not in time

Most of the time, a channel will be used to Most of the time, a channel will be used to
represent a DOF changing over time, but represent a DOF changing over time, but
occasionally, we will use the same technology to occasionally, we will use the same technology to
relate some arbitrary variable to some other relate some arbitrary variable to some other
arbitrary variable (i.e., torque vs. RPM curve of an arbitrary variable (i.e., torque vs. RPM curve of an
engineengine……))

Array of Channels
An animation can be stored as an array of channelsAn animation can be stored as an array of channels
A simple means of storing a channel is as an array of A simple means of storing a channel is as an array of

regularly spaced samples in timeregularly spaced samples in time
Using this idea, one can store an animation as a 2D array Using this idea, one can store an animation as a 2D array

of floats (of floats (NumDOFsNumDOFs x x NumFramesNumFrames))
However, if one wanted to use some other means of However, if one wanted to use some other means of

storing a channel, they could still store an animation as an storing a channel, they could still store an animation as an
array of channels, where each channel is responsible for array of channels, where each channel is responsible for
storing data however it wantsstoring data however it wants

Array of Poses

An alternative way to store an animation is An alternative way to store an animation is
as an array of posesas an array of poses

This also forms a 2D array of floats This also forms a 2D array of floats
((NumFramesNumFrames x x NumDOFsNumDOFs))

Which is better, poses or channels?Which is better, poses or channels?

Poses vs. Channels

Which is better?Which is better?

It depends on your requirements.It depends on your requirements.

The bottom line:The bottom line:
•• Poses are fasterPoses are faster

•• Channels are far more flexible and can potentially use Channels are far more flexible and can potentially use
less memoryless memory

Array of Poses
The array of poses method is about the fastest The array of poses method is about the fastest

possible way to playback animation datapossible way to playback animation data

A A ‘‘posepose’’ (vector of floats) is exactly what one (vector of floats) is exactly what one
needs in order to pose a rigneeds in order to pose a rig

Data is contiguous in memory, and can all be Data is contiguous in memory, and can all be
directly accessed from one addressdirectly accessed from one address

Array of Channels
As each channel is stored independently, they have the As each channel is stored independently, they have the

flexibility to take advantage of different storage options and flexibility to take advantage of different storage options and
maximize memory efficiencymaximize memory efficiency

Also, in an interactive editing situation, new channels can Also, in an interactive editing situation, new channels can
be independently created and manipulatedbe independently created and manipulated

However, they need to be independently evaluated to However, they need to be independently evaluated to
access the access the ‘‘current framecurrent frame’’, which takes time and implies , which takes time and implies
discontinuous memory accessdiscontinuous memory access

Poses vs. Channels
Array of poses is great if you just need to play back some Array of poses is great if you just need to play back some

relatively simple animation and you need maximum relatively simple animation and you need maximum
performance. This corresponds to many video gamesperformance. This corresponds to many video games

Array of channels is essential if you want flexibility for an Array of channels is essential if you want flexibility for an
animation system or are interested in generality over raw animation system or are interested in generality over raw
performanceperformance

Array of channels can also be useful in more sophisticated Array of channels can also be useful in more sophisticated
game situations or in cases where memory is more critical game situations or in cases where memory is more critical
than CPU performance (which is not uncommon)than CPU performance (which is not uncommon)

Animation Class
class class AnimationClipAnimationClip {{

Channel *Channel *m_Array_of_Channelsm_Array_of_Channels;;
void void EvaluateEvaluate(float(float time,Posetime,Pose &p);&p);
boolbool Load(constLoad(const char *filename);char *filename);

};};

class Channel {class Channel {
float *float *m_channel_datam_channel_data; ; // 1D array// 1D array
float float EvaluateEvaluate(float time);(float time);
boolbool Load(FILE*);Load(FILE*);

};};

Keyframe Channel
A channel can be stored as a sequence of keyframesA channel can be stored as a sequence of keyframes
Each keyframe has a time and a value and usually some Each keyframe has a time and a value and usually some

information describing the tangents at that locationinformation describing the tangents at that location
The curves of the individual The curves of the individual spans spans between the keys are between the keys are

defined by 1defined by 1--D interpolation (usually piecewise D interpolation (usually piecewise HermiteHermite))

class Keyframe;
class Channel {

float *m_keyframe_array;
float Evaluate(float time);
bool Load(FILE*);

};

Keyframe Channel

•

•

•

•
• •

•

Keyframe

Time

Value

Tangent In

Tangent Out

Keyframe (time,value)
•

Keyframe Tangents
Keyframes are usually drawn so that the incoming tangent Keyframes are usually drawn so that the incoming tangent

points to the left (earlier in time)points to the left (earlier in time)

The arrow drawn is just for visual representation and it The arrow drawn is just for visual representation and it
should be remembered that if the two arrows are exactly should be remembered that if the two arrows are exactly
opposite, that actually means the tangents are the same!opposite, that actually means the tangents are the same!

Also remember that we are only dealing with 1D curves Also remember that we are only dealing with 1D curves
now, so the tangent really just a slopenow, so the tangent really just a slope

Why Use Keyframes?
Good user interface for adjusting curvesGood user interface for adjusting curves
Gives the user control over the value of the DOF and the Gives the user control over the value of the DOF and the

velocity of the DOFvelocity of the DOF
Define a perfectly smooth function (if desired)Define a perfectly smooth function (if desired)
Can offer good compression (not always)Can offer good compression (not always)

Every animation system offers some variation on Every animation system offers some variation on
keyframingkeyframing

Video games may consider keyframes for compression Video games may consider keyframes for compression
purposes, even though they have a performance costpurposes, even though they have a performance cost

Animating with Keyframes
KeyframedKeyframed channels form the foundation for channels form the foundation for

animating properties (DOFs) in many commercial animating properties (DOFs) in many commercial
animation systemsanimation systems

Different systems use different variations on the Different systems use different variations on the
exact math but most are based on some sort of exact math but most are based on some sort of
cubic cubic HermiteHermite curvescurves

Curve Fitting
Keyframes can be generated automatically from sampled Keyframes can be generated automatically from sampled

data such as motion capturedata such as motion capture
This process is called This process is called ‘‘curve fittingcurve fitting’’, as it involves finding , as it involves finding

curves that fit the data reasonably wellcurves that fit the data reasonably well
Fitting algorithms allow the user to specify tolerances that Fitting algorithms allow the user to specify tolerances that

define the acceptable quality of the fitdefine the acceptable quality of the fit
This allows two way conversion between keyframe and This allows two way conversion between keyframe and

raw formats, although the data might get slightly distorted raw formats, although the data might get slightly distorted
with each translationwith each translation

Keyframe Data Structure
class Keyframe {class Keyframe {

float Time;float Time;

float Value;float Value;

float float TangentIn,TangentOutTangentIn,TangentOut;;

char char RuleIn,RuleOutRuleIn,RuleOut;; // Tangent rules// Tangent rules

float A,B,C,D;float A,B,C,D; // Cubic coefficients// Cubic coefficients

}}

Data Structures:Data Structures:
•• Linked listLinked list

•• Doubly linked listDoubly linked list

•• ArrayArray

Tangent Rules
Rather than store explicit numbers for tangents, it is often morRather than store explicit numbers for tangents, it is often more e

convenient to store a convenient to store a ‘‘rulerule’’ and recompute the actual tangent as and recompute the actual tangent as
necessarynecessary

Usually, separate rules are stored for the incoming and outgoingUsually, separate rules are stored for the incoming and outgoing
tangentstangents

Common rules for Hermite tangents include:Common rules for Hermite tangents include:
FlatFlat (tangent = 0)(tangent = 0)
LinearLinear (tangent points to next/last key)(tangent points to next/last key)

SmoothSmooth (automatically adjust tangent for smooth results)(automatically adjust tangent for smooth results)
FixedFixed (user can arbitrarily specify a value)(user can arbitrarily specify a value)

Remember that the tangent equals the rate of change of the DOF (Remember that the tangent equals the rate of change of the DOF (or or
the velocity)the velocity)

Note: I use Note: I use ‘‘vv’’ for tangents (velocity) instead of for tangents (velocity) instead of ‘‘tt’’ which is used for which is used for
timetime

Flat Tangents
Flat tangents are particularly useful for making Flat tangents are particularly useful for making
‘‘slow inslow in’’ and and ‘‘slow outslow out’’ motions (acceleration from motions (acceleration from
a stop and deceleration to a stop)a stop and deceleration to a stop)

•

•

•

•

v = 0

Linear Tangents

•

•

(p0 ,t0)
v0

out

v1
in

(p1 ,t1)

01

01
10 tt

ppvv inout

−
−

==

Smooth Tangents

•
(p1 ,t1) v1

out

v1
in

02

02
11 tt

ppvv outin

−
−

==

•

•

(p2 ,t2)

(p0 ,t0)

Keep in mind that this wonKeep in mind that this won’’t work on the first or last tangent t work on the first or last tangent
(just use the linear rule)(just use the linear rule)

Cubic Coefficients
Keyframes are stored in order of their timeKeyframes are stored in order of their time
Between every two successive keyframes is a Between every two successive keyframes is a spanspan of a of a

cubic curvecubic curve
The span is defined by the value of the two keyframes and The span is defined by the value of the two keyframes and

the outgoing tangent of the first and incoming tangent of the the outgoing tangent of the first and incoming tangent of the
secondsecond

Those 4 values are multiplied by the Hermite basis matrix Those 4 values are multiplied by the Hermite basis matrix
and converted to cubic coefficients for the spanand converted to cubic coefficients for the span

For simplicity, the coefficients can be stored in the first For simplicity, the coefficients can be stored in the first
keyframekeyframe for each spanfor each span

Cubic Equation (1 dimensional)

() dctbtattf +++= 23 cbtat
dt
df

++= 23 2

() []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅=

d
c
b
a

ttttf 123 []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅=

d
c
b
a

tt
dt
df 0123 2

Hermite Curve (1D)

•
•

v1

p1
p0

v0

t0 =0 t1 =1

Hermite Curves
We want the value of the curve at t=0 to be f(0)=pWe want the value of the curve at t=0 to be f(0)=p00 , and at t=1, , and at t=1,
we want f(1)=pwe want f(1)=p11

We want the derivative of the curve at t=0 to be vWe want the derivative of the curve at t=0 to be v00 , and v, and v11 at t=1at t=1

()
()
()
() cbacbavf

ccbavf

dcbadcbapf

ddcbapf

++=++==′

=++==′

+++=+++==

=+++==

23 1213 1

 0203 0

 111 1

 000 0

2
1

2
0

23
1

23
0

Hermite Curves

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++=
=

+++=
=

d
c
b
a

v
v
p
p

cbav
cv

dcbap
dp

0123
0100
1111
1000

23

1

0

1

0

1

0

1

0

Matrix Form of Hermite Curve

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1

0

1

0

1

0

1

0
1

0001
0100
1233

1122

0123
0100
1111
1000

v
v
p
p

d
c
b
a

v
v
p
p

d
c
b
a

Matrix Form of Hermite Curve

Remember, this assumes that t varies from 0 to 1Remember, this assumes that t varies from 0 to 1

()
() ct

gBt
⋅=

⋅⋅=
tf
tf HrmHrm

() []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−

−

⋅=

1

0

1

0

23

0001
0100
1233

1122

1

v
v
p
p

ttttf

Inverse Linear Interpolation
If tIf t00 is the time at the first key and tis the time at the first key and t11 is the time of the second key, a is the time of the second key, a

linear interpolation of those times by parameter u would be:linear interpolation of those times by parameter u would be:

The inverse of this operation gives us:The inverse of this operation gives us:

This gives us a 0This gives us a 0……1 value on the span where we now will evaluate 1 value on the span where we now will evaluate
the cubic equationthe cubic equation

Note: 1/(tNote: 1/(t11--tt00) can be) can be precomputedprecomputed for each spanfor each span

() () 1010 1,, uttuttuLerpt +−==

()
01

0
10 ,,

tt
tttttInvLerpu

−
−

==

Evaluating Cubic Spans
Tangents are generally expressed as a slope of Tangents are generally expressed as a slope of

value/timevalue/time

To normalize the spans to the 0To normalize the spans to the 0……1 range, we 1 range, we
need to correct the tangentsneed to correct the tangents

So we must scale them by (tSo we must scale them by (t11--tt00))

Precomputing Constants

For each span we preFor each span we pre--compute the cubic compute the cubic
coefficients:coefficients:

()
() ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

101

001

1

0

0001
0100
1233

1122

vtt
vtt

p
p

d
c
b
a

Computing Cubic Coefficients
Do it yourself! Actually, all of the 1Do it yourself! Actually, all of the 1’’s and 0s and 0’’s in the s in the
matrix make it pretty easy to multiply it out by handmatrix make it pretty easy to multiply it out by hand

()
() ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

101

001

1

0

0001
0100
1233

1122

vtt
vtt

p
p

d
c
b
a

Evaluating the Cubic

To evaluate the cubic equation for a span, To evaluate the cubic equation for a span,
we must first turn our time t into a 0..1 value we must first turn our time t into a 0..1 value
for the span (wefor the span (we’’ll call this parameter u)ll call this parameter u)

()

()()()aubucuddcubuaux

tt
tttttInvLerpu

+++=+++=

−
−

==

23
01

0
10 ,,

Channel::Precompute()
The two main setup computations a keyframe The two main setup computations a keyframe
channel needs to perform are:channel needs to perform are:
•• Compute tangents from rulesCompute tangents from rules

•• Compute cubic coefficients from tangents & other dataCompute cubic coefficients from tangents & other data

This can be done in two separate passes through This can be done in two separate passes through
the keys or combined into one pass (but keep in the keys or combined into one pass (but keep in
mind there is some slightly tricky dependencies on mind there is some slightly tricky dependencies on
the order that data must be processed if done in the order that data must be processed if done in
one pass)one pass)

Extrapolation Modes
Channels can specify Channels can specify ‘‘extrapolation modesextrapolation modes’’ to define how to define how

the curve is extrapolated before tthe curve is extrapolated before tminmin and after tand after tmaxmax

Usually, separate extrapolation modes can be set for Usually, separate extrapolation modes can be set for
before and after the actual databefore and after the actual data

Common choices:Common choices:
Constant value (hold first/last key value)Constant value (hold first/last key value)

Linear (use tangent at first/last key)Linear (use tangent at first/last key)

Cyclic (repeat the entire channel)Cyclic (repeat the entire channel)

Cyclic Offset (repeat with value offset)Cyclic Offset (repeat with value offset)

Bounce (repeat alternating backwards & forwards)Bounce (repeat alternating backwards & forwards)

Extrapolation

Flat:Flat:

Linear:Linear:

•

•
•

•

tmin

tmax

Extrapolation

Cyclic:Cyclic:

Cyclic Offset:Cyclic Offset:

•

•

•

•

Extrapolation

Bounce:Bounce:

•

• •

Keyframe Evaluation
The main runtime function for a channel is something like:The main runtime function for a channel is something like:

float Channel::Evaluate(float time);float Channel::Evaluate(float time);

This function will be called many timesThis function will be called many times……
For an input time t, there are 4 cases to consider:For an input time t, there are 4 cases to consider:
•• t is before the first key (use extrapolation)t is before the first key (use extrapolation)

•• t is after the last key (use extrapolation)t is after the last key (use extrapolation)

•• t falls exactly on some key (return key value)t falls exactly on some key (return key value)

•• t falls between two keys (evaluate cubic equation)t falls between two keys (evaluate cubic equation)

Channel::Evaluate()
The Channel::Evaluate function needs to be very The Channel::Evaluate function needs to be very

efficient, as it is called many times while playing efficient, as it is called many times while playing
back animationsback animations

There are two main components to the There are two main components to the
evaluation:evaluation:

Find the proper spanFind the proper span

Evaluate the cubic equation for the spanEvaluate the cubic equation for the span

Random Access
To evaluate a channel at some arbitrary time t, we need to To evaluate a channel at some arbitrary time t, we need to

first find the proper span of the channel and then evaluate first find the proper span of the channel and then evaluate
its equationits equation

As the keyframes are irregularly spaced, this means we As the keyframes are irregularly spaced, this means we
have to search for the right onehave to search for the right one

If the keyframes are stored as a linked list, there is little weIf the keyframes are stored as a linked list, there is little we
can do except walk through the list looking for the right can do except walk through the list looking for the right
spanspan

If they are stored in an array, we can use a binary search, If they are stored in an array, we can use a binary search,
which should do reasonably wellwhich should do reasonably well

Finding the Span: Binary Search
A very reasonable way to find the key is by a binary A very reasonable way to find the key is by a binary

search. This allows pretty fast (log N) access time with no search. This allows pretty fast (log N) access time with no
additional storage cost (assuming keys are stored in an additional storage cost (assuming keys are stored in an
array (rather than a list))array (rather than a list))

Binary search is sometimes called Binary search is sometimes called ‘‘divide and conquerdivide and conquer’’ or or
‘‘bisectionbisection’’

For even faster access, one could use hashing algorithms, For even faster access, one could use hashing algorithms,
but that is probably not necessary, as they require additional but that is probably not necessary, as they require additional
storage and most real channel accesses can take advantage storage and most real channel accesses can take advantage
of coherence (sequential access)of coherence (sequential access)

Finding the Span: Linear Search
One can always just loop through the keys from the One can always just loop through the keys from the

beginning and look for the proper spanbeginning and look for the proper span
This is an acceptable place to start, as it is important to get This is an acceptable place to start, as it is important to get

things working properly before focusing on optimizationthings working properly before focusing on optimization
It may also be a reasonable option for interactive editing It may also be a reasonable option for interactive editing

tools that would require key frames to be stored in a linked tools that would require key frames to be stored in a linked
listlist

Of course, a bisection algorithm can probably be written in Of course, a bisection algorithm can probably be written in
less than a dozen lines of codeless than a dozen lines of code……

	Slide Number 1
	Animation
	Pose Space
	Channels
	Channels
	Channels
	Array of Channels
	Array of Poses
	Poses vs. Channels
	Array of Poses
	Array of Channels
	Poses vs. Channels
	Animation Class
	Keyframe Channel
	Keyframe Channel
	Keyframe
	Keyframe Tangents
	Why Use Keyframes?
	Animating with Keyframes
	Curve Fitting
	Keyframe Data Structure
	Tangent Rules
	Flat Tangents
	Linear Tangents
	Smooth Tangents
	Cubic Coefficients
	Cubic Equation (1 dimensional)
	Hermite Curve (1D)
	Hermite Curves
	Hermite Curves
	Matrix Form of Hermite Curve
	Matrix Form of Hermite Curve
	Inverse Linear Interpolation
	Evaluating Cubic Spans
	Precomputing Constants
	Computing Cubic Coefficients
	Evaluating the Cubic
	Channel::Precompute()
	Extrapolation Modes
	Extrapolation
	Extrapolation
	Extrapolation
	Keyframe Evaluation
	Channel::Evaluate()
	Random Access
	Finding the Span: Binary Search
	Finding the Span: Linear Search

