
CS 4204 Computer Graphics

Animation Transition
Blending and State Machine

Yong Cao
Virginia Tech

Reference: UC San Diego, CSE 169 Animation course slides. http://graphics.ucsd.edu/courses/cse169_w06/

http://graphics.ucsd.edu/courses/cse169_w06/

Blending & Sequencing
Now that we understand how a character skeleton

works and how to manipulate animation data, we
can edit and play back simple animation

The subject of blending and sequencing
encompasses a higher level of animation playback,
involving constructing the final pose out of a
combination of various inputs

Blending & Sequencing
Most areas of computer animation have been pioneered by

the research and special effects industries
Blending and sequencing, however, is one area where

video games have made a lot of real progress in this area
towards achieving interactively controllable and AI
characters in complex environments…

The special effects industry is using some game related
technology more and more (battle scenes in Lord of the
Rings…)

Animation Playback

Poses
A pose is an array of values that maps to a skeleton
If the skeleton contains only simple independent DOFs, the

pose can just be an array of floats
If the skeleton contains quaternions or other complex

coupled DOFs, they may require special handling by higher
level code

Therefore, for generality, we will assume that a pose
contains both an array of M≥0 floats and an additional array
of N≥0 quaternions

[]1010 −−=Φ NM qqφφ

Animation Clip
Remember that the AnimationClip stores an array of

channels for a particular animation (or it could store the data
as an array of poses…)

This should be treated as constant data, especially in
situations where multiple animating characters may
simultaneously need to access the animation (at different
time values)

For playback, animation is accessed as a pose. Evaluation
requires looping through each channel.

class AnimationClip {
void Evaluate(float time,Pose &p);

}

Animation Player
We need something that ‘plays’ an animation. We will

call it an animation player
At it’s simplest, an animation player would store a

AnimationClip*, Skeleton*, and a float time
As an active component, it would require some sort of

Update() function
This update would increment the time, evaluate the

animation, and then pose the rig
However, for reasons we will see later, we will leave out

the Skeleton* and just have the player generate and
output a Pose

Animation Player
class AnimationPlayer {

float Time;
AnimationClip *Anim;
Pose P;

public:
void SetClip(AnimationClip &clip);
const Pose &GetPose();
void Update();

};

Animation Player
A simple player just needs to increment the Time

and access the new pose once per frame

The first question that comes up though, is what
to do when it gets to the end of the animation clip?
• Loop back to start

• Hold on last frame

• Deactivate itself… (return 0 pose?)

• Send a message…

Animation Player

Some features we may want to add for a
more versatile animation player include:
• Variable playback rate

• Play backwards (& deal with hitting the beginning)

• Pause

It’s kinda like a DVD player…

Animation Player
The animation player is a basic component of an animation

blending & sequencing system

Many of these might ultimately be combined to get the final
blended pose. This is why we only want it to output a pose

By the way, remember the issue of sequential access for
keyframes? The animation player should ultimately be
responsible for tracking the current keyframe array
(although the details could be pushed down to a specific
class for dealing with that)

Animation Player
As we will use players and static poses as basic
components in our blending discussion, we will
make a notation for them:

look_right walk

current pose
(Animation Player)static pose

Animation Blending

Blending Overview
We can define blending operations that affect poses

A blend operation takes one or more poses as input and
generates one pose as output

In addition, it may take some auxiliary data as input
(control parameters, etc.)

Generic Blend Operation

BLENDERaux
data

pose1 ...poseN

output pose

Cross Dissolve
Perhaps the most common and useful pose blend

operation is the ‘cross dissolve’

Also known as: Lerp (linear interpolation), blend,
dissolve…

The cross dissolve blender takes two poses as input and
an additional float as the blend factor (0…1)

Cross Dissolve
The two poses are basically just interpolated

The DOF values can use Lerp, but the quaternions should
use the ‘Slerp’ operation (spherical linear interpolate)

() ()

() ()() ()
2121

2121

sin
sin

sin
1sin,,

1,,

qqqqq
θ
θ

θ
θ
φφφφφ

tttSlerp

tttLerp

+
−

==′

+−==′

Cross Dissolve: Handling Angles
If a DOF represents an angle, we may want to have the

interpolation check for crossing the +180 / -180 boundary

Unfortunately, this complicates the concept of a DOF (and a
pose) a bit more. Now we must also consider that some DOFs
behave in different ways than others

() ()
() ()

()21

2112

2121

,,
360,, 180

,360, 180

φφφ
φφφφφ
φφφφφ

tLerpelse
tLerpifelse

tLerpif

=′
°−=′°>−

°−=′°>−

Cross Dissolve: Quaternions
Also, for quaternions, we may wish to force the
interpolation to go the ‘short way’:

() ()
()21

2121

,,
,, 0

qqq
qqqqq

tSlerpelse
tSlerpif

=′
−=′<⋅

Cross Dissolve: Stand to Walk
Consider a situation where we want a character to
blend from a stand animation to a walk animation

DISSOLVE

output pose

f

stand walk

Cross Dissolve: Stand to Walk
We could have two independent animations playing (stand &

walk) and then gradually ramp the ‘t’ value from 0 to 1
If the transition is reasonably quick (say <0.5 second), it

might look OK
Note: this is just a simple example of a dissolve and not

necessarily the best way to make a character start walking…

Cross Dissolve: Walk to Run
Blending from a walk to a run requires some
additional consideration…

DISSOLVE

output pose

f

walk run

Cross Dissolve: Walk to Run
Lets say that we have a walk and a run animation
Each animation is meant to play as a loop and contains one

full gait cycle
They are set up so the character is essentially moving in

place, as on a treadmill
Let’s assume that the duration of the walk animation is dwalk

seconds and the run is drun seconds
Let’s also assume that the velocity of the walk is vwalk and run

is vrun (these represent the speed that the character is
supposed to be moving forward, but keep in mind, the
animation itself is in place)

Cross Dissolve: Walk to Run
We want to make sure that the walk and run are in phase

when we blend between them
One could animate them in a consistent way so that the two

clips both start at the same phase
But, let’s assume they aren’t in sync…
Instead, we’ll just store an offset for each clip that marks

some synchronization point (say at the time when the left foot
hits the ground)

We’ll call these offsets owalk and orun

Cross Dissolve: Walk to Run
Let’s assume that f is our dissolve factor (0…1) where f=0

implies walking and f=1 implies running
The resulting velocity that the character should move is

simply:
v'=Lerp(f,vwalk,vrun)

To get the animations to stay in phase, however, we need to
adjust the speeds that they are playing back

This means that when we’re halfway between walk and run,
the walk will need to be sped up and the run will need to be
slowed down

Cross Dissolve: Walk to Run

As we are sure that we want the two to stay in
phase, we can just lock them together

For example, we will just say that if twalk is the
current time of the walk animation, then trun
should be:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= runrun

walk

run
walkwalkwalkrun do

d
ddott ,mod

Cross Dissolve: Walk to Run
To speed up the walk animation appropriately, we
will define a rate rwalk that the walk animation plays
at (default would be 1.0)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

run

walk
walk d

dfLerpr ,0.1,

Basic Math Blend Operations
We can also define some blenders for basic math
operations:

ADD

pose1 pose2

pose1 + pose2

SCALEf

pose1

f * pose1

SUBTRACT

pose1 pose2

pose1 - pose2

Basic Math Blend Operations
Its not always obvious how to define consistent behaviors

between independent DOFs
Quaternion addition and subtraction don’t really give an

expected result
Addition of orientations implies that you start with the first

orientation and then you do a rotation from there that
corresponds to how the second orientation is rotated from
neutral

Math Operations: Body Turn

ADD

output pose

SCALEf

SUBTRACT

look_right

walk

default

Body Turn
As an example of math blending operations, consider a

character that walks and turns

One approach to achieving this is to have an underlying walk
animation and ‘layer’ (add) some body turn on top of it

We make a static ‘look_right’ pose and a static ‘default’ pose

The subtraction gives us the difference between look_right
and default

If we scale this and then add it on top of the underlying walk
animation. The scale we use can be based on how hard the
character is turning (-1…1)

Body Turn
We can also speed this up by precomputing the
subtraction and making a combined add/scale
blender

ADD

output pose

SCALEf

turn_delta

walk

ADD/SCALE

output pose

f

turn_deltawalk

Bilinear Blend

BILINEAR

output pose

s,t

DISSOLVE

output pose

s

pose1 pose2 pose3 pose4

DISSOLVEDISSOLVEs

t

pose1 pose2 pose3 pose4

Bilinear Blend
Bilinear blend is an extension to the cross dissolve
that takes four input poses and two interpolation
parameters s & t

(0,0)

t

spose1 pose1

pose4pose3
(0,1) (1,1)

(1,0)

(s,t)

Bilinear Blend
Bilinear (and trilinear…) blends can be useful for a wide

range of applications

As one example, consider a video game character who has to
aim a weapon

The character must be able to stand still and aim at any
object within +/- 135 degrees to the side to side and +/- 45
degrees up and down

An animator can supply key poses at 45 degree increments in
both directions

Then, for any desired angle, we can find the right four targets
and do a bilinear blend

Combine Blender
We can also have a blender that combines poses in different ways

For example, we might want to treat the upper body separately from
the lower body, or treat each limb separately, etc.

We can use different blenders for each body section and then
combine them into a final pose

This also implies that we can use smaller pose vectors in each body
section to save computations and memory

The actual combine operation could just have lookup tables that
map index values of the incoming poses to index values of the final
pose

Mirror Blender
Mirroring animations across the x=0 plane can be an effective way

to save memory and complexity
It requires that a character is symmetrical (or close enough…)
Like the combine blender, mirroring requires some sort of table as

input that describes how to mirror each DOF
Different DOFs will need different treatment

Also, DOFs on the right need to be swapped with DOFs on the left

[]3210:
 , , :

 , , :

qqqqQuaternion
zzyyxxRotation

zzyyxxnTranslatio

−−=′
−=′−=′=′

=′=′−=′

q

Clamp Blender
DOF limits can be implemented as a blend operation
This can be for performance, as it allows precise control

over when (and if) DOF limits are used
For example, consider that DOF limits should not be

necessary when cross dissolving between two
animations (assuming the animations are already within
the legal limits)

Use of add, subtract, and scale operations may require
clamping for safety

Multi-Track Blending
One can also think of an animation blending system as

being similar to a multi-track audio (or video) editing
system

Different animations (or poses) can be placed in
different ‘tracks’ and each track could have some
additional controls and custom behaviors

Animation State Machines

State Machines
Blending is great for combining a few motions, but it

does not address the issue of sequencing different
animations over time

For this, we will use a state machine
We will define the state machine as a connected graph

of states and transitions
At any time, exactly one of the states is the current state
Transitions are assumed to happen instantaneously

State Machines

state_A

state_B

state_C state_E

state_D

EVENT4

EV
EN

T6

EVENT5

EVENT3

EVENT2

EVENT1

State Machines

In the context of animation sequencing, we
think of states as representing individual
animation clips and transitions being
triggered by some sort of event

An event might come from some internal
logic or some external input (button press…)

Simple Jump State Machine
Consider a simple state machine where a character
jumps upon receiving a JUMP_PRESS message

stand

jump

JUMP_PRESS

More Complex Jump
stand

hop

stand2crouch

crouch

floattakeoff

land

JUMP_PRESS

NEAR_GROUND

JUMP_RELEASE

JUMP_RELEASE

State Machine (Text Version)
stand {JUMP_PRESS stand2crouch }

stand2crouch {

JUMP_RELEASE hop

END crouch }

crouch {JUMP_RELEASE takeoff }

takeoff {END float }

hop {END float }

float {NEAR_GROUND land }

land {END stand }

State Machine Extensions

Global entry transitions
Event masking
Fancy states
Modifiers
Logic in states
Combining blenders & state machines
State machines within state machines

Creating State Machines

Typing in text
Graphical state machine editor
Automated state machine generation

(motion graphing)

Character Mover

Character Mover
When we want an interactive character to

move around through a complex
environment, we need something to be
responsible for the overall placement of the
character

We call this the character mover
We can think of the mover as a matrix that

positions the character’s root

Character Mover
Usually, we think of the mover matrix as being on

the ground right below the character’s center

The mover sits perfectly still when the character
isn’t moving and generally moves at a smooth
constant rate as the character walks

The character’s root translation would be
animated relative to the mover

Character Mover: Walking
Consider a walk animation where we have the

character is moving at a rate of v meters/second

The actual animation is animated as if on a
treadmill (but the root may still have some
translation (bobbing up/down back/forth, left/right))

If the mover is moving at v meters/second
though, the animation will look correct

Character Mover

The mover might be coded up to do some
simple accelerations, decelerations, turning,
and collision detection with the ground and
walls

Depending on the speed that the mover is
moving, we might select blend to an
appropriate gait animation

Character Mover
Sometimes, we want the character to do more

complex moves, such as a dive roll to the right
In this situation, we might want to explicitly

animate what the mover should do
This data can be written out with the animation

and stored as additional channel data (3
translations, 3 rotations)

These extra channels can be blended like any
other channel, and then finally added to the mover
when we pose the skeleton

	Slide Number 1
	Blending & Sequencing
	Blending & Sequencing
	Animation Playback
	Poses
	Animation Clip
	Animation Player
	Animation Player
	Animation Player
	Animation Player
	Animation Player
	Animation Player
	Animation Blending
	Blending Overview
	Generic Blend Operation
	Cross Dissolve
	Cross Dissolve
	Cross Dissolve: Handling Angles
	Cross Dissolve: Quaternions
	Cross Dissolve: Stand to Walk
	Cross Dissolve: Stand to Walk
	Cross Dissolve: Walk to Run
	Cross Dissolve: Walk to Run
	Cross Dissolve: Walk to Run
	Cross Dissolve: Walk to Run
	Cross Dissolve: Walk to Run
	Cross Dissolve: Walk to Run
	Basic Math Blend Operations
	Basic Math Blend Operations
	Math Operations: Body Turn
	Body Turn
	Body Turn
	Bilinear Blend
	Bilinear Blend
	Bilinear Blend
	Combine Blender
	Mirror Blender
	Clamp Blender
	Multi-Track Blending
	Animation State Machines
	State Machines
	State Machines
	State Machines
	Simple Jump State Machine
	More Complex Jump
	State Machine (Text Version)
	State Machine Extensions
	Creating State Machines
	Character Mover
	Character Mover
	Character Mover
	Character Mover: Walking
	Character Mover
	Character Mover

