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Curve and Surface Modeling



Objectives

• Introduce types of curves and surfaces
• Explicit

• Implicit

• Parametric

• Strengths and weaknesses

• Discuss Modeling and Approximations
• Conditions

• Stability



Modeling with Curves

data points
approximating curve

interpolating data point



What Makes a Good 
Representation?

• There are many ways to represent curves and 
surfaces

• Want a representation that is
• Stable

• Smooth

• Easy to evaluate



Explicit Representation
• Most familiar form of curve in 2D

y=f(x)

• Cannot represent all curves

• Vertical lines

• Circles

• Extension to 3D 

• y=f(x), z=g(x)

• The form z = f(x,y) defines a surface
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y
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z



Implicit Representation
• Two dimensional curve(s)

g(x,y)=0

• Much more robust

• All lines ax+by+c=0

• Circles x2+y2-r2=0

• Three dimensions g(x,y,z)=0 defines a surface

• Intersect two surface to get a curve



Parametric Curves
• Separate equation for each spatial variable

x=x(u)

y=y(u)

z=z(u)

• For umax ≥ u ≥ umin we trace out a curve in two or three 
dimensions

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)



Selecting Functions

• Usually we can select “good” functions 
• not unique for a given spatial curve

• Approximate or interpolate known data

• Want functions which are easy to evaluate

• Want functions which are easy to differentiate
– Computation of normals

– Connecting pieces (segments)

• Want functions which are smooth



Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can normalize u to be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud

p(0) = p0

p(1)= p0 +d

d



Parametric Surfaces
• Surfaces require 2 parameters

x=x(u,v)
y=y(u,v)
z=z(u,v)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

• Want same properties as curves: 
• Smoothness

• Differentiability

• Ease of evaluation

x

y

z p(u,0)

p(1,v)p(0,v)

p(u,1)



Normals
We can differentiate with respect to u and v to obtain the 

normal at any point p
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Parametric Planes

point-vector form

p(u,v)=p0+uq+vr

n = q x r q

r

p0

n

three-point form

p0

n

p1

p2

q = p1 – p0
r = p2 – p0



Parametric Sphere

x(u,v) = r cos q sin f
y(u,v) = r sin q sin f
z(u,v) = r cos f

360 ≥ q  ≥ 0
180 ≥ f  ≥ 0

θ constant: circles of constant longitude
f constant: circles of constant latitude

Normal: n = p



Curve Segments
• After normalizing u, each curve is written 

p(u)=[x(u), y(u), z(u)]T,   1 ≥ u ≥ 0

• In classical numerical methods, we design a single 
global curve

• In computer graphics and CAD, it is better to design 
small connected curve segments

p(u)

q(u)p(0)
q(1)

join point p(1) = q(0)



Parametric Polynomial Curves
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•If N=M=K, we need to determine 3(N+1) coefficients

•Equivalently we need 3(N+1) independent conditions

•Noting that the curves for x, y and z are independent,
we can define each independently in an identical manner
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Why Polynomials

• Easy to evaluate
• Continuous and differentiable everywhere
• Must worry about continuity at join points including 

continuity of derivatives

p(u)
q(u)

join point p(1) = q(0)
but p’(1) ≠ q’(0)



Cubic Parametric Polynomials
• N=M=L=3, gives balance between ease of evaluation 

and flexibility in design

• Four coefficients to determine for each of x, y and z
• Seek four independent conditions for various values 

of u resulting in 4 equations in 4 unknowns for each
of x, y and z

• Conditions are a mixture of continuity requirements at 
the join points and conditions for fitting the data 
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Cubic Polynomial Surfaces
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p(u,v)=[x(u,v), y(u,v), z(u,v)]T

where 

p is any of x, y or z

Need 48 coefficients ( 3 independent sets of 16) to 
determine a surface patch



Objectives
• Introduce the types of curves
• Interpolating

• Hermite

• Bezier

• B-spline

• Analyze  their performance



Matrix-Vector  Form
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Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 ,p2 , p3
determine cubic p(u) which passes through them

Must find c0 ,c1 ,c2 , c3



Interpolation Equations
apply the interpolating conditions at u=0, 1/3, 2/3, 1

p0=p(0)=c0
p1=p(1/3)=c0+(1/3)c1+(1/3)2c2+(1/3)3c3
p2=p(2/3)=c0+(2/3)c1+(2/3)2c2+(2/3)3c3
p3=p(1)=c0+c1+c2+c3

or in matrix form with p = [p0 p1 p2 p3]T

p=Ac
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Interpolation Matrix
Solving for c we find the interpolation matrix
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c=MIp

Note that MI does not depend on input data and
can be used for each segment in x, y, and z



Interpolating Multiple Segments

use p = [p0 p1 p2 p3]T
use p = [p3 p4 p5 p6]T

Get continuity at join points but not
continuity of derivatives 



Blending Functions
Rewriting the equation for p(u)

p(u)=uTc=uTMIp = b(u)Tp

where b(u) = [b0(u) b1(u) b2(u) b3(u)]T is an array of 
blending polynomials such that
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

b0(u) = -4.5(u-1/3)(u-2/3)(u-1)
b1(u) = 13.5u (u-2/3)(u-1)
b2(u) = -13.5u (u-1/3)(u-1)
b3(u) = 4.5u (u-1/3)(u-2/3)



Blending Functions
• These functions are not smooth
• Hence the interpolation polynomial is not smooth



Interpolating Patch

vucvup j

j
ij

i

oi
∑∑
==

=
3

0

3

),(

Need 16 conditions to determine the 16 coefficients cij
Choose at u,v = 0, 1/3, 2/3, 1



Matrix Form

Define v = [1 v v2 v3]T

C = [cij]      P = [pij] 

p(u,v) = uTCv

If we observe that for constant u (v), we obtain
interpolating curve in v (u), we can show

p(u,v) = uTMIPMI
Tv 

C=MIPMI



Blending Patches
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Each bi(u)bj(v) is a blending patch

Shows that we can build and analyze surfaces 
from our knowledge of curves



Other Types of Curves and 
Surfaces

• How can we get around the limitations of the 
interpolating form

• Lack of smoothness

• Discontinuous derivatives at join points

• We have four conditions (for cubics) that we 
can apply to each segment

• Use them other than for interpolation

• Need only come close to the data



Hermite Form

p(0) p(3)

p’(0) p’(3)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments



Equations
Interpolating conditions are the same at ends

p(0) = p0 = c0
p(1) = p3 = c0+c1+c2+c3

Differentiating we find p’(u) = c1+2uc2+3u2c3

Evaluating at end points

p’(0) = p’0 = c1
p’(1) = p’3 = c1+2c2+3c3



Matrix Form

cq
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Solving, we find c=MHq where MH is the Hermite matrix 
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Blending Polynomials
p(u) = b(u)Tq
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Although these functions are smooth, the Hermite form
is not used directly in Computer Graphics and CAD 
because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form



Parametric and Geometric 
Continuity
• We can require the derivatives of x, y,and z to each be 

continuous at join points (parametric continuity)

• Alternately, we can only require that the tangents of the 
resulting curve be continuous (geometry continuity)

• The latter gives more flexibility as we have need satisfy 
only two conditions rather than three at each join point



Example

• Here the p and q have the same tangents at the 
ends of the segment but different derivatives

• Generate different 

Hermite curves

• This techniques is used

in drawing applications



Higher Dimensional 
Approximations
• The techniques for both interpolating and 

Hermite curves can be used with higher 
dimensional parametric polynomials

• For interpolating form, the resulting matrix 
becomes increasingly more ill-conditioned and 
the resulting curves less smooth and more 
prone to numerical errors

• In both cases, there is more work in rendering 
the resulting polynomial curves and surfaces
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