CS 4204 Computer Graphics

Introduction to Ray Tracing

Yong Cao
Virginia Tech

Rey tran (Picture from Povray.org)

Rey tran (Picture from Povray.org)

Rey tracing (Picture from Povray.org)

Raytracing peamem momemeaco

Rey tran (Picture from Povray.org)

Raytracing (exture fom Poweveras)

The Basic Idea

- Simulate light rays from light source to eye

"Forward" Ray-Tracing

- Trace rays from light
- Lots of work for little return

Eye < Light
mage Plane

Object

Scene

Three sources of light

The light that point P_{A} emits to the eye comes from:
light sources other objects (reflection) other objects (refraction)

S_{A}	shiny, transparent
$\mathrm{S}_{B}, \mathrm{~S}_{\mathrm{D}}$	diffuse, opaque
S_{C}	shiny, opaque

Light

Directly from light source

Local illumination model:

$$
I=I_{\mathrm{a}}+I_{\text {diff }}+I_{\text {spec }}
$$

Reflection

What is the color that is reflected to P_{A} ?
The color of P_{C}.
What is the color of P_{C} ?

S_{A}	shiny, transparent
$\mathrm{S}_{B}, \mathrm{~S}_{\mathrm{D}}$	diffuse, opaque
S_{C}	shiny, opaque

Reflection

What is the light that is reflected to P_{A} ?
The color of P_{C}. as viewed by P_{A}
What is the color of P_{C} reflected towards P_{A} ?

S_{A}	shiny, transparent
S_{B}, S_{D}	diffuse,opaque
S_{C}	shiny, opaque

3. refraction

Refraction

Transparent materials

How do you compute the refracted contribution?

You raytrace the refracted ray.

1. Lights
2. Reflection
3. Refraction

Eye

S_{A}	shiny, transparent
$\mathrm{S}_{B}, \mathrm{~S}_{\mathrm{D}}$	diffuse, opaque
S_{C}	shiny, opaque

Light

What are we missing?

- Diffuse objects do not receive light from other objects.

Three sources of light together

The color that the pixel is assigned comes from: light sources other objects (reflection) other objects (refraction)

It is more convenient to trace the rays from the eye to the scene (backwards)

S_{A}	shiny, transparent
$\mathrm{S}_{B}, \mathrm{~S}_{\mathrm{D}}$	diffuse, opaque
S_{C}	shiny, opaque

Backwards Raytracing Algoritm

- For each pixel construct a ray: eye-> pixel raytrace(ray)
$\mathrm{P}=$ closest intersection

$$
\begin{aligned}
\text { color_local = } & \text { ShadowRay(light1, P)+.. } \\
& + \text { ShadowRay(lightN, P) }
\end{aligned}
$$

color_reflect = raytrace(reflected_ray) color_refract = raytrace(refracted_ray) color = color_local
$+\mathrm{k}_{\mathrm{re}}{ }^{*}$ color_reflect
$+\mathrm{k}_{\mathrm{ra}}{ }^{*}$ color_refract
return(color)

s_{A}	shiny surface
$\mathrm{S}_{\mathrm{B}}, \mathrm{S}$	diffuse opaque surfac
s_{c}	shiny surface

How many levels of recursion do we use?

- The more the better.
- Infinite reflections at the limit.

Stages of raytracing

- Setting the camera and the image plane
- Computing a ray from the eye to every pixel and trace it in the scene
- Object-ray intersections
- Shadow, reflected and refracted ray at each intersection

Setting up the camera

Image parameters

- Width 2W, Height 2H

Number of pixels nCols x nRows

- Camera coordinate system (eye, $u, v, n)$
- Image plane at $-N$

Pixel coordinates in camera coordinate system

- Pixel P(r,c) has coordinates in camera space:

$$
\begin{array}{ll}
u_{c}=-W+W \frac{2 c}{n C o l s}, & c=0,1, \ldots, n \text { Cols }-1 \\
v_{r}=-H+H \frac{2 r}{n \text { Rows }}, & r=0,1, \ldots, n \text { Rows }-1,
\end{array}
$$

Ray through pixel

- Pixel location

Camera coordinates : $P(r, c)=\left(u_{c}, v_{r},-N\right)$
Wolrd coordinates : $\quad P(r, c)=e y e-N \mathbf{n}+u_{c} \mathbf{u}+v_{r} \mathbf{v}$

- Ray through pizel:
$\operatorname{ray}(r, c, t)=e y e+t(P(r, c)-e y e)$
$r a y(r, c, t)=$ eye $+t\left(-N \mathbf{n}+w\left(\frac{2 c}{n C o l s}-1\right) \mathbf{u}+H\left(\frac{2 r}{n \text { Rows }}-1\right) \mathbf{v}\right)$

Triangle Intersection

- Want to know: at what point (p) does ray intersect triangle?
- Compute lighting, reflected rays, shadowing from that point

Triangle Intersection

- Step 1 : Intersect with plane
$(A x+B y+C z+D=0)$
Plane normal

$$
n=\langle A, \quad B, \quad C\rangle
$$

$$
p=-\left(\hat{n} \cdot r_{0}+D\right) /\left(\hat{n} \cdot \hat{r}_{d}\right)
$$

Triangle Intersection

- Step 2 : Check against triangle edges

$$
\begin{array}{ll}
E_{i}=\vec{V}_{i} \mathbf{V}_{i+1} \times n & \text { (plane } A, B, C) \\
d_{i}=-A \cdot N & \text { (plane } D)
\end{array}
$$

$\mathrm{V}_{2} \mathrm{O}$
Plug p into ($p \cdot E_{i}+d_{i}$) for each edge
if signs are all positive or negative, point is inside triangle!

Triangle Normals

- Could use plane normals (flat shading)
- Better to interpolate from vertices

Ray-object intersections

- Unit sphere at origin - ray intersection:

$$
\begin{aligned}
& \operatorname{ray}(t)=S+\mathbf{c} t \\
& \operatorname{Sphere}(P)=|P|-1=0 \\
& \operatorname{Sphere}(\operatorname{ray}(t))=0 \Rightarrow \\
& |S+\mathbf{c} t|-1=0 \Rightarrow(S+\mathbf{c} t)(S+\mathbf{c} t)-1=0 \Rightarrow \\
& |\mathbf{c}|^{2} t^{2}+2(S \cdot \mathbf{c}) t+|S|^{2}-1=0
\end{aligned}
$$

- That's a quadratic equation

Solving a quadratic equation

$$
\begin{gathered}
|\mathbf{c}|^{2} t^{2}+2(S \cdot \mathbf{c}) t+|S|^{2}-1=0 \\
A t^{2}+2 B t+C=0 \\
t_{h}=-\frac{B}{A} \pm \frac{\sqrt{B^{2}-A C}}{A} \\
t_{h}=-\frac{S \cdot \mathbf{c}}{|\mathbf{c}|^{2}} \pm \frac{\sqrt{(S \cdot \mathbf{c})^{2}-|\mathbf{c}|^{2}\left(|S|^{2}-1\right)}}{|\mathbf{c}|^{2}} \\
\text { If }\left(B^{2}-A C\right)=0 \text { one solution } \\
\text { If }\left(B^{2}-A C\right)<0 \text { no solution } \\
\text { If }\left(B^{2}-A C\right)>0 \text { two solutions }
\end{gathered}
$$

First intersection?

First intersection?

Transformed primitives?

- Where does S+ct hit the transformed sphere G ?

Linear transformation

Implicit equation $G(P)=0$.

Untransformed implicit equation $F\left(P^{\prime}\right)=0$.

$$
P=M P^{\prime} \Rightarrow P^{\prime}=M^{-1} P
$$

Linear transformation

$$
\begin{aligned}
P= & M P^{\prime} \Rightarrow P^{\prime}=M^{-1} P \\
& F\left(P^{\prime}\right)=F\left(T^{-1}(P)\right)=0 \Rightarrow F\left(T^{-1}(P)\right)=0 \\
& F\left(T^{-1}(S+\mathbf{c} t)\right)=0 \Rightarrow \\
& F\left(T^{-1}(S)+T^{-1}(\mathrm{c} t)\right)=0
\end{aligned}
$$

Which means that we can intersect the inverse transformed ray with the untransformed primitive.

Final Intersection

- Inverse transformed ray

- Drop 1 and O to get $S^{\prime \prime}+c^{\prime} t$
- For each object
- Inverse transform ray getting $S^{\prime}+c^{\prime} t$
- Find intersection t_{h}
- Use t_{h} in the untransformed ray S+ct to find the intersection

Shadow ray

- For each light intersect shadow ray with all objects.
- If no intersection is found apply local illumination at intersection
- If in shadow no contribution

Reflected ray

- Raytrace the reflected ray
$R a y(t)=A+\mathbf{c} t$
$\operatorname{Ray}_{r f}(t)=P+\mathbf{v} t$
$\mathbf{v}=-2(N \cdot \mathbf{c}) N+\mathbf{c}$

Refracted ray

- Raytrace the refracted ray

Snell's law

Add all together

- color(r,c) = color_shadow_ray + Kf*color_rf + Kr*color_rfa

Raytracing

for each pixel on screen
determine ray from eye through pixel
find closest intersection of ray with an object cast off reflected and refracted ray, recursively calculate pixel colour, draw pixel
end

Acceleration

- 1280x1024 image with 10 rays/pixel
- 1000 objects (triangle, CSG, NURBS)
- 3 levels recursion

39321600000 intersection tests

$$
100000 \text { tests/second -> } 109 \text { days! }
$$

Must use an acceleration methool!

Bounding volumes

- Use simple shape for quick test, keep a hierarchy

Space Subdivision

- Break your space into pieces
- Search the structure linearly

Parallel Processing

- You can always throw more processors at it.

Summary: Raytracing

- Recursive algorithm

Function Main

for each pixel (c,r) on screen
determine ray $r_{c, r}$ from eye through pixel $\operatorname{color}(c, r)=\operatorname{raytrace}\left(r_{c, r}\right)$
end for

end
function raytrace(r)
find closest intersection P of ray with objects
clocal $=$ Sum(shadowRays(P,Lighti))
$\mathrm{c}_{\mathrm{re}}=$ raytrace $\left(\mathrm{r}_{\mathrm{re}}\right)$
$\mathrm{c}_{\mathrm{ra}}=$ raytrace $\left(\mathrm{r}_{\mathrm{ra}}\right)$
return $\mathrm{c}=$ clocal $+\mathrm{k}_{\mathrm{re}}{ }^{*} \mathrm{C}_{\mathrm{re}}+\mathrm{k}_{\mathrm{ra}}{ }^{*} \mathrm{C}_{\mathrm{ra}}$
end

Advanced concepts

- Participating media
- Transculency
- Sub-surface scattering (e.g. Human skin)
- Photon mapping

Raytracing summary

- View dependent
- Computationally expensive
- Good for reffaction and reflection effects

