
OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

What is OpenCL?
Ø Cross-platform parallel computing API and C-like

language for heterogeneous computing devices
Ø Code is portable across various target devices:

Ø Correctness is guaranteed
Ø Performance of a given kernel is not guaranteed across differing

target devices

Ø OpenCL implementations already exist for AMD, ATI,
and NVIDIA GPUs, x86 CPUs

Ø  In principle, OpenCL could also target DSPs, Cell, and
perhaps also FPGAs

2

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

More on Multi-Platform Targeting

Ø  Targets a broader range of CPU-like and GPU-like
devices than CUDA
Ø  Targets devices produced by multiple vendors
Ø Many features of OpenCL are optional and may not be

supported on all devices

Ø OpenCL codes must be prepared to deal with
much greater hardware diversity

Ø A single OpenCL kernel will likely not achieve
peak performance on all device types

3

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Data Parallel Model Summary

Ø Parallel work is submitted to devices by launching
kernels

Ø Kernels run over global dimension index ranges
(NDRange), broken up into “work groups”, and “work
items”

Ø Work items executing within the same work group can
synchronize with each other using barriers or memory
fences

Ø Work items in different work groups can only sync
with each other by launching a new kernel

4

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Mapping Data Parallelism Models: OpenCL to CUDA

5

OpenCL Parallelism Concept CUDA Equivalent

kernel kernel

host program host program

NDRange (index space) grid

work item thread

work group block

Mapping Data Parallelism Models:
OpenCL to CUDA

5

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL NDRange Configuration

6

OpenCL NDRange Configuration

0,0 0,1

1,0 1,1

…

…

… … …

Work Group

Work Item

G
lo

ba
l S

iz
e(

1)

Local Size(0)

Global Size(0)

Lo
ca

l S
iz

e(
1)

Group ID

4
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Mapping OpenCL indices to CUDA

7

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Simple Example Matrix Multiplication

Ø A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in OpenCL programs
Ø Private register usage
Ø Work item ID usage
Ø Memory data transfer API between host and device
Ø Assume square matrix for simplicity

8

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Square Matrix-Matrix Multiplication
Ø  P = M * N of size

WIDTH x WIDTH
Ø  Each work item calculates one element of

P
Ø  M and N are loaded WIDTH times from

global memory

M

N

P

!
!
!

W
ID

TH
!

W
ID

TH
!

WIDTH! WIDTH!

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Context
Ø  Contains one or more devices
Ø  OpenCL memory objects

associated with a context, not a
specific device

Ø  clCreateBuffer() is the main data
object allocation function
Ø  error if an allocation is too large for

any device in the context
Ø  Each device needs its own work /

command queue(s)
Ø  Memory transfers are associated

with a command queue (thus a
specific device)

10

OpenCL Context
• Contains one or more devices
• OpenCL memory objects are

associated with a context, not a
specific device

• clCreateBuffer() is the main data
object allocation function
– error if an allocation is too large for

any device in the context

• Each device needs its own work
queue(s)

• Memory transfers are associated
with a command queue (thus a
specific device)

OpenCL Device

OpenCL Device

OpenCL Context

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Device Command Execution

11

OpenCL Device Command Execution

OpenCL Device

Cmd QueueCommandApplication

Cmd QueueCommand

OpenCL Device

OpenCL Context
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Context Setup Code (simple)

12

cl_int clerr = CL_SUCCESS;  
// create context including all available OpenCL devices"
cl_context clctx = clCreateContextFromType( 

" " "0, CL_DEVICE_TYPE_ALL, NULL, NULL, &clerr);"
size_t parmsz;  
// query number of devices in context"
clerr = clGetContextInfo("

" " "clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);"
// now that size is known, allocate list for device info"
cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);"
// query device info  
clerr = clGetContextInfo("

" "clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);"
// create command queue for first OpenCL device"
cl_command_queue clcmdq = clCreateCommandQueue("

"clctx, cldevs[0], 0, &clerr);"

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Allocation

Ø clCreateBuffer();
Ø Requires five parameters

Ø OpenCL context
Ø Allocation and usage flags
Ø Size in bytes
Ø Host memory pointer
Ø Returned error code

13

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Host-to-Device Data Transfer
Ø clEnqueueWriteBuffer();

Ø memory data transfer to device
Ø Requires nine parameters

Ø OpenCL command queue pointer
Ø Destination OpenCL memory buffer
Ø Blocking flag
Ø Offset in bytes
Ø Size in bytes of written data
Ø Host memory pointer
Ø List of events to be completed before execution of this

command
Ø Event object tied to this command

14

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Device-to-Host Data Transfer
Ø clEnqueueReadBuffer();

Ø memory data transfer to host
Ø Requires nine parameters

Ø OpenCL command queue pointer
Ø Destination OpenCL memory buffer
Ø Blocking flag
Ø Offset in bytes
Ø Size in bytes of written data
Ø Destination host memory pointer
Ø List of events to be completed before execution of this

command
Ø Event object tied to this command

15

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Memory Systems
Ø  __global – large, long latency
Ø  __private – on-chip device registers
Ø  __local – memory accessible from multiple PEs or

work items
Ø May be SRAM or DRAM, must query...

Ø  __constant – read-only constant cache
Ø Programmer manages device memory explicitly

16

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Input Matrix Data Transfer (Host-side Code)

17

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

10

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
int size = Width * Width * sizeof(float);
cl_mem Md, Nd, Pd;
Md=clCreateBuffer(clctxt, CL_MEM_READ_WRITE,

mem_size_M, NULL, NULL);
Nd=clCreateBuffer(clctxt, CL_MEM_READ_WRITE,

mem_size_N, NULL, &ciErrNum);

clEnqueueWriteBuffer(clcmdque, Md, CL_FALSE, 0, mem_size_M,
(const void *)M, 0, 0, NULL);

clEnqueueWriteBuffer(clcmdque, Nd, CL_FALSE, 0, mem_size_N,
(const void *)N, 0, 0, NULL);

Pd=clCreateBuffer(clctxt, CL_MEM_READ_WRITE, mem_size_P,
NULL, NULL);

Step 2: Input Matrix Data Transfer
(Host-side Code)

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Output Matrix Data Transfer (Host-side Code)

18

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

11

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later

3. // Read P from the device
clEnqueueReadBuffer(clcmdque, Pd, CL_FALSE,

0, mem_size_P,(void*)P), 0, 0, &ReadDone);

// Free device matrices
clReleaseMemObject(Md);
clReleaseMemObject(Nd);
clReleaseMemObject(Pd);

}

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

19

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T

IL
E

_W
ID

T
H

W
ID

T
H

W

ID
T

H

Matrix Multiplication Using
Multiple Work Groups

Ø  Break up Pd into tiles
Ø  Each work group calculates one tile

Ø  Each work item calculates one element
Ø  Set work group size to tile size

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Very Small Example

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Group(0,0)! Group(1,0)!

Group(1,1)!Group(0,1)!

WIDTH = 4; TILE_WIDTH = 2!
Each work group has 2*2 = 4 work items!

WIDTH/TILE_WIDTH = 2!
Use 2*2 = 4 work groups!

Item(0,0)!

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Matrix Multiplication Kernel

21
© Wen-mei W. Hwu and John Stone, Urbana July

22, 2010 15

OpenCL Matrix Multiplication Kernel
__kernel void MatrixMulKernel(__global float* Md, __global

float* Nd, __global float* Pd, int Width)
{
// Calculate the row index of the Pd element and M
int Row = get_global_id(1);
// Calculate the column idenx of Pd and N
int Col = get_global_id(0);

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Kernel Invocation (Host-side Code)

22 © Wen-mei W. Hwu and John Stone, Urbana July
22, 2010 16

// Setup the execution configuration

size_t cl_DimBlock[2], cl_DimGrid[2];

cl_DimBlock[0] = TILE_WIDTH;

cl_DimBlock[1] = TILE_WIDTH;

cl_DimGrid[0] = Width;

cl_DimGrid[1] = Width;

clSetKernelArg(clkern, 0, sizeof (cl_mem), (void*)(&deviceP));

clSetKernelArg(clkern, 1, sizeof (cl_mem), (void*)(&deviceM));

clSetKernelArg(clkern, 2, sizeof (cl_mem), (void*)(&deviceN));

clSetKernelArg(clkern, 3, sizeof (int), (void *)(&Width));

// Launch the device kernel

clEnqueueNDRangeKernel(clcmdque, clkern, 2, NULL,

cl_DimGrid, cl_DimBlock, 0, NULL,

&DeviceDone);

Revised Step 5: Kernel Invocation
(Host-side Code)

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Real Application Example --
Electrostatic Potential Maps

23

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Electrostatic Potential Maps

24

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3-D lattice:

• Applications include:

– Ion placement for

structure building

– Time-averaged potentials

for simulation

– Visualization and analysis

Isoleucine tRNA synthetase

18

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Direct Coulomb Summation

Ø At each lattice point, sum potential contributions for
all atoms in the simulated structure:
 potential[j] += charge[i] / rij

25

potential[j]: potential
at lattice point being

evaluated
atom[i]

ri,j: distance from
lattice point j to atom[i]

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

DCS Data Parallel Decomposition
NDRange of work groups

Work groups

Work items compute up to
8 potentials, skipping by
memory coalescing width

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Direct Coulomb Summation in OpenCL

NDRange
containing all
work items,
decomposed into
work groups

Work groups:

Work items compute
up to 8 potentials,
skipping by memory
coalescing width

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Direct Coulomb Summation Kernel Setup

28

Direct Coulomb Summation
Kernel Setup

OpenCL:
__kernel void clenergy(…) {
unsigned int xindex = (get_global_id(0) -

get_local_id(0)) * UNROLLX +
get_local_id(0);

unsigned int yindex = get_global_id(1);
unsigned int outaddr = get_global_size(0) *

UNROLLX * yindex + xindex;

CUDA:
__global__ void cuenergy (…) {
unsigned int xindex = blockIdx.x *

blockDim.x * UNROLLX +
threadIdx.x;

unsigned int yindex = blockIdx.y *
blockDim.y + threadIdx.y;

unsigned int outaddr = gridDim.x *
blockDim.x * UNROLLX *
yindex + xindex;

23
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

DCS Inner Loop (CUDA)

29

DCS Inner Loop (CUDA)
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);

}

24
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

DCS Inner Loop
(OpenCL on NVIDIA GPU)

…for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);

}

25
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

DCS Inner Loop (OpenCL on NVIDIA GPU)

30

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

DCS Inner Loop (OpenCL on AMD CPU)

31

DCS Inner Loop
(OpenCL on AMD CPU)

float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };
gridspacing_u4 *= gridspacing_coalesce;
float4 energyvalx=0.0f;

…
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

}
26

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

}

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Why Two Different OpenCL Kernels???
Ø Existing OpenCL implementations don’t necessarily

auto-vectorize your code for the native hardware’s
SIMD vector width

Ø Although you can run the same code on very different
devices and get the correct answer, performance will
vary wildly...

Ø  In many cases, getting peak performance on multiple
device types or hardware from different vendors
currently requires multiple OpenCL kernels

32

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Host Code

Ø Roughly analogous to CUDA driver API:
Ø Memory allocations, memory copies, etc
Ø Create and manage device context(s) and

associated work queue(s), etc...
Ø OpenCL uses reference counting on all objects

Ø OpenCL programs are normally compiled
entirely at runtime, which must be
managed by host code

33

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Kernel Compilation Example

34

const char* clenergysrc =
 “__kernel __attribute__((reqd_work_group_size_hint(BLOCKSIZEX,

 BLOCKSIZEY, 1))) \n”

 “void clenergy(int numatoms, float gridspacing, __global float
 *energy, __constant float4 *atominfo) { \n” [...etc and so forth...]
cl_program clpgm;

clpgm = clCreateProgramWithSource(clctx, 1, &clenergysrc, NULL, &clerr);
char clcompileflags[4096];
sprintf(clcompileflags, "-DUNROLLX=%d -cl-fast-relaxed-math -cl-single-
precision-constant -cl-denorms-are-zero -cl-mad-enable", UNROLLX);
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, "clenergy", &clerr);

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, retreive handle to the “clenergy” kernel

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Host Code: OpenCL Kernel Launch

35

1. doutput = clCreateBuffer(clctx, CL_MEM_READ_WRITE,volmemsz, NULL, NULL);
2. datominfo = clCreateBuffer(clctx, CL_MEM_READ_ONLY, MAXATOMS

 *sizeof(cl_float4), NULL, NULL);
...
3. clerr= clSetKernelArg(clkern, 0,sizeof(int), &runatoms);
4. clerr= clSetKernelArg(clkern, 1,sizeof(float), &zplane);
5. clerr= clSetKernelArg(clkern, 2,sizeof(cl_mem), &doutput);
6. clerr= clSetKernelArg(clkern, 3,sizeof(cl_mem), &datominfo);
7. cl_event event;
8. clerr= clEnqueueNDRangeKernel(clcmdq,clkern, 2, NULL, Gsz,Bsz, 0, NULL,
&event);
9. clerr= clWaitForEvents(1, &event);
10. clerr= clReleaseEvent(event);
...
11. clEnqueueReadBuffer(clcmdq,doutput, CL_TRUE, 0, volmemsz, energy, 0, NULL,
NULL);
12. clReleaseMemObject(doutput);
13. clReleaseMemObject(datominfo);

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

To Learn More

Ø Khronos OpenCL headers, specification, etc: http://
www.khronos.org/registry/cl/

Ø Khronos OpenCL samples, tutorials, etc:
http://www.khronos.org/developers/resources/opencl/

Ø AMD OpenCL Resources:
http://developer.amd.com/gpu/ATIStreamSDK/pages/
Tutorial OpenCL.aspx

Ø NVIDIA OpenCL Resources:
http://www.nvidia.com/object/cuda_opencl.html

Ø Chapter 11 of our textbook

36

