WVirginiaTech | openct

Invent the Future

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



WVirginiaTech = openct

Invent the Future

What is OpenCL?

» Cross-platform parallel computing APl and C-like
language for heterogeneous computing devices

» Code is portable across various target devices:

» Correctness is guaranteed
» Performance of a given kernel is not guaranteed across differing
target devices
» OpenCL implementations already exist for AMD, ATI,
and NVIDIA GPUs, x86 CPUs

» In principle, OpenCL could also target DSPs, Cell, and
perhaps also FPGAs

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll‘glnlaTECh OpenCL

Invent the Future

More on Multi-Platform Targeting

» Targets a broader range of CPU-like and GPU-like
devices than CUDA
» Targets devices produced by multiple vendors
» Many features of OpenCL are optional and may not be
supported on all devices
» OpenCL codes must be prepared to deal with
much greater hardware diversity

» A single OpenCL kernel will likely not achieve
peak performance on all device types

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



WVirginiaTech = openct

Invent the Future

OpenCL Data Parallel Model Summary

» Parallel work is submitted to devices by launching
kernels

» Kernels run over global dimension index ranges

(NDRange), broken up into “work groups”, and “work
items”

» Work items executing within the same work group can
synchronize with each other using barriers or memory
fences

» Work items in different work groups can only sync
with each other by launching a new kernel

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll‘glnlaTECh OpenCL

Invent the Future

Mapping Data Parallelism Models: OpenCL to CUDA

OpenCL Parallelism Concept CUDA Equivalent
kernel kernel

host program host program
NDRange (index space) grid

work item thread

work group block

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

W VirginiaTech

Invent the Future

OpenCL NDRange Configuration
Work Group ; Global Size(0)
\A Group ID
Local Size(0) S b 0,1
] '
g =l 10 | L
E
O
Work Item
_Y_

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



% VlrglniaTECh OpenCL

Invent the Future

Mapping OpenCL indices to CUDA

OpenCL API call Explanation CUDA equivalent

get_global_id(0); Global index of the work | blockldx.xxblockDim.x+threadldx.x
item in the x-dimension

get_local_id(0) Local index of the work threadldx.x
item within the work
group in the x-dimension

get_global_size(0); Size of NDRange inthe | gridDim.x XblockDim.x
x-dimension
get_local_size(0); Size of each work group | blockDim.x

in the x-dimension

Copyright © 2013 by Ygng Cao, Referencing UIUC ECE408/498AL Course Notes



WVirginiaTech = openct

Invent the Future

A Simple Example Matrix Multiplication

» A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in OpenCL programs

» Private register usage

» Work item |ID usage

» Memory data transfer API| between host and device
» Assume square matrix for simplicity

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

M VirginiaTech

Invent the Future

Square Matrix-Matrix Multiplication

> P=M?*N of size
WIDTH x WIDTH

» FEach work item calculates one element of
P

» M and N are loaded WIDTH times from
global memory

> »
< » N

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

v



WVirginiaTech = openct

Invent the Future

OpenCL Context

» Contains one or more devices

» OpenCL memory objects
associated with a context, not a
specific device

» clCreateBuffer() is the main data
object allocation function

» error if an allocation is too large for
any device in the context

» Each device needs its own work /
command queue(s)

» Memory transfers are associated
with a command queue (thus a
specific device)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenCL Context

OpenCL Device

L0
L0

L0
L0

L0
L0

L0
L0

OpenCL Device

L0

L0

L0

L0

L0
L0
L0

L0
L0
L0

L0
L0
L0

L0
L0
L0




WVirginiaTech = openct

Invent the Future

OpenCL Device Command Execution

OpenCL Context

Application » Command — Cmd Queue
Cmd Queue
Command —* Q

I

v
OpenCL Device OpenCL Device
HiE NI HiEE NN
HiE NI HiEE NN
HiEE NN
HiEE NN

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

11




@ Vll’glnlaTECh OpenCL

Invent the Future

OpenCL Context Setup Code (simple)

cl int clerr = CL_SUCCESS;
// create context including all available OpenCL devices
cl context clctx = clCreateContextFromType (
0, CL DEVICE TYPE ALL, NULL, NULL, &clerr);

size t parmsz;
// query number of devices in context
clerr = clGetContextInfo(
clctx, CL CONTEXT DEVICES, 0, NULL, &parmsz);
// now that size is known, allocate list for device info
cl device id* cldevs = (cl device id *) malloc(parmsz);
// query device info
clerr = clGetContextInfo(
clctx, CL CONTEXT DEVICES, parmsz, cldevs, NULL);

// create command queue for first OpenCL device
cl command queue clcmdg = clCreateCommandQueue (

clctx, cldevs[0], 0, &clerr);

12

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

M VirginiaTech

Invent the Future

Data Allocation

» clCreateBuffer();

» Requires five parameters
» OpenCL context
» Allocation and usage flags
» Size in bytes
» Host memory pointer
» Returned error code

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

13



@ Vll’glnlaTECh OpenCL

Invent the Future

Host-to-Device Data Transfer

» clEnqueueWriteBuffer();
» memory data transfer to device

» Requires nine parameters
» OpenCL command queue pointer
» Destination OpenCL memory buffer
» Blocking flag
» Offset in bytes
» Size in bytes of written data
» Host memory pointer

» List of events to be completed before execution of this
command

» Event object tied to this command

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

14



@ Vll’glnlaTECh OpenCL

Invent the Future

Device-to-Host Data Transfer

» clEnqueueReadBuffer();
» memory data transfer to host

» Requires nine parameters
» OpenCL command queue pointer
» Destination OpenCL memory buffer
» Blocking flag
» Offset in bytes
» Size in bytes of written data
» Destination host memory pointer

» List of events to be completed before execution of this
command

» Event object tied to this command

15

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll’glnlaTECh OpenCL

Invent the Future

OpenCL Memory Systems

» ___global - large, long latency
» ___private — on-chip device registers

» __local — memory accessible from multiple PEs or
work items

» May be SRAM or DRAM, must query...
» ___constant — read-only constant cache
» Programmer manages device memory explicitly

OpenCL Memory Types CUDA Equivalent

global memory global memory

constant memory constant memory

local memory shared memory

private memory Local memory 16

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll’glnlaTECh OpenCL

Invent the Future

Input Matrix Data Transfer (Host-side Code)

vold MatrixMulOnDevice (float* M, float* N, float* P, int Width)
{
int size = Width * Width * sizeof (float);
cl mem Md, Nd, Pd;
Md=clCreateBuffer (clctxt, CL MEM READ WRITE,
mem size M, NULL, NULL);
Nd=clCreateBuffer (clctxt, CL MEM READ WRITE,
mem size N, NULL, &ciErrNum);

clEnqueueWriteBuffer (clcmdque, Md, CL FALSE, 0, mem size M,
(const void * )M, 0, 0, NULL);

clEnqueueWriteBuffer (clcmdque, Nd, CL FALSE, 0, mem size N,
(const void *)N, 0, 0, NULL);

Pd=clCreateBuffer (clctxt, CL MEM READ WRITE, mem size P,
NULL, NULL);

17

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll’glnlaTECh OpenCL

Invent the Future

Output Matrix Data Transfer (Host-side Code)

2. // Kernel invocation code — to be shown later

3. // Read P from the device
clEnqueueReadBuffer (clcmdque, Pd, CL FALSE,
0, mem size P, (void*)P), 0, 0, &ReadDone);

// Free device matrices

clReleaseMemObject (Md) ;
clReleaseMemObject (Nd) ;
clReleaseMemObject (Pd) ;

b

18

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll'glnlaTECh OpenCL

Invent the Future

Matrix Multiplication Using
Multiple Work Groups

» Break up Pd into tiles

» Each work group calculates one tile
» Each work item calculates one element
» Set work group size to tile size

0
1

TILE_ WIDTH1¢— > *

tx
012 TILE_WIDTH-1

IIIl '

d »
¥ L |

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

v



M VirginiaTech

Invent the Future

A Very Small Example

OpenCL

Group(0,0) Gr‘cy(l,O)

Item(0,0) — Poo|P1o|P20|Pso WIDTH =4; TILE_WIDTH =2
Each work group has 2*2 = 4 work items

P.lP..IP..IP WIDTH/TILE_WIDTH = 2
0,2 1,2 2,2 3,2 *
Use 2*2 = 4 work groups

Group(0,1) Group(1,1)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



ﬂ% VlrglniaTECh OpenCL

Invent the Future

OpenCL Matrix Multiplication Kernel

__kernel void MatrixMulKernel ( global float* Md,  global
float* Nd,  global float* Pd, int Width)

// Calculate the row index of the Pd element and M
int Row = get global id(1l);

// Calculate the column idenx of Pd and N

int Col = get global 1d(0);

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

21

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll’glnlaTECh OpenCL

Invent the Future

Kernel Invocation (Host-side Code)

// Setup the execution configuration
size t cl DimBlock[2], cl DimGrid[Z2];

Cl_DimBlock[O] = TILE WIDTH;
Cl_DimBlOCk[l] = TILE WIDTH;
cl DimGrid[0] = Width;
cl DimGrid[1l] = Width;

clSetKernelArg(clkern,

( sizeof (cl mem), (void*) (&deviceP));
clSetKernelArg(clkern,

(

(

(

sizeof (cl mem), (void*) (&deviceM)) ;
(
(

~

~

cl mem), (void*) (&deviceN)) :;
int), (void *) (&Width));

sizeof
sizeof

clSetKernelArg(clkern,
clSetKernelArg(clkern,

w N P O
~

~

// Launch the device kernel

clEnqueueNDRangeKernel (clcmdque, clkern, 2, NULL,
cl DimGrid, c¢l DimBlock, 0, NULL,
&DeviceDone) ;

22

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



ﬂ&!ﬂ VlrglniaTECh OpenCL

Invent the Future

A Real Application Example --
Electrostatic Potential Maps

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

23



WVirginiaTech | openct

Invent the Future

Electrostatic Potential Maps

* Electrostatic potentials
evaluated on 3-D lattice:

=y —%

; 4megir; — 1

* Applications include:

— Ion placement for
structure building

— Time-averaged potentials
for simulation

— Visualization and analysis

Isoleucine tRNA synthetase

24

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll‘glnlaTECh OpenCL

Invent the Future

Direct Coulomb Summation

» At each lattice point, sum potential contributions for
all atoms in the simulated structure:

potential[j] += chargeli] / r;

r;; distance from
lattice point j to atom]1]

potential[j]: potential

A

at lattice point being
evaluated

atom[1]

25

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



M VirginiaTech

Invent the Future

DCS Data Parallel Decomposition

OpenCL

Unrolling increases (unrolled, coalesced)
O
computational tile size NDRange of work groups »
Work groups; \
64-256 threads A 0,0 0,1
b # jmammsms
i
\\\ \\ llf \ 1,0 1,1
/ T

N
Work items compute up to \
8 potentials, skipping by

memory coalescing width

‘ skipping by half-warps

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

Direct Coulomb Summation in OpenCL

Host
A NDRange | ; .
containing all ! mi fomic
work items, - ' Coordinates
decomposed into SRR
work groups i Charges

Work groups:
64-256 threads
B
. Constant Memory GPU
\ 1
H V¥ ¥y
/
VA
4
Work items compute Parallel Data| |Parallel Data| |Parallel Data |Parallel Data] Parallel Data | Parallel Da
up to 8 potentials Cache Cache Cache a| Cache | Cache Cache 11
’ | Texture ||| | [ rexture} || | Texture} || | fexture || §[ | {rexturef ]} | frexture}

skipping by memory

~ coalescing width Global Memory

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes




@ VlrglniaTECh OpenCL

Invent the Future

Direct Coulomb Summation Kernel Setup

OpenCL.: CUDA:

__kernel void clenergy(...) { __global __ void cuenergy (...) {
unsigned int xindex = (get_global_id(0) - unsigned int xindex = blockldx.x *
get_local_id(0)) * UNROLLX + blockDim.x * UNROLLX +
get_local_id(0); threadldx.x;
unsigned int yindex = get_global_id(1); unsigned int yindex = blockldx.y *
unsigned int outaddr = get_global_size(0) * blockDim.y + threadldx.y;
UNROLLX * yindex + xindex; unsigned int outaddr = gridDim.x *

blockDim.x * UNROLLX *
yindex + xindex;

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



M VirginiaTech

Invent the Future

DCS Inner Loop (CUDA)

...for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx — atominfo[atomid].x;
float dx2 = dx1 + gridspacing coalesce;
float dx3 = dx2 + gridspacing coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);

OpenCL

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

M VirginiaTech

Invent the Future

DCS Inner Loop (OpenCL on NVIDIA GPU)

...for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx — atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native rsqrt(dx4*dx4 + dyz2);

Copyright © 2013 by Yemyq Cao, Referencing UIUC ECE408/498AL Course Notes



M VirginiaTech

Invent the Future

DCS Inner Loop (OpenCL on AMD CPU)

OpenCL

float4 gridspacing ud = { 0.1, 1.1, 2.1, 3.1 };
gridspacing u4 *= gridspacing coalesce;
float4 energyvalx=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing u4 + (coorx — atominfo[atomid].x);
float charge = atominfo[atomid].w;

energyvalxl += charge * native rsqrt(dx1*dx1 + dyz2);
}

Copyright © 2013 by Yemg Cao, Referencing UIUC ECE408/498AL Course Notes



WVirginiaTech = openct

Invent the Future

Why Two Different OpenCL Kernels???

» Existing OpenCL implementations don’t necessarily
auto-vectorize your code for the native hardware’s
SIMD vector width

» Although you can run the same code on very different
devices and get the correct answer, performance will
vary wildly...

» In many cases, getting peak performance on multiple
device types or hardware from different vendors
currently requires multiple OpenCL kernels

32

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



WVirginiaTech | openct

Invent the Future

OpenCL Host Code

» Roughly analogous to CUDA driver API:
» Memory allocations, memory copies, etc

» Create and manage device context(s) and
associated work queue(s), etc...

» OpenCL uses reference counting on all objects
» OpenCL programs are normally compiled

entirely at runtime, which must be
managed by host code

33

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

W VirginiaTech

Invent the Future

OpenCL Kernel Compilation Example

const char* clenergysrc =
“ _kernel __ attribute  ((reqd_work_group_size hint(BLOCKSIZEX,
BLOCKSIZEY, 1))) \n”

“void clenergy(int numatoms, float gridspacing, __ global float

*energy, _constant float4 *atominfo) { \n” [...etc and so forth...]
cl_program clpgm;

clpgm = cICreateProgramWitMnerstrc, NULL, &clerr);
char clcompileflags[4096];

sprintf(clcompileflags, "-DUNROLLX=%d -cl-fast-relaxed-math -cl-single-
precision-constant -cl-denorms-are-zero -cl-mad-enable", UNROLLX);
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, "clenergy", &clerr);

:

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



M VirginiaTech

Invent the Future

Host Code: OpenCL Kernel Launch

OpenCL

1. doutput = clCreateBuffer(clctx, CL_ MEM_READ_WRITE,volmemsz, NULL, NULL);
2. datominfo = clCreateBuffer(clctx, CL_ MEM_ READ_ ONLY, MAXATOMS
*sizeof(cl_float4), NULL, NULL);

clerr= clSetKernelArg(clkern, 0,sizeof(int), &runatoms);

clerr= clSetKernelArg(clkern, 1,sizeof(float), &zplane);

clerr= clSetKernelArg(clkern, 2,sizeof(cl_mem), &doutput);

clerr= clSetKernelArg(clkern, 3,sizeof(cl_mem), &datominfo);

cl_event event;

. clerr= clEnqueueNDRangeKernel(clcmdq,clkern, 2, NULL, Gsz,Bsz, 0, NULL,
&event);

9. clerr= clWaitForEvents(1, &event);

10. clerr= cIlReleaseEvent(event);

O NSO R W

11. clEnqueueReadBuffer(clcmdq,doutput, CL_TRUE, 0, volmemsz, energy, 0, NULL,
NULL);

12. clReleaseMemObject(doutput);

13. clReleaseMemObject(datominfo);

35

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



@ Vll'glnlaTECh OpenCL

Invent the Future

To Learn More

» Khronos OpenCL headers, specification, etc: http://
www.khronos.org/registry/cl/

» Khronos OpenCL samples, tutorials, etc:
http://www.khronos.org/developers/resources/opencl/

» AMD OpenCL Resources:
http://developer.amd.com/gpu/ATIStreamSDK/pages/
Tutorial OpenCL.aspx

» NVIDIA OpenCL Resources:
http://www.nvidia.com/object/cuda_opencl.html

» Chapter 11 of our textbook

36

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



