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What is OpenCL?

» Cross-platform parallel computing APl and C-like
language for heterogeneous computing devices

» Code is portable across various target devices:

» Correctness is guaranteed
» Performance of a given kernel is not guaranteed across differing
target devices
» OpenCL implementations already exist for AMD, ATI,
and NVIDIA GPUs, x86 CPUs

» In principle, OpenCL could also target DSPs, Cell, and
perhaps also FPGAs
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More on Multi-Platform Targeting

» Targets a broader range of CPU-like and GPU-like
devices than CUDA
» Targets devices produced by multiple vendors
» Many features of OpenCL are optional and may not be
supported on all devices
» OpenCL codes must be prepared to deal with
much greater hardware diversity

» A single OpenCL kernel will likely not achieve
peak performance on all device types
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OpenCL Data Parallel Model Summary

» Parallel work is submitted to devices by launching
kernels

» Kernels run over global dimension index ranges

(NDRange), broken up into “work groups”, and “work
items”

» Work items executing within the same work group can
synchronize with each other using barriers or memory
fences

» Work items in different work groups can only sync
with each other by launching a new kernel
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Mapping Data Parallelism Models: OpenCL to CUDA

OpenCL Parallelism Concept CUDA Equivalent
kernel kernel

host program host program
NDRange (index space) grid

work item thread

work group block

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



OpenCL

W VirginiaTech

Invent the Future

OpenCL NDRange Configuration
Work Group ; Global Size(0)
\A Group ID
Local Size(0) S b 0,1
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Work Item
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Mapping OpenCL indices to CUDA

OpenCL API call Explanation CUDA equivalent

get_global_id(0); Global index of the work | blockldx.xxblockDim.x+threadldx.x
item in the x-dimension

get_local_id(0) Local index of the work threadldx.x
item within the work
group in the x-dimension

get_global_size(0); Size of NDRange inthe | gridDim.x XblockDim.x
x-dimension
get_local_size(0); Size of each work group | blockDim.x

in the x-dimension
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A Simple Example Matrix Multiplication

» A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in OpenCL programs

» Private register usage

» Work item |ID usage

» Memory data transfer API| between host and device
» Assume square matrix for simplicity
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Square Matrix-Matrix Multiplication

> P=M?*N of size
WIDTH x WIDTH

» FEach work item calculates one element of
P

» M and N are loaded WIDTH times from
global memory

> »
< » N
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OpenCL Context

» Contains one or more devices

» OpenCL memory objects
associated with a context, not a
specific device

» clCreateBuffer() is the main data
object allocation function

» error if an allocation is too large for
any device in the context

» Each device needs its own work /
command queue(s)

» Memory transfers are associated
with a command queue (thus a
specific device)
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OpenCL Device Command Execution

OpenCL Context

Application » Command — Cmd Queue
Cmd Queue
Command —* Q

I

v
OpenCL Device OpenCL Device
HiE NI HiEE NN
HiE NI HiEE NN
HiEE NN
HiEE NN
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OpenCL Context Setup Code (simple)

cl int clerr = CL_SUCCESS;
// create context including all available OpenCL devices
cl context clctx = clCreateContextFromType (
0, CL DEVICE TYPE ALL, NULL, NULL, &clerr);

size t parmsz;
// query number of devices in context
clerr = clGetContextInfo(
clctx, CL CONTEXT DEVICES, 0, NULL, &parmsz);
// now that size is known, allocate list for device info
cl device id* cldevs = (cl device id *) malloc(parmsz);
// query device info
clerr = clGetContextInfo(
clctx, CL CONTEXT DEVICES, parmsz, cldevs, NULL);

// create command queue for first OpenCL device
cl command queue clcmdg = clCreateCommandQueue (

clctx, cldevs[0], 0, &clerr);

12
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Data Allocation

» clCreateBuffer();

» Requires five parameters
» OpenCL context
» Allocation and usage flags
» Size in bytes
» Host memory pointer
» Returned error code
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Host-to-Device Data Transfer

» clEnqueueWriteBuffer();
» memory data transfer to device

» Requires nine parameters
» OpenCL command queue pointer
» Destination OpenCL memory buffer
» Blocking flag
» Offset in bytes
» Size in bytes of written data
» Host memory pointer

» List of events to be completed before execution of this
command

» Event object tied to this command
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Device-to-Host Data Transfer

» clEnqueueReadBuffer();
» memory data transfer to host

» Requires nine parameters
» OpenCL command queue pointer
» Destination OpenCL memory buffer
» Blocking flag
» Offset in bytes
» Size in bytes of written data
» Destination host memory pointer

» List of events to be completed before execution of this
command

» Event object tied to this command

15
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OpenCL Memory Systems

» ___global - large, long latency
» ___private — on-chip device registers

» __local — memory accessible from multiple PEs or
work items

» May be SRAM or DRAM, must query...
» ___constant — read-only constant cache
» Programmer manages device memory explicitly

OpenCL Memory Types CUDA Equivalent

global memory global memory

constant memory constant memory

local memory shared memory

private memory Local memory 16
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Input Matrix Data Transfer (Host-side Code)

vold MatrixMulOnDevice (float* M, float* N, float* P, int Width)
{
int size = Width * Width * sizeof (float);
cl mem Md, Nd, Pd;
Md=clCreateBuffer (clctxt, CL MEM READ WRITE,
mem size M, NULL, NULL);
Nd=clCreateBuffer (clctxt, CL MEM READ WRITE,
mem size N, NULL, &ciErrNum);

clEnqueueWriteBuffer (clcmdque, Md, CL FALSE, 0, mem size M,
(const void * )M, 0, 0, NULL);

clEnqueueWriteBuffer (clcmdque, Nd, CL FALSE, 0, mem size N,
(const void *)N, 0, 0, NULL);

Pd=clCreateBuffer (clctxt, CL MEM READ WRITE, mem size P,
NULL, NULL);

17
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Output Matrix Data Transfer (Host-side Code)

2. // Kernel invocation code — to be shown later

3. // Read P from the device
clEnqueueReadBuffer (clcmdque, Pd, CL FALSE,
0, mem size P, (void*)P), 0, 0, &ReadDone);

// Free device matrices

clReleaseMemObject (Md) ;
clReleaseMemObject (Nd) ;
clReleaseMemObject (Pd) ;

b

18
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Matrix Multiplication Using
Multiple Work Groups

» Break up Pd into tiles

» Each work group calculates one tile
» Each work item calculates one element
» Set work group size to tile size

0
1

TILE_ WIDTH1¢— > *

tx
012 TILE_WIDTH-1

IIIl '

d »
¥ L |
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A Very Small Example

OpenCL

Group(0,0) Gr‘cy(l,O)

Item(0,0) — Poo|P1o|P20|Pso WIDTH =4; TILE_WIDTH =2
Each work group has 2*2 = 4 work items

P.lP..IP..IP WIDTH/TILE_WIDTH = 2
0,2 1,2 2,2 3,2 *
Use 2*2 = 4 work groups

Group(0,1) Group(1,1)
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OpenCL Matrix Multiplication Kernel

__kernel void MatrixMulKernel ( global float* Md,  global
float* Nd,  global float* Pd, int Width)

// Calculate the row index of the Pd element and M
int Row = get global id(1l);

// Calculate the column idenx of Pd and N

int Col = get global 1d(0);

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

21
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Kernel Invocation (Host-side Code)

// Setup the execution configuration
size t cl DimBlock[2], cl DimGrid[Z2];

Cl_DimBlock[O] = TILE WIDTH;
Cl_DimBlOCk[l] = TILE WIDTH;
cl DimGrid[0] = Width;
cl DimGrid[1l] = Width;

clSetKernelArg(clkern,

( sizeof (cl mem), (void*) (&deviceP));
clSetKernelArg(clkern,

(

(

(

sizeof (cl mem), (void*) (&deviceM)) ;
(
(

~

~

cl mem), (void*) (&deviceN)) :;
int), (void *) (&Width));

sizeof
sizeof

clSetKernelArg(clkern,
clSetKernelArg(clkern,

w N P O
~

~

// Launch the device kernel

clEnqueueNDRangeKernel (clcmdque, clkern, 2, NULL,
cl DimGrid, c¢l DimBlock, 0, NULL,
&DeviceDone) ;

22
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A Real Application Example --
Electrostatic Potential Maps
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Electrostatic Potential Maps

* Electrostatic potentials
evaluated on 3-D lattice:

=y —%

; 4megir; — 1

* Applications include:

— Ion placement for
structure building

— Time-averaged potentials
for simulation

— Visualization and analysis

Isoleucine tRNA synthetase

24
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Direct Coulomb Summation

» At each lattice point, sum potential contributions for
all atoms in the simulated structure:

potential[j] += chargeli] / r;

r;; distance from
lattice point j to atom]1]

potential[j]: potential

A

at lattice point being
evaluated

atom[1]

25

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes



M VirginiaTech

Invent the Future

DCS Data Parallel Decomposition

OpenCL

Unrolling increases (unrolled, coalesced)
O
computational tile size NDRange of work groups »
Work groups; \
64-256 threads A 0,0 0,1
b # jmammsms
i
\\\ \\ llf \ 1,0 1,1
/ T

N
Work items compute up to \
8 potentials, skipping by

memory coalescing width

‘ skipping by half-warps
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Direct Coulomb Summation in OpenCL

Host
A NDRange | ; .
containing all ! mi fomic
work items, - ' Coordinates
decomposed into SRR
work groups i Charges

Work groups:
64-256 threads
B
. Constant Memory GPU
\ 1
H V¥ ¥y
/
VA
4
Work items compute Parallel Data| |Parallel Data| |Parallel Data |Parallel Data] Parallel Data | Parallel Da
up to 8 potentials Cache Cache Cache a| Cache | Cache Cache 11
’ | Texture ||| | [ rexture} || | Texture} || | fexture || §[ | {rexturef ]} | frexture}

skipping by memory

~ coalescing width Global Memory
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Direct Coulomb Summation Kernel Setup

OpenCL.: CUDA:

__kernel void clenergy(...) { __global __ void cuenergy (...) {
unsigned int xindex = (get_global_id(0) - unsigned int xindex = blockldx.x *
get_local_id(0)) * UNROLLX + blockDim.x * UNROLLX +
get_local_id(0); threadldx.x;
unsigned int yindex = get_global_id(1); unsigned int yindex = blockldx.y *
unsigned int outaddr = get_global_size(0) * blockDim.y + threadldx.y;
UNROLLX * yindex + xindex; unsigned int outaddr = gridDim.x *

blockDim.x * UNROLLX *
yindex + xindex;
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DCS Inner Loop (CUDA)

...for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx — atominfo[atomid].x;
float dx2 = dx1 + gridspacing coalesce;
float dx3 = dx2 + gridspacing coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);

OpenCL
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DCS Inner Loop (OpenCL on NVIDIA GPU)

...for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx — atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native rsqrt(dx4*dx4 + dyz2);
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DCS Inner Loop (OpenCL on AMD CPU)

OpenCL

float4 gridspacing ud = { 0.1, 1.1, 2.1, 3.1 };
gridspacing u4 *= gridspacing coalesce;
float4 energyvalx=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing u4 + (coorx — atominfo[atomid].x);
float charge = atominfo[atomid].w;

energyvalxl += charge * native rsqrt(dx1*dx1 + dyz2);
}
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Why Two Different OpenCL Kernels???

» Existing OpenCL implementations don’t necessarily
auto-vectorize your code for the native hardware’s
SIMD vector width

» Although you can run the same code on very different
devices and get the correct answer, performance will
vary wildly...

» In many cases, getting peak performance on multiple
device types or hardware from different vendors
currently requires multiple OpenCL kernels

32
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OpenCL Host Code

» Roughly analogous to CUDA driver API:
» Memory allocations, memory copies, etc

» Create and manage device context(s) and
associated work queue(s), etc...

» OpenCL uses reference counting on all objects
» OpenCL programs are normally compiled

entirely at runtime, which must be
managed by host code

33
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OpenCL Kernel Compilation Example

const char* clenergysrc =
“ _kernel __ attribute  ((reqd_work_group_size hint(BLOCKSIZEX,
BLOCKSIZEY, 1))) \n”

“void clenergy(int numatoms, float gridspacing, __ global float

*energy, _constant float4 *atominfo) { \n” [...etc and so forth...]
cl_program clpgm;

clpgm = cICreateProgramWitMnerstrc, NULL, &clerr);
char clcompileflags[4096];

sprintf(clcompileflags, "-DUNROLLX=%d -cl-fast-relaxed-math -cl-single-
precision-constant -cl-denorms-are-zero -cl-mad-enable", UNROLLX);
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, "clenergy", &clerr);

:
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Host Code: OpenCL Kernel Launch

OpenCL

1. doutput = clCreateBuffer(clctx, CL_ MEM_READ_WRITE,volmemsz, NULL, NULL);
2. datominfo = clCreateBuffer(clctx, CL_ MEM_ READ_ ONLY, MAXATOMS
*sizeof(cl_float4), NULL, NULL);

clerr= clSetKernelArg(clkern, 0,sizeof(int), &runatoms);

clerr= clSetKernelArg(clkern, 1,sizeof(float), &zplane);

clerr= clSetKernelArg(clkern, 2,sizeof(cl_mem), &doutput);

clerr= clSetKernelArg(clkern, 3,sizeof(cl_mem), &datominfo);

cl_event event;

. clerr= clEnqueueNDRangeKernel(clcmdq,clkern, 2, NULL, Gsz,Bsz, 0, NULL,
&event);

9. clerr= clWaitForEvents(1, &event);

10. clerr= cIlReleaseEvent(event);

O NSO R W

11. clEnqueueReadBuffer(clcmdq,doutput, CL_TRUE, 0, volmemsz, energy, 0, NULL,
NULL);

12. clReleaseMemObject(doutput);

13. clReleaseMemObject(datominfo);

35
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To Learn More

» Khronos OpenCL headers, specification, etc: http://
www.khronos.org/registry/cl/

» Khronos OpenCL samples, tutorials, etc:
http://www.khronos.org/developers/resources/opencl/

» AMD OpenCL Resources:
http://developer.amd.com/gpu/ATIStreamSDK/pages/
Tutorial OpenCL.aspx

» NVIDIA OpenCL Resources:
http://www.nvidia.com/object/cuda_opencl.html

» Chapter 11 of our textbook
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