
OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Introduction to OpenACC

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Objective

Ø  To Understand the OpenACC
programming model
Ø  basic concepts and pragma types
Ø  Simple examples to illustrate basic concepts and

functionalities

© Wen-mei W. Hwu and John Stone, Urbana
July 22, 2010

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenACC

Ø The OpenACC Application Programming
Interface provides a set of
Ø compiler directives (pragmas)
Ø library routines and
Ø environment variables
that can be used to write data parallel FORTRAN, C
and C++ programs that run on accelerator devices
including GPUs and CPUs

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenACC Pragmas

Ø In C and C++, the #pragma directive is the
method to provide, to the compiler,
information that is not specified in the
standard language.

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Simple Matrix-Matrix Multiplication in OpenACC

1 void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2 {
3
4 #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw])
copyout(P[0:Mh*Nw])
5 for (int i=0; i<Mh; i++) {
6 #pragma acc loop
7 for (int j=0; j<Nw; j++) {
8 float sum = 0;
9 for (int k=0; k<Mw; k++) {
10 float a = M[i*Mw+k];
11 float b = N[k*Nw+j];
12 sum += a*b;
13 }
14 P[i*Nw+j] = sum;
15 }
16 }
17 }

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Some Observations

Ø  The code is almost identical to the sequential
version, except for the two lines with #pragma at
line 4 and line 6.

Ø OpenACC uses the compiler directive mechanism
to extend the base language.
Ø  #pragma at line 4 tells the compiler to generate code for the ‘i’ loop

at line 5 through 16 so that the loop iterations are executed in parallel
on the accelerator.

Ø  The copyin clause and the copyout clause specify how the matrix
data should be transferred between the host and the accelerator.
The #pragma at line 6 instructs the compiler to map the inner ‘j’ loop
to the second level of parallelism on the accelerator.

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Motivation

Ø OpenACC programmers can often start
with writing a sequential version and then
annotate their sequential program with
OpenACC directives.
Ø leave most of the details in generating a kernel

and data transfers to the OpenACC compiler.

Ø OpenACC code can be compiled by non-
OpenACC compilers by ignoring the
pragmas.

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Frequently Encountered Issues

Ø Some OpenACC pragmas are hints to the
OpenACC compiler, which may or may not
be able to act accordingly
Ø The performance of an OpenACC depends heavily

on the quality of the compiler.
Ø Much less so in CUDA or OpenCL

Ø Some OpenACC programs may behave
differently or even incorrectly if pragmas
are ignored

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenACC Device Model

Currently OpenACC does not allow synchronization across threads.

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

OpenACC Execution Model

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
…
}

is equivalent to:
#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])
{
 #pragma acc loop
 for (int i=0; i<Mh; i++) {
 …
 }
}

(a parallel region that consists of just a loop)

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Parallel Construct

Ø A parallel construct is executed on an
accelerator

Ø One can specify the number of gangs and
number of works in each gang

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{

 a = 23;
}

1024*32 workers will be created. a=23 will be executed redundantly by all 1024
gang leads

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

What does each “Gang Loop” do?
#pragma acc parallel
num_gangs(1024)
{
 for (int i=0; i<2048; i++) {
 …
 }
}

#pragma acc parallel
num_gangs(1024)
{
#pragma acc loop gang
 for (int i=0; i<2048; i++) {
 …
 }
}

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Worker Loop

#pragma acc parallel num_gangs(1024) num_workers(32)
{
 #pragma acc loop gang
 for (int i=0; i<2048; i++) {
 #pragma acc loop worker
 for (int j=0; j<512; j++) {
 foo(i,j);
 }
 }
}
1024*32=32K workers will be created, each executing 1M/32K =

32 instance of foo()

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

#pragma acc parallel num_gangs(32)
{
 Statement 1; Statement 2;
 #pragma acc loop gang
 for (int i=0; i<n; i++) {
 Statement 3; Statement 4;
 }
 Statement 5; Statement 6;
 #pragma acc loop gang
 for (int i=0; i<m; i++) {
 Statement 7; Statement 8;
 }
 Statement 9;
 if (condition)
 Statement 10;
}

Ø Statements 1 and 2 are
redundantly executed
by 32 gangs

Ø  The n for-loop
iterations are
distributed to 32 gangs

OpenACC

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Kernel Regions
#pragma acc kernels
{
 #pragma acc loop num_gangs(1024)
 for (int i=0; i<2048; i++) {
 a[i] = b[i];
 }
 #pragma acc loop num_gangs(512)
 for (int j=0; j<2048; j++) {
 c[j] = a[j]*2;
 }
 for (int k=0; k<2048; k++) {
 d[k] = c[k];
 }
}

Ø Kernel
constructs are
descriptive of
programmer
intentions

