@ Vll’gll’llaTe Ch Architecture

Invent the Future

CS 5234 —Spring 2013
Advanced Parallel Computing

Architecture

Yong Cao

% Vll’glnlaTe Ch Architecture

Invent the Future

Goals

» Sequential Machine and Von-Neumann Model

» Parallel Hardware
» Distributed vs Shared Memory

» Architecture Classes
» Multiple-core

> Many-core (massive parallel)

> NVIDIA GPU Architecture

@ Vll’glnlaTe Ch Architecture

Invent the Future

Von-Neumann Machine (VN)

A\

PC: Program counter

MAR: Memory address
register

» MDR: Memory data
register

IR Instruction register
ALU: Arithmetic Logic
Unit

» Acc: Accumulator

\ 74

YV VYV

A 4

PC

» MAR

A 4

MEMORY

OP| ADDRESS

MDR

'
/ Decoder \

\

A
v

Acc

@ VlrglniaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

» The six phases of the
instruction cycle:
» Fetch
» Decode
» Evaluate Address
» Fetch Operands
» Execute
» Store Result

A 4

PC

» MAR

A

MEMORY

OP| ADDRESS

'
/ Decoder \

\

MDR

Acc

A
v

M VirginiaTech

Invent the Future

Architecture

Sequential Execution and Instruction Cycle

> Fetch
» MAR€PC
> MDR€MEM|[MAR]
» IR€MDR

PC

MAR

|

MEMORY

OP

ADDRESS

MDR

'
/ Decoder \

\

A
v

Acc

> ALU /

ﬂ% VlrglniaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

» Decode
> DECODER€IR.OP

PC

MAR

MEMORY

OP

ADDRESS

MDR

'
/ Decoder \

\

A
v

Acc

> ALU /

ﬂ% VlrglniaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

» Evaluate Address
> MAR€IR.ADDR
> MDR€MEM[MAR]

A 4

PC

» MAR

MEMORY

OP

ADDRESS

MDR

'
/ Decoder \

\

A
v

Acc

> ALU /

@ VlrglniaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

> Execute
> Acc €Acc + MDR " PC
» MAR
MEMORY
OP| ADDRESS MDR

'
/ Decoder \

\

@ VlrglnlaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

> Store Result
> MDR

A 4

PC

» MAR

A

MEMORY

OP

ADDRESS

MDR

'
/ Decoder \

\

A

»| Acc

> ALU /

% Vll’glnlaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

> Register File

A 4

PC

» MAR

A 4

MEMORY

or ADDRESS Register File

ALU

/=N NV

@ Vll’glnlaTe Ch Architecture

Invent the Future

Sequential Execution and Instruction Cycle

PC

A

MEMORY > |

\ 4
Register File

Y/

@ VlrglnlaTe Ch Architecture

Invent the Future

Parallel Hardware

» Shared vs Distributed Memory

!

{

!

{

W/

W/

» Multi-Core and Many-Core Architecture

MEMORY
PC PC PC
v v v
IR IR IR
v v v
Register File Register File Register File
= =

lvl
W/

@ Vll‘glnlaTe Ch Architecture

Invent the Future

Parallel Hardware

» Shared vs Distributed Memory

W/

W/

MEMORY MEMORY MEMORY
f %
PC PC PC
v v v
IR IR IR
v v v
Register File Register File Register File
= =

lvl
W/

» Cluster Computing, Grid Computing, Cloud Computing

@ VlrglniaTe Ch Architecture

Invent the Future

Multi-Core vs Many-Core

» Definition of Core — Independent ALU
» How about a vector processor?

SIMD Instruction Pool

» SIMD: E.g. Intel’s SSE.
» How many is “many”? *|PU|

» What if there are too “many” cores
1n the Multi-core design?

Shared control logic (PC, IR,
Schedule)

+|PU|—

Data Pool

:PUC—'

:PUQ—

@ Vil’giniaTe dl Architecture

Invent the Future

Multi-Core

» Kach core has its own
control (PC and IR)

Control

CP

ALU

ALU

UALU

ALU

% Virgi.niaTe Ch Architecture

Invent the Future

Many-Core

> A group of coresshares Wl = |
the control PC,IRand b ' ' | =
Thread Scheduling)

Register Flle
Core Core Core Core

|

tecture

Arch

Architecture

iniaTech

Invent the Future

NVIDIA Ferm

Vir

Core Core Core Core
Core Core Core Core
Core Core Core Core

DRAM

ENEEEEEEENEL NN

ENEEEEEEEEEEEEEN

ENEEEEEEENEEEEEN

ENEEEEEEENEEEEEN

LU
ENEEEEEEENEEEEEN

ENEEEEEEENEEEEEN

ANEEEEEEEEEEEEEN

8depalu| }soH

Core Core Core Core

Core Core Core Core
Core Core Core Core

DRAM DRAM

L2 Cache

Core Core Core Core

Interconnect Network

DRAM

wDuDDDDHDDHHDDDDD
WJLEDDDHDDHHDEErJ
mDuDDDEFEEFHDDDDD
wDuDDDDHDDHHDDDDD
WDuDDDDHDDHHDDDDD
mDuDDDDHDDHHDDDDD
mDuDDDDHDDHHDDDDD

NEEEEEEENEEEEEE

peay1ebio

[T
72

64K Configurable
Cache/Shared Mem
Uniform Cache

16 Stream Multiprocessor (SM)

32 Core for Each SM

% VirginiaTe dl Architecture

Invent the Future

Fermi SM

CUDA Core

Dispatch Port
Operand Collector

W VirginiaTech

Invent the Future

Architecture

Execution in a SM

Warp Scheduler

Instruction Dispatch Unit

Warp Scheduler

Instruction Dispatch Unit

CUDA Cores (x16)

|

CUDA Cores (x16) m

FADD
FADD RCP
FFMA FFMA |
IADD IADD |
MoV | LD
FFMA SIN
IADD ICMP |
FFMA | ST
FFMA IADD |

A total of 32 instructions from one or two warps can be dispatched in each cycle to any
two of the four execution blocks within a Fermi SM: two blocks of 16 cores each, one
block of four Special Function Units, and one block of 16 load/store units. This figure
shows how instructions are issued to the execution blocks.

g@ VlrglniaTe Ch Architecture

Invent the Future

Data Parallel

» Data Parallel vs Task Parallel
» What to partition? Data or Task?

» Massive Data Parallel
> Millions (or more) of threads
» Same instruction, different data elements

@ VlrglniaTe Ch Architecture

Invent the Future

Computing on GPUs

> Steam processing and Vectorization (SIMD)

Instructions Input Stream

Output Stream

% VlrglniaTe Ch Architecture

Invent the Future

GPU Programming Model: Stream

» Stream Programming Model
» Streams: Stream

» An array of data units

. Kernel
> Kernels: .

» Take streams as input, produce streams at output Stream

» Perform computation on streams

» Kernels can be linked together

!

e
o

!

@ VlrginiaTe Ch Architecture

Invent the Future

Why Streams?

» Ample computation by exposing parallelism
» Stream expose data parallelism
» Multiple stream elements can be processed in parallel

> Pipeline (task) parallelism

» Multiple tasks can be processed 1n parallel

» Efficient communication
» Producer-consumer locality

» Predictable memory access pattern

» Optimize for throughput of all elements, not latency of
one

» Processing many elements at once allows latency
hiding

