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Goals

» Sequential Machine and Von-Neumann Model

» Parallel Hardware
» Distributed vs Shared Memory

» Architecture Classes
» Multiple-core

> Many-core (massive parallel)

> NVIDIA GPU Architecture
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Von-Neumann Machine (VN)
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PC: Program counter

MAR: Memory address
register

» MDR: Memory data
register

IR Instruction register
ALU: Arithmetic Logic
Unit

» Acc: Accumulator
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Sequential Execution and Instruction Cycle

» The six phases of the
instruction cycle:
» Fetch
» Decode
» Evaluate Address
» Fetch Operands
» Execute
» Store Result
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Sequential Execution and Instruction Cycle

> Fetch
» MAR€PC
> MDR€MEM|[MAR]
» IR€MDR
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Sequential Execution and Instruction Cycle

» Decode
> DECODER€IR.OP
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Sequential Execution and Instruction Cycle

» Evaluate Address
> MAR€IR.ADDR
> MDR€MEM[MAR]
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Sequential Execution and Instruction Cycle

> Execute
> Acc €Acc + MDR " PC
» MAR
MEMORY
OP| ADDRESS MDR
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Sequential Execution and Instruction Cycle

> Store Result
> MDR
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Sequential Execution and Instruction Cycle

> Register File
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Sequential Execution and Instruction Cycle
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Parallel Hardware

» Shared vs Distributed Memory
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» Multi-Core and Many-Core Architecture
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Parallel Hardware

» Shared vs Distributed Memory
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» Cluster Computing, Grid Computing, Cloud Computing
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Multi-Core vs Many-Core

» Definition of Core — Independent ALU
» How about a vector processor?

SIMD Instruction Pool

» SIMD: E.g. Intel’s SSE.
» How many is “many”? *|PU|

» What if there are too “many” cores
1n the Multi-core design?

Shared control logic (PC, IR,
Schedule)
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Multi-Core

» Kach core has its own
control (PC and IR)
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Many-Core

> A group of coresshares Wl = |
the control PC,IRand b ' ' | =
Thread Scheduling)
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NVIDIA Ferm
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16 Stream Multiprocessor (SM)

32 Core for Each SM
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Fermi SM

CUDA Core

Dispatch Port
Operand Collector
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Execution in a SM

Warp Scheduler

Instruction Dispatch Unit

Warp Scheduler

Instruction Dispatch Unit

CUDA Cores (x16)

|

CUDA Cores (x16) m

FADD
FADD RCP
FFMA FFMA |
IADD IADD |
MoV | LD
FFMA SIN
IADD ICMP |
FFMA | ST
FFMA IADD |

A total of 32 instructions from one or two warps can be dispatched in each cycle to any
two of the four execution blocks within a Fermi SM: two blocks of 16 cores each, one
block of four Special Function Units, and one block of 16 load/store units. This figure
shows how instructions are issued to the execution blocks.
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Data Parallel

» Data Parallel vs Task Parallel
» What to partition? Data or Task?

» Massive Data Parallel
> Millions (or more) of threads
» Same instruction, different data elements
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Computing on GPUs

> Steam processing and Vectorization (SIMD)

Instructions Input Stream

Output Stream
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GPU Programming Model: Stream

» Stream Programming Model
» Streams: Stream

» An array of data units

. Kernel
> Kernels: .

» Take streams as input, produce streams at output Stream

» Perform computation on streams

» Kernels can be linked together
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Why Streams?

» Ample computation by exposing parallelism
» Stream expose data parallelism
» Multiple stream elements can be processed in parallel

> Pipeline (task) parallelism

» Multiple tasks can be processed 1n parallel

» Efficient communication
» Producer-consumer locality

» Predictable memory access pattern

» Optimize for throughput of all elements, not latency of
one

» Processing many elements at once allows latency
hiding




