
CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Programming Model

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Parallel Algorithm Design Concepts

Mapping: Thread -> Core

Mapping: Task -> Thread

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA “Compute Unified Device Architecture”

Ø General purpose parallel programming model

Ø Support “Zillions” of threads

Ø Much easier to use
Ø C language, No shaders, No Graphics APIs
Ø Shallow learning curve: tutorials, sample projects, forum

Ø Key features
Ø  Simple management of threads
Ø  Simple execution model
Ø  Simple synchronization
Ø  Simple communication

Goal:
Focus on parallel algorithms (kernels), rather than parallel management

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA “Compute Unified Device Architecture”

What we get?

Ø Not enough controls
Ø Only handle data-parallel application well

Ø Easy to program
Ø High performance

Ø Not easy for some other applications (Large
data dependency between threads)

Ø Easier than before, but not a fully general
parallel programming model

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Programming Model

Ø Executing kernel functions within threads
Ø Threads organization

Ø Blocks and Grids
Ø Hardware mapping of threads

Ø Computation-to-core mapping
Ø Thread -> Core
Ø Thread blocks -> Multi-processors

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Threads and Functional Kernels
Ø  Many threads are executing a single kernel function

Ø Same Code (SIMD)
Ø Different Data (using Thread ID)

7 6 5 4 3 2 1 0

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Kernel:

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Blocks

Ø Threads are grouped into multiple blocks

…
Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
…

ThreadID

Thread Block 0

…

Thread Block 1 Thread Block N-1
76543210 76543210 76543210

BlockID

…
Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
…

…
Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
…

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Grid

Ø A number of blocks are grouped into Grid.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread organization Overview

Ø An array of threads -> block
Ø An array of blocks -> grid

Ø All threads in one grid execute the same
kernel

Ø Grids are executed sequentially.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread organization Overview

Host

Kernel
1

Kernel
2

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Identification

Ø Block IDs and Thread
IDs
Ø  Threads use IDs to decide which

data to operation on.
Ø Block ID: 1D or 2D or 3D array
Ø  Thread ID: 1D, 2D, or 3D array

Ø Advantage: Easy for
data parallel processing
with rigid grid data
organization

Host

Kernel
1

Kernel
2

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Block (1, 1)

Thread
(0,1,0) Thread (1,1,0) Thread (2,1,0) Thread (3,1,0)

Thread
(0,0,0) Thread (1,0,0) Thread (2,0,0) Thread (3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Thread and Block

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Between Blocks

Global Memory

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Between Grids (Kernels)

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Between Devices

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Threads Cooperation

Ø  Threads within a block
Ø Shared memory
Ø Atomic operation

Ø Share memory
Ø Global memory

Ø Barrier
Ø  Threads between blocks

Ø Atomic operation
Ø Global memory

Ø  Threads between grids
Ø No way!

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Communication with Host (CPU)

Ø No communication when
GPU kernel is running

Ø Use global memory before
or after GPU kernel call
Ø Host initializes transfer

request
Ø Async vs Sync transfer

Ø Only host can allocate
device memory
Ø No runtime memory

allocation on device

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Hardware Mapping of Threads

Kernel Lunched by Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Mapping and Scheduling

Ø A grid of threads takes over the whole device.
Ø A block of threads is mapped on one multi-

processor.
Ø A multi-processor can take more than one blocks.

(Occupancy)
Ø A block can not be preempted until finish.

Ø  Threads within a blocks are scheduled to run on
the cores of multi-processor.
Ø Threads are grouped into warps (warp size is 32)

as scheduling units.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Transparent Scalability
Ø Hardware is free to schedule thread blocks on any processor

Ø Kernels scale to any number of parallel multiprocessors

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Lightweight Threads

Ø Easy to map to cores (Rigid Grid)
Ø Easy to schedule (One cycle)
Ø  Therefore:

Ø + High performance (data parallel application)
Ø  - Hard to synchronize for applications with

intensive data dependencies

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Basics

Ø CUDA device memory allocation and
transfer.

Ø CUDA specific language features.
Ø Our “Hello World!” CUDA example.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Device Memory Allocation

Ø cudaMalloc()
Ø Allocates object in the

device Global Memory
Ø Global Memory is R/W

Ø Requires two parameters
Ø Address of a pointer to the

allocated object
Ø Size of of allocated object

Ø cudaFree()
Ø Frees object from device

Global Memory
Ø Pointer to freed object

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Host-Device Data Transfer

Ø Code example:
Ø Transfer a 64 * 64 single precision float array
Ø M is in host memory and Md is in device memory
Ø cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);!
!
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);!

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Function Declarations

host host __host__ float HostFunc()‏

host device __global__ void KernelFunc()‏

device device __device__ float DeviceFunc()‏

Only callable
from the:

Executed
on the:

Ø  __global__ defines a kernel function
Ø  Must return void

Ø  For functions executed on the device:
Ø  No recursion
Ø  No static variable declarations inside the function
Ø  No variable number of arguments

• 

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Calling a Kernel Function – Thread Creation

Ø  A kernel function must be called with an execution configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Ø  Any call to a kernel function is asynchronous from CUDA 1.0 on,
explicit synch needed for blocking

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

“Hello World!” – Vector Addition

(Length of the vectors:
N)!

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

“Hello World!” – Vector Addition

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Vector Addition – Host Code for Memory

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Reading

Ø Please read the second chapters of
NIVIDA CUDA Programming Guide.

