@Vll’glnlaTeCh Computation to Core Mapping

Invent the Future

Computation to Core Mapping

— Lessons learned from a simple application

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Computation to Core Mapping

M VirginiaTech

Invent the Future

A Simple Application

» Matrix Multiplication
» Used as an example throughout the course

» Goal for today:

» Show the concept of “Computation-to-Core Mapping”
» Block schedule, Occupancy, and thread schedule

» Assumption
» Deal with square matrix for simplicity

» Leave memory issues later
» With global memory and local registers

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@Vll’glnlaTeCh Computation to Core Mapping

Invent the Future

The algorithm and CPU code

P=M™*N of size WIDTH x WIDTH

/I Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width),

{
for (inti = 0; i < Width; ++i)
for (intj = 0; j < Width; ++j) {

double sum = 0;

for (int k = 0; k < Width; ++k) {
double a = M[i * width + k];
double b = N[k * width + j];
sum +=a * b; i

}

P[i * Width + j] = sum:
} v
) —

\ 4

v

< » <
< » N

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

The algorithm and CPU code

P=M™*N of size WIDTH x WIDTH

/I Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width),

{
for (inti=0; i < Width; ++i) _
for (intj = 0; j < Width; +4j) { Pay attention

double sum = 0; here!
for (int k = 0; k < Width; ++k)
double a = M[i * width :

double b = N[k * width + j];
sum +=a * b; i
}

P[i * Width + j] = sum:
} v
) —

\ 4

v

< » <
< » N

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

First Mapping Scheme

» Thread mapping:

» Define the finest computational unit, and
map it onto each thread

» Main criterion : None Dependency

> In our first scheme:
Unit; Calculation of one element of P

» Block mapping:
» Simple: One block

tx

\ 4

(tx, ty)

<
<

»
» N

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

v

IJg%![l\Ilrg].rlia':[‘EC]_’l Computation to Core Mapping

Invent the Future

Step 1: Memory layout

M (column#, row#)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Step 2: Input Matrix Data Transfer (Host Code)

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/! Allocate P on the device
cudaMalloc(&Pd, size);

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Step 3: Output Matrix Data Transfer (Host

Computation to Core Mapping

Code)

2. [/l Kernel invocation code — to be shown later

3. /I Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

/l Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Computation to Core Mapping

Step 4: Kernel Function

// Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0O;

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Computation to Core Mapping

Invent the Future

Step 4: Kernel Function (cont.)

}

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x];
Pvalue += Melement * Nelement;

}

Pd[threadldx.y*Width+threadldx.x] = Pvalue;

>
<

v

tx

tx

\ 4

»
» €

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

v

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Step 5: Kernel Invocation (Host Code)

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%Vifgj.niaTeCh Computation to Core Mapping

Invent the Future

Issues with the First Mapping Scheme

Nd

» One Block of threads compute
matrix Pd

» Other Multi-processors are not
used.

A
v

WIDTH

Md Pd

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%Vifgj.niaTeCh, Computation to Core Mapping

Invent the Future

Issues with the First Mapping Scheme

Nd

» Each thread
» Loads a row of matrix Md
» Loads a column of matrix Nd

» Perform one multiply and addition
for each pair of Md and Nd
elements

» Compute to off-chip memory
access ratio close to 1:1 (not very
high)

A
v

WIDTH

Md Pd

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%Vifgj.niaTeCh Computation to Core Mapping

Invent the Future

Issues with the First Mapping Scheme

Nd

» Size of matrix limited by the
number of threads allowed in a

thread block
» Maximum threads per block: 1024

» Can only do 32 x 32 matrix

» You can put a loop around the
kernel call for cases when Width
> 32. But multiple kernel launch

will cost you.

v

A

WIDTH

Md Pd

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTeCh Computation to Core Mapping

Invent the Future

Solution: the Second Mapping Scheme

» Thread mapping: the same with the first one
» Block mapping:

a (TILE_WIDTH)? sub-matrix (tile) of the result
matrix
» Each has (TILE_WIDTH)? threads

» Generate a 2D Grid of (WIDTH/TILE WIDTH)?
blocks

» Create 2D thread blocks, each of which compute

by

TILE_WIDTH

bx tx

ty

v

<
<

»
» N

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@Vll‘glnlaTeCh Computation to Core Mapping

Invent the Future

About the Second Mapping

» More blocks (WIDTH/TILE WIDTH)?

» Support larger matrix

» The maximum size of each dimension of
a grid of thread blocks is 65535.

» Max Width = 65535 x TILE_WIDTH
» Use more multi-processors

bx

by
TILE WIDTH

ty

tx

v

< »
< » N

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTeCh Computation to Core Mapping

Invent the Future

Algorithm concept using tiles

» Break-up Pd into tiles

» Each block calculates one tile
» Each thread calculates one element
» Block size equal tile size

0

]
ty
TILE_WIDTHA

tx
012 TILE_WIDTH-1

d » d
¥ L |

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

v

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Example

Block(0,0) Block(1,0)

N\,

Poo [P1o|P20|Pso| TILE WIDTH =2

Block(0,1) Block(1,1)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglniaTECh Computation to Core Mapping

Invent the Future

Block Computation

Md, Id, Md, o, | PORIPAPd, 4Pd,

Pdy 1 Pd, ;[sePladeEP

Pd, ,Pd, ,Pd, ,Pd;,

Pd013 Pd1 3 Pd213 Pd313

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Kernel Code using Tiles

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row index of the Pd element and M

int Row = blOCkIdX.y*TILE_WIDTH + threadIldx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Revised Kernel Invocation (Host Code)

/I Setup the execution configuration

dim3 dimGrid (Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock (TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Questions?

Computation to Core Mapping

» For Matrix Multiplication using multiple
blocks, should | use 8X8, 16X16 or 32X32
blocks?

> Why?

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrginiaTECh Computation to Core Mapping

Invent the Future

Block Scheduling

S

Blocks :

[
1. sMo0 SM1 | ‘ ‘
tOt1t2 ... tm | "o, t0 t1t2 ... tm
- > Up to 8 blocks to each SM as resource
allows
» Could be 256 (threads/block) * 3
blocks
» SMin GT200 can take up to 1024
threads 23

- % Blocks
» SM in G80 can take up to 768 threads
» Or 128 (threads/block) * 6 blocks, etc.
Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

IJg%![l\Ilrg].rlia':[‘EC]_’l Computation to Core Mapping

Invent the Future

Thread scheduling in Multiprocessing

— Block 1 Warps —— Block 2 Warps — Block 1 Warps
I) I]
t0t1 t2 ... t31 t0t1 t2 ... t31 t0t1 t2 ... t31
\\\‘\\\\\\\5 ANNNNNNNNNYN \EEE\EEE\EB
(\\‘5\\\5‘ N P> D >> \> \>
— | L | | &L | S 3

Streaming Multiprocessor

> Each Block is executed as 32- _
thread Warps

» If 3 blocks are assigned to an
SM and each block has 256

threads, how many Warps are
there in an SM?

» Each Block is divided into
256/32 = 8 Warps

» There are 8 * 3 = 24 Warps

Instruction Fetch/Dispatch

Shared Memory

SFU SFU

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Occupancy of Multiprocessor

» How much a Multiprocessor is occupied:
Occupancy = Actually warps / Totally allowed

» GF 100 SM allows 48 warps
» GT200 SM allows 32 warps
» G80 SM allow 24 warps

» For example:

» One block per SM, 32 threads per block
> (32/32) / 32 = 3.125% (Very bad)

» 4 blocks per SM, 256 threads per block
> (256/32) * 4 / 32 = 100% (Very good)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

CUDA Occupancy Calculator

» There are three factors:
» Maximum number of warps
» Maximum registers usage
» Maximum share memory usage

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Answers to Our Questions

Computation to Core Mapping

» For Matrix Multiplication using multiple blocks,
should | use 8X8, 16X16 or 32X32 blocks?

» For G80 GPU:

» For 8X8, we have 64 threads per Block. Since each SM can
take up to 768 threads, there are 12 Blocks. However, each
SM can only take up to 8 Blocks, only 512 threads will go
into each SM! (Occupancy = 66.6%)

» For 16X16, we have 256 threads per Block. Since each SM
can take up to 768 threads, it can take up to 3 Blocks and
achieve full capacity unless other resource considerations
overrule. (Occupancy = 100%)

» For 32X32, we have 1024 threads per Block. Not even one
can fit into an SM! (Can not support)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Answers to Our Questions (Cont’)

Computation to Core Mapping

» For Matrix Multiplication using multiple blocks,
should | use 8X8, 16X16 or 32X32 blocks?

> For GT200 GPU:

» For 8X8, we have 64 threads per Block. Since each SM can
take up to 1024 threads, there are 16 Blocks. However, each
SM can only take up to 8 Blocks, only 512 threads will go
into each SM! (Occupancy =50%)

» For 16X16, we have 256 threads per Block. Each SM takes
4 Blocks and achieve full capacity unless other resource
considerations overrule. (Occupancy = 100%)

» For 32X32, we have 1024 threads per Block. Each SM takes
1 Block and achieve full capacity unless other resource
considerations overrule. (Occupancy = 100%)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglnlaTECh Computation to Core Mapping

Invent the Future

Computation-to-Core Mapping

> Step 1:

» Define your computational unit, map each unit to a

thread
» Avoid dependency

» Increase compute to memory access ratio

> Step 2:

» Group your threads into blocks
» Eliminate hardware limit
» Take advantage of shared memory

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

