W VirginiaTech GPU Memory I

Invent the Future

GPU Memory I

— Memory Hardware and Bank Conflict

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@Vir"giniaTeCh GPU Memory Il

Invent the Future

CUDA Device Memory Space: Review

> Each thread can: pevies ene

> R/W per-thread registers AL Block (1, 0)

» R/W per-thread local memory

» R/W per-block shared memory

» R/W per-grid global memory ’ ’ ’ ’

» Read only per-grid constant Thread (0,0) Thread (1,0) Thread (0, 0) Thread (1,0)
memory

» Read only per-grid texture i i i i
memory

Host

« The host can R/W
global, constant, and
texture memories

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glniaTECh GPU Memory I

Invent the Future

Parallel Memory Sharing

Thread » Local Memory: per-thread
» Private per thread
» Auto variables, register spill
» Shared Memory: per-Block

» Shared by threads of the same
block

» Inter-thread communication

» Global Memory: per-application
» Shared by all threads
» Inter-Grid communication

Sequential
Grids
in Time

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

GPU Memory Il

Hardware Overview

Streaming Processor Array

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

—

N

|Thread Processor Cluster

TEX

SM

SM

1

Streaming Multiprocessor

Instruction L1

Data L1

Instruction Fetch/Dispatch

Shared Memory

SFU

Special

SFUk Function

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Unit (SFU)

@ Vil’gil’liaTeCh GPU Memory I

Invent the Future

Register File

» Register File (RF)
> 32 KB
» Provides 4 operands/clock

» Texture pipe can also read/write
RF

> 2 SMs share 1 TEX

» Load/Store pipe can also read/
write RF

1$
L1

\V4

Multithreaded
Instruction Buffer

v

))i R C$ Shared
F L1 Mem

v v v

Operand Select

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglniaTECh GPU Memory I

Invent the Future

Programmer View of Register File

4 blocks 3 blocks

» There are 8192 registers in
each SMin G80

» Registers are dynamically
partitioned across all Blocks

assigned to the SM

» Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

» Each thread in the same Block
only access registers assigned
to itself

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Matrix Multiplication Example

> If each Block has 16X16 threads and each thread
uses 10 registers, how many thread can run on
each SM?
» Each Block requires 10*256 = 2560 registers
» 8192 = 3 * 2560 + change
» S0, three blocks can run on an SM as far as registers are
concerned
» How about if each thread increases the use of
registers by 1?
» Each Block now requires 11*256 = 2816 registers
» 8192 < 2816 *3

» Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

More on Dynamic Partitioning

» Dynamic partitioning gives more flexibility
to compilers/programmers

» One can run a smaller number of threads that
require many registers each or a large number of
threads that require few registers each

» This allows for finer grain threading than traditional CPU
threading models.

» The compiler can tradeoff between instruction-
level parallelism and thread level parallelism

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

W VirginiaTech GPU Memory I

Invent the Future

ILP vs. TLP Example

» Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads
have 200 cycles

» 3 Blocks can run on each SM

» If a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions
exist for each global memory load

» Only two can run on each SM

» However, one only needs 200/(8*4) = 7 Warps to tolerate the
memory latency

» Two Blocks have 16 Warps. The performance can be actually
higher!

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

W VirginiaTech GPU Memory I

Invent the Future

Constant
» Immediate address constants s
> Indexed address constants !
» Constants stored in DRAM, and cached
on chip v
> L1 per SM * R Shared
» A constant value can be broadcast to all v vV
threads in a Warp Operand Select
» Extremely efficient way of accessing a value v v
that is common for all threads in a Block! MAD SFU

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Shared Memory

» Each Multi-processor has 16 KB of 1$
Shared Memory -
> 16 banks of 32bit words y—
> Will discuss about accessing pattern later sl
» Visible to all threads in a thread > ow vﬁ
block 1
» read and write access Operand Select
MZD SZU

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Matrix Multiplication Example

» Explore Tile-based implementation with
Shared Memory.

> Question:

» How is shared memory organized?

» What are the issues when accessing shared
memory?

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

W VirginiaTech GPU Memory I

Invent the Future

Tile Based Multiplication

» One computes one square
sub-matrix P of size

» One computes one element of
I:,sub

» Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

A
\ 4

A
v

< » &
w » W

v

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Tiled Matrix Multiplication Kernel --

GPU Memory Il

_5%!&%WatrixMuIKerneI(roat* Md, float* Nd, float* Pd, int Width)

1. _ shared_float Mds[TILE WIDTH] [TILE WIDTH];

2. __shared_float Nds[TILE WIDTH] [TILE WIDTH] ;

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

5 int Row = by * TILE WIDTH + ty;

6 int Col = bx * TILE WIDTH + tx;

7. float Pvalue = 0;

8 for (int m = 0; m < Width/TILE WIDTH; ++m) ({

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty] [tx] = Md[Row*Width + (m*TILE WIDTH + tx)];
10. Nds[ty] [tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
11. __syncthreads() ;

12. for (int k = 0; k < TILE WIDTH; ++k) {

13. Pvalue += Mds|[ty][k] * Nds[k] [tx];

14. Synchthreads () ;

15. }

16. Pd[Row*Width+Col] = Pwvalue;

}

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Matrix Multiplication Shared Memory Usage

» Each Block requires 2* BLOCK_SIZE ?* 4 bytes of
shared memory storage

» For BLOCK SIZE = 16, each BLOCK requires 2KB, up to 8
Blocks can fit into the Shared Memory of an SM

» Since each SM can only take 768 threads, each SM can only
take 3 Blocks of 256 threads each

» Occupancy is not limited by Shared memory

15

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vil’gil’liaTeCh GPU Memory I

Invent the Future

Shared Memory Organization

» Parallel Memory Architecture:

» Memory is divided into banks

» Essential to achieve high bandwidth

» Each bank can service one address per cyc

» A memory can service as many simultaneous

accesses as it has banks

» Multiple simultaneous accesses to a bank
result in a bank conflict

» Conflicting accesses are serialized

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

16

M VirginiaTech

Invent the Future

Share Memory Access Issue

GPU Memory Il

» No Bank Conflicts
» Linear addressing

» No Bank Conflicts

» Random 1:1 Permutation

stride ==

Thread 0 > Thread 0

Thread 1 > Thread 1

Thread 2 > Thread 2 —

Thread 3 > Thread 3 N

Thread 4 > Thread 4

Thread 5 > Thread 5

Thread 6 > Thread 6

Thread 7 > Thread 7
o o
o o
L A

Thread 15 > Thread 15

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglniaTECh GPU Memory I

Invent the Future

Share Memory Access Issue

» 2-way Bank Conflicts

» Linear addressing
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8
Thread 9
Thread 10
Thread 11

» 8-way Bank Conflicts
» Linear addressing

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15

stride ==

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VirginiaTech GPU Memory Il

Invent the Future

How addresses map to banks in CUDA

» Each bank has a bandwidth of 32 bits per clock
cycle

» Successive 32-bit words are assigned to
successive banks

» G80 has 16 banks
» So bank = address % 16

» Same as the size of a half-warp

» No bank conflicts between different half-warps, only within a
single half-warp

19

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vil’gil’liaTeCh GPU Memory I

Invent the Future

Share Memory Performance

» Shared memory is as fast as registers if there are no
bank conflicts

» The fast case:

» If all threads of a half-warp access different banks, there is no
bank conflict

» If all threads of a half-warp access the identical address, there
is no bank conflict (broadcast)

» The slow case:

» Bank Conflict: multiple threads in the same half-warp access
the same bank

» Must serialize the accesses
» Cost = max # of simultaneous accesses to a single bank

20

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Linear Addressing (1D)

Thread O

> Given: Thread 1

Thread 2

Thread 3

__shared float shared[256]; IE::S:

float foo = shared[baseIndex + s * threadIdx.x]; Thread 6
Thread 7

» This is only bank-conflict-free if s
shares no common factors with the
number of banks

» 16 on G80, so s must be odd Thread 0

Thread 1

Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 i

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll‘glnlaTECh GPU Memory I

Invent the Future

Data types and bank conflicts

» This has no conflicts if type of shared is 32-bits:

Thread O

foo = shared[baseIndex + threadIdx.x] U nieeel |

» But not if the data type is smaller Throad 6

. Thread 7
» 4-way bank conflicts:
shared char shared|[];

foo = shared[baseIndex + threadIdx.x];

Thread O

Thread 1

» 2-way bank conflicts: Thread 2

Thread 3
__shared short shared[]; m£;4
foo = shared[baseIndex + threadIdx.x]; ﬁiﬁg

Thread 7

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

| —
Thread 2 / '
Thread 3
Thread 4
Thread 5

° e
[e
Thread 15

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Structs and Bank Conflicts

» Struct assignments compile into as many memory accesses as there
are struct members:

struct vector { float x, vy, z; }; Thread 0
Thread 1
struct myType { Thread 2

float f; ﬁ?%gz
rea

int c; Thread 5
} : Thread 6
Thread 7

shared struct vector vectors[64]; .

[]
[]
Thread 15 @

» This has no bank conflicts for vector; struct size is 3 words
» 3 accesses per thread, contiguous banks (no common factor with 16)

__shared struct myType myTypes[64];

struct vector v = vectors|[baselndex + threadldx.x];

» This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType m = myTypes[baselIndex + threadIldx.x];

23

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Common Array Bank Conflict Patterns 1D

» Each thread loads 2 elements into
shared memory:

» 2-way-interleaved loads result in cad O

2-way bank conflicts:

int tid = threadIdx.x; =

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

» This makes sense for traditional CPU .
threads, locality in cache line usage and cad 10

reduced sharing traffic.

» Not in shared memory usage where there
is no cache line effects but banking effects

24

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glniaTECh GPU Memory I

Invent the Future

A Better Array Access Pattern

>

Each thread loads one element in
every consecutive group of
blockDim elements.

shared[tid] = global[tid];

shared[tid + blockDim.x] =
global[tid + blockDim.x];

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread O

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Common Bank Conflict Patterns (2D)

» Operating on 2D array of floats in shared Bank Indices without Padding

memory eee [
> e.g.image processing eee| |

> Example: 16x16 block e (B
> Each thread processes a row e

» So threads in a block access the elements in eee |

each column simultaneously (example:row 1in ¢ 8 ¢ 3 8 8 3 3 ™ 3

purple) [T T T T Jeeo[]

» 16-way bank conflicts: rows all start at bank O
Bank Indices with Padding

» Solution 1) pad the rows
» Add one float to the end of each row

» Solution 2) transpose before processing
» Suffer bank conflicts during transpose

[YYHOO N O O & W =~
(ITMO0 O) U1 WN— O

[N T T TTT] -[IHB
26

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vil’gil’liaTeCh GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12.
13.
14.
15.

for (int k = 0; k < TILE WIDTH; ++k) ({

}

y
Pvalue += Mds|[ty] [k] * Nds[k] [tx]:
Synchthreads () ;

AN

»

» d
L |

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

27

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx]
14. Synchthreads () ;

15. }

Mds [ty*TILE WIDTH + k] Nds [k*TILE WIDTH + tx]

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VirginiaTech GPU Memory Il

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx]
14. Synchthreads () ;

15. }

Mds [ty*TILE WIDTH + k]

eee|15
eee|15
eee|15| »For TILE WIDTH = 16

eee|15 » The whole half-warp is accessing the
eeel15 same shared memory location.

" 12 > Conflict. But, GPU support broadcasting.

eee|15

PR N . Ny R N = N I N L Gy S) QLN

DO | |0 OO OO

VI ENEENIENE ENIENTENEEN

Oleee OO OCOCIO|IO|O|O
Nleee ININININININININ
Wl eee ([WIWIW|W|W([W([W([wW
Rlioeoe [RIDNIDNDNIMNIDMNIDMNID
Ol|eee (OO |O1|On

— (o00
O |eee
~|ooe
o ®°e

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

29

@ VirginiaTech GPU Memory Il

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx]
14. Synchthreads () ;

15. }

Mds [ty*TILE WIDTH + k]

10[11]12[13]14|15
2314|567 »For TILE_WIDTH = 8

10/11]12[13]14[15 » The first half-warp and the second half-
warp are accessing two different shared
memory location.

10111112113]14]15 > 8-Way bank conflict.

10|11]12]|13|14]15

OO |0 |O |00 |O |0 |O

O[O (O|m O |-
N
w
N
(@)
(@)
~

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

30

@ Vll’glnlaTECh GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

14. Synchthreads () ;
15. }

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx]

Mds [ty*TILE WIDTH + k]

1

5|67
9 10|11
13/14/15

—
IR (=

»For TILE_WIDTH = 4
» 4-way bank conflict.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

31

@ Vil’gil’liaTeCh GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

14. Synchthreads () ;
15. }

»For TILE_WIDTH = 16

different shared memory location.
» No conflict.

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx]

Nds [k*TILE WIDTH + tx]

» Each thread in a half-warp is accessing

_—] | S - - -
olo|o|o oo oo
VI ENEENIENE ENIENTENEEN

Oleee [OOOCOCIO|O|O|O
Nleee ININININININININ
Wl eee ([WIWIW|W|W([W([W([W
Rlioeoe [RIDNIDNDNIDMNIBMNINMNID
Ol|eee (OO |OV|O1|On

— (o00
O)|eee
~|ooe

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

15

15

15

15

15

15

15

15

ol [X X J

@ VirginiaTech GPU Memory Il

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx]
14. Synchthreads () ;

15. }

Nds [k*TILE WIDTH + tx]

»For TILE_WIDTH = 8
» Since the memory storage organization is
row-major for 2D array, so it's the same with
TILE_WIDTH = 16.
» No conflict.

10/11[12]13]14[15

10/11[12]13]14|15

10|11]12]|13|14]15

00O (0O (0|O |00 |O
O[O~ (OO |-
N
w
N
(&)

(@)
~

10/11[12]13]14|15

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

