
Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization Strategies
─ Global Memory Access Pattern and Control Flow

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Objectives

Ø Optimization Strategies
Ø Global Memory Access Pattern (Coalescing)
Ø Control Flow (Divergent branch)

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Global Memory Access
Ø Highest latency instructions: 200-400 clock cycles

Ø  Likely to be performance bottleneck

Ø Optimizations can greatly increase performance
Ø Best access pattern: Coalescing
Ø Up to 10x speedup

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Coalesced Memory Access
Ø A coordinated read by a half-warp (16 threads)
Ø A contiguous region of global memory:

Ø  64 bytes - each thread reads a word: int, float, …
Ø  128 bytes - each thread reads a double-word: int2, float2, …
Ø  256 bytes – each thread reads a quad-word: int4, float4, …

Ø Additional restrictions on G8X architecture:
Ø Starting address for a region must be a multiple of region

size
Ø  The kth thread in a half-warp must access the kth element in

a block being read

Ø Exception: not all threads must be participating
Ø Predicated access, divergence within a halfwarp

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Coalesced Access: Reading floats

All threads participate

Some threads do not participate

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Non-Coalesced Access: Reading floats

Permuted access by threads

Misaligned starting address (not a multiple of 64)

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Example: Non-coalesced float3 read
__global__ void accessFloat3(float3 *d_in, float3 d_out)

{
int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];
a.x += 2;
a.y += 2;
a.z += 2;
d_out[index] = a;

}

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Example: Non-coalesced float3 read (Cont’)

Ø  float3 is 12 bytes
Ø  Each thread ends up executing 3 reads

Ø  sizeof(float3) ≠ 4, 8, or 12
Ø  Half-warp reads three 64B non-contiguous regions

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Example: Non-coalesced float3 read (2)

Similarly, step 3 start at offset 512

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Example: Non-coalesced float3 read (3)

Ø Use shared memory to allow coalescing
Ø  Need sizeof(float3)*(threads/block) bytes of SMEM
Ø  Each thread reads 3 scalar floats:

Ø  Offsets: 0, (threads/block), 2*(threads/block)
Ø  These will likely be processed by other threads, so sync

Ø Processing
Ø  Each thread retrieves its float3 from SMEM array

Ø  Cast the SMEM pointer to (float3*)
Ø  Use thread ID as index

Ø  Rest of the compute code does not change!

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Example: Final Coalesced Code

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Coalescing: Structure of Size ≠ 4, 8, 16 Bytes

Ø Use a structure of arrays instead of Array of
Structure

Ø  If Array of Structure is not viable:
Ø  Force structure alignment: __align(X), where X = 4, 8, or 16
Ø Use SMEM to achieve coalescing

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Control Flow Instructions in GPUs

Ø  Main performance concern with
branching is divergence
Ø  Threads within a single warp take different paths
Ø  Different execution paths are serialized

Ø  The control paths taken by the threads in a warp are
traversed one at a time until there is no more.

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

14

Divergent Branch
Ø  A common case: avoid divergence when branch

condition is a function of thread ID
Ø  Example with divergence:

Ø  If (threadIdx.x > 2) { }
Ø  This creates two different control paths for threads in a block
Ø  Branch granularity < warp size; threads 0 and 1 follow different

path than the rest of the threads in the first warp
Ø  Example without divergence:

Ø  If (threadIdx.x / WARP_SIZE > 2) { }
Ø  Also creates two different control paths for threads in a block
Ø  Branch granularity is a whole multiple of warp size; all threads in

any given warp follow the same path

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

15

Parallel Reduction
Ø  Given an array of values, “reduce”

them to a single value in parallel
Ø  Examples

Ø  sum reduction: sum of all values in
the array

Ø  Max reduction: maximum of all
values in the array

Ø  Typically parallel implementation:
Ø  Recursively halve # threads, add

two values per thread
Ø  Takes log(n) steps for n elements,

requires n/2 threads

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

16

A Vector Reduction Example

Ø Assume an in-place reduction using
shared memory
Ø The original vector is in device global memory
Ø The shared memory used to hold a partial sum

vector
Ø Each iteration brings the partial sum vector closer

to the final sum
Ø The final solution will be in element 0

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Vector Reduction

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

18

A simple implementation

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Interleaved Reduction

2 4 6 8 10 12 14

4 8

8

12

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

20

Some Observations
Ø  In each iterations, two control flow paths will be

sequentially traversed for each warp
Ø  Threads that perform addition and threads that do not
Ø  Threads that do not perform addition may cost extra cycles

depending on the implementation of divergence

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

21

Some Observations (Cont’)
Ø  No more than half of threads will be executing at any time

Ø  All odd index threads are disabled right from the beginning!
Ø  On average, less than ¼ of the threads will be activated for all

warps over time.
Ø  After the 5th iteration, entire warps in each block will be disabled,

poor resource utilization but no divergence.
Ø  This can go on for a while, up to 4 more iterations (512/32=16= 24),

where each iteration only has one thread activated until all warps retire

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

22

Optimization 1:
Ø  Replace divergent branch

Ø  With strided index and non-divergent branch

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization 1: (Cont’)

No divergence until less than 16 sub sum.

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

24

Optimization 1: Bank Conflict Issue

Bank Conflict due to the Strided Addressing

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization 2: Sequential Addressing

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization 2: (Cont’)
Ø  Replace strided indexing

Ø  With reversed loop and threadID-based indexing

Optimization Strategies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

27

Some Observations About the New Implementation

Ø Only the last 5 iterations will have
divergence

Ø Entire warps will be shut down as
iterations progress
Ø For a 512-thread block, 4 iterations to shut down

all but one warps in each block
Ø Better resource utilization, will likely retire warps

and thus blocks faster
Ø Recall, no bank conflicts either

