@ Vll’glnlaTeCh Optimization Strategies

Invent the Future

Optimization Strategies

— Global Memory Access Pattern and Control Flow

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTeCh Optimization Strategies

Invent the Future

Objectives

» Optimization Strategies
» Global Memory Access Pattern (Coalescing)
» Control Flow (Divergent branch)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTeCh Optimization Strategies

Invent the Future

Global Memory Access

» Highest latency instructions: 200-400 clock cycles
» Likely to be performance bottleneck
» Optimizations can greatly increase performance

» Best access pattern: Coalescing
» Up to 10x speedup

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll‘glnlaTeCh Optimization Strategies

Invent the Future

Coalesced Memory Access

» A coordinated read by a half-warp (16 threads)

» A contiguous region of global memory:
» 64 bytes - each thread reads a word: int, float, ...

» 128 bytes - each thread reads a double-word: int2, float2, ...
» 256 bytes — each thread reads a quad-word: int4, float4, ...

» Additional restrictions on G8X architecture:

» Starting address for a region must be a multiple of region
size

> The k" thread in a half-warp must access the k" element in
a block being read

» Exception: not all threads must be participating
» Predicated access, divergence within a halfwarp

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization Strategies

M VirginiaTech

Invent the Future

Coalesced Access: Reading floats

tf tl1 tf tf T tls
| 1 | | |

128 132 136 140 144 184 188 192

All threads participate

t0 t1 t2 t3 t14 t15
SRAEANE ‘oo
| 1 1 I

128 132 136 140 144 184 188 192
Some threads do not participate

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Non-Coalesced Access: Reading floats

Optimization Strategies

to t1 t2 t3 t14 t15
L N I I I I I o000
128 132 136 140 144 184 188 192
Permuted access by threads
t13 t14 t15
128 132 136 14o 144 134 188 192

Misaligned starting address (not a multiple of 64)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Example: Non-coalesced float3 read

__global void accessFloat3(float3 *d in, float3 d out)

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d in[index];

a.x += 2;
a.y += 2;
a.z += 2;
d out[index] = a;

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Example: Non-coalesced float3 read (Cont’)

» float3 is 12 bytes

» Each thread ends up executing 3 reads
» sizeof(float3) # 4, 8, or 12
» Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3
[X N] [N N J
\ AL A _J
Y Y Y
float3 float3 float3
First read

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% VlrglnlaTECh Optimization Strategies

Invent the Future

Example: Non-coalesced float3 read (2)

GMEM

Stgp 1

(I N T T T T T T T T T T T

Stgp 2
—
-—
-

SMEM

Similarly, step 3 start at offset 512

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Example: Non-coalesced float3 read (3)

» Use shared memory to allow coalescing
» Need sizeof(float3)*(threads/block) bytes of SMEM

» Each thread reads 3 scalar floats:
» Offsets: 0, (threads/block), 2*(threads/block)
» These will likely be processed by other threads, so sync

» Processing

» Each thread retrieves its float3 from SMEM array
» Cast the SMEM pointer to (float3*)
» Use thread ID as index

» Rest of the compute code does not change!

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

ﬂ@ VlrglniaTec_h Optimization Strategies

Invent the Future

Example: Final Coalesced Code

__global___ void accessInt3Shared(float *g_in, float *g_out)
{
~ intindex = blockldx.x * blockDim.x + threadldx.x;
__shared__ float s_data[256*3];
s_data[threadldx.x] = g_in[index];
s_data[threadldx.x+256] = g_in[index+256];
s_data[threadldx.x+512] = g_in[index+512];
__syncthreads();
. float3 a = ((float3*)s_data)[threadldx.x];

Read the input
through SMEM <

a.x +=2;
Compute code ay +=2;

is not ch d
is not change a.z+=2:

~ ((float3*)s_data)[threadldx.x] = a;

__syncthreads();
Write the result J g_out[index] = s_data[threadldx.x];
through SMEM g_out[index+256] = s_data[threadldx.x+256];
_ 9_out[index+512] = s_data[threadldx.x+3512];
}

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Coalescing: Structure of Size # 4, 8, 16 Bytes

» Use a structure of arrays instead of Array of
Structure

» If Array of Structure is not viable:

» Force structure alignment: align(X), where X =4, 8, or 16
» Use SMEM to achieve coalescing

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTeCh Optimization Strategies

Invent the Future

Control Flow Instructions in GPUs

» Main performance concern with
branching is divergence
» Threads within a single warp take different paths

» Different execution paths are serialized

» The control paths taken by the threads in a warp are
traversed one at a time until there is no more.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Divergent Branch

» A common case: avoid divergence when branch
condition is a function of thread ID

» Example with divergence:

» If (threadIdx.x > 2) { }
» This creates two different control paths for threads in a block

» Branch granularity < warp size; threads 0 and 1 follow different
path than the rest of the threads in the first warp

» Example without divergence:
» If (threadldx.x / WARP SIZE > 2) { }
» Also creates two different control paths for threads in a block

» Branch granularity is a whole multiple of warp size; all threads in
any given warp follow the same path

14

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Parallel Reduction

» Given an array of values, “reduce”
them to a single value in parallel
» Examples

» sum reduction: sum of all values in
the array

» Max reduction: maximum of all
values in the array

» Typically parallel implementation:

» Recursively halve # threads, add
two values per thread

» Takes log(n) steps for n elements,
requires n/2 threads

15

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll‘glnlaTeCh Optimization Strategies

Invent the Future

A Vector Reduction Example

» Assume an in-place reduction using
shared memory
» The original vector is in device global memory

» The shared memory used to hold a partial sum
vector

» Each iteration brings the partial sum vector closer
to the final sum

» The final solution will be in element O

16

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization Strategies

W VirginiaTech

Invent the Future

Vector Reduction

VaRVaRVanvanvanvi
T e A U
L

3

iterations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

ﬂ@ VlrglniaTec_h Optimization Strategies

Invent the Future

A simple implementation

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdatal];

I/l each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatal[i];

__syncthreads();

/I do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

I/ write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Interleaved Reduction

Optimization Strategies

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Values (shared memory)l 10

41

17

13

11

Copyright © 2013 by Yong Cao,

Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Some Observations

» In each iterations, two control flow paths will be
sequentially traversed for each warp
» Threads that perform addition and threads that do not

» Threads that do not perform addition may cost extra cycles
depending on the implementation of divergence

/I do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) ==0) { < i :
sdata[tid] += sdata[tid + s]: Problem: highly divergent

} branching results in very poor
__syncthreads(); performance!

}

20

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglniaTECh Optimization Strategies

Invent the Future

Some Observations (Cont’)

» No more than half of threads will be executing at any time
» All odd index threads are disabled right from the beginning!

» On average, less than 7 of the threads will be activated for all
warps over time.

> After the 5! iteration, entire warps in each block will be disabled,
poor resource utilization but no divergence.

» This can go on for a while, up to 4 more iterations (512/32=16= 24),
where each iteration only has one thread activated until all warps retire

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

21

—

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll‘glnlaTeCh Optimization Strategies

Invent the Future

Optimization 1:

» With

» Replace divergent branch

for (unsigned int s=1; s < blockDim.x; s *=2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

strided index and non-divergent branch

for (unsigned int s=1; s < blockDim.x; s *=2) {
intindex =2 * s * tid;

if (index < blockDim.x) {
sdatafindex] += sdata[index + s];

}

__syncthreads();

}

22

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Optimization 1: (Cont’)

Optimization Strategies

N
~
o
ry
o
N

Values(sharedmemory)|10 11810 |-2]3|5|-2|-3

Step 1 Thread
Stride 1 IDs

Values

Step 2 Thread
Stride 2 IDs

Values

Step 3 Thread
Stride 4 IDs

Values

Step 4 Thread
Stride 8 IDs

Values |41 |1 |7 |1|6|-2|8|5|17|-3|9 |7 [13|11|2 |2

No divergence until less than 16 sub sum.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Optimization Strategies

Optimization 1: Bank Conflict Issue

for (unsigned int s=1; s < blockDim.x; s *=2) {
intindex =2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

Values(sharedmemory)|10|1|8|-1|0|-2|3|5|-2|-3|2|7|0|11|0|2|

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread @./ ?I/ @I/ @I/ @/ @I/ @I/
IDs

Values [11 | 1|7 [|2]2|8]s|s]3|o]7[11|1n]2]2]

Thread

Values|18|1|7|-1|6|-2|s|5|4|-3|9|7|13|11|2|2|

Thread
IDs

Values [24 | 1 |7 [|6 |-2|8 |5 |17][3]o]7[13]|11]2]2]

Thread
IDs

Values [41| 1 |7 [1|e|-2|8 |5 |17][3]o]7[13|11]2]2]

Bank Conflict due to the Strided Addressing

24

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Optimization 2: Sequential Addressing

Values(sharedmemory)'—lo 118|1]|l0|2|3|5|-2|3|2|7]|]0]11]|0]2

Step 1 Thread
Stride 8 IDs

Values

Step 2 Thread

Stride 4 IDs
Values
Step 3 Thread
Stride 2 IDs
Values
Step 4 Thread
Stride 1 IDs

Values |41(20|13|13| 0 |9 |3 |7 |-2|-3|2 |7]|0|11]|0]| 2

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Optimization 2: (Cont’)

Optimization Strategies

» Replace strided indexing

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex =2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];
}

__syncthreads();

}
» With reversed loop and threadlD-based indexing

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid <s) {
sdataltid] += sdata[tid + s];
}

__syncthreads();

}

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglnlaTECh Optimization Strategies

Invent the Future

Some Observations About the New Implementation

» Only the last 5 iterations will have
divergence

» Entire warps will be shut down as
iterations progress

» For a 512-thread block, 4 iterations to shut down
all but one warps in each block

» Better resource utilization, will likely retire warps
and thus blocks faster

» Recall, no bank conflicts either

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

27

