@ Vll’glnlaTeCh Data Transfer and CUDA Streams

Invent the Future

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ Vll’glnlaTeCh Data Transfer and CUDA Streams

Invent the Future

Objective

» To learn more advanced features of the
CUDA APIs for data transfer and kernel
launch

» Task parallelism for overlapping data transfer with
kernel computation

» CUDA streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

ﬂ&!ﬂ VlrglniaTECh Data Transfer and CUDA Streams

Invent the Future

Serialized Data Transfer and GPU computation

» So far, the way we use cudaMemCpy
serializes data transfer and GPU
computation

time 3
) i))

Only uses one PCle Idle Only uses one

direction, direction,
GPU 1dle GPU 1dle

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ Vll‘glnlaTeCh Data Transfer and CUDA Streams

Invent the Future

Device Overlap

« Some CUDA devices support device overlap

— Simultaneously execute a kernel while performing a copy between
device and host memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount (&dev count);
for(int i=0; i < dev count; i++){

cudaGetDeviceProperties (&prop, 1i);

if (prop.deviceOverlap)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

W VirginiaTech

Invent the Future

Overlapped (Pipelined) Timing

» Divide large vectors into segments

» Overlap transfer and compute of adjacent
segments

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VlrglnlaTeCh Data Transfer and CUDA Streams

Invent the Future

Using CUDA Streams and Asynchronous MemCpy

» CUDA supports parallel execution of kernels and
cudaMemCpy with “Streams”

» Each stream is a queue of operations (kernel
launches and cudaMemCpys)

» Operations (tasks) in different streams can go in
parallel
» “Task parallelism”

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Streams

Data Transfer and CUDA Streams

» Device requests made cudaMemcpy l
from the host code are ~ emel launch

put into a queue SR

» Queue is read and
processed asynchronously
by the driver and device

» Driver ensures that
commands in the queue are
processed in sequence.
Memory copies end before
kernel launch, etc.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

host thread

Eh'?
o

device driver

Data Transfer and CUDA Streams

M VirginiaTech

Invent the Future

Streams host thread

» To allow concurrent
copying and kernel
.
.

execution, you need
to use multiple
queues, called Stream 1 I Stream 2

‘“streams”
> CUDA “events” allow the host Event S8

thread to query and -

synchronize with the
device driver

individual queues.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

—HIIEEEEE—

W VirginiaTech

Invent the Future

Data Transfer and CUDA Streams

- Conceptual View of Streams
Kernel
Engine
MemCpy A.1 MemCpy A.2
MemCpy B.1 MemCpy B.2
Kernel 1 Kernel 2
MemCpy C.1 MemCpy C.2
Stream () Stream 1
Operations (Kernels, MemCpys)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

A Simple Multi-Stream Host Code

Data Transfer and CUDA Streams

cudaStream t stream0O, streaml;

cudaStreamCreate (&streamO);

cudaStreamCreate (&streaml);

float *d A0, *d BO, *d CO; // device memory for stream O
float *d Al, *d Bl, *d Cl; // device memory for stream 1

// cudaMalloc for d AO, 4 BO, d CO, d A1, d Bl, d Cl go here

for (int i=0; i<n; i1+=SegSize*2) {
cudaMemCpyAsync (d A0, h A+i, SegSize*sizeof (float),.., stream0O);
cudaMemCpyAsync (d BO, h B+i, SegSize*sizeof (float),.., stream0O);
vecAdd<<<SegSize/256, 256, 0, streaml);
cudaMemCpyAsync (d _CO, h C+i, SegSize*sizeof(float),.., streaml);

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

A Simple Multi-Stream Host Code

Data Transfer and CUDA Streams

for (int 1=0; i<n; i+=SegSize*2) {
// stream O
cudaMemCpyAsync (d A0, h A+i, SegSize*sizeof(float),.., streaml);
cudaMemCpyAsync (d BO, h B+i, SegSize*sizeof (float),.., streaml);
vecAdd<<<SegSize/256, 256, 0, streamO) (d A0, d BO, ..);
cudaMemCpyAsync (d CO, h C+i, SegSize*sizeof (float),.., streamO);
// stream 1
cudaMemCpyAsync (d_Al, h A+i+SegSize,

SegSize*sizeof (float), .., streaml);
cudaMemCpyAsync (d Bl, h B+i+SegSize,

SegSize*sizeof (float), .., streaml);
vecAdd<<<SegSize/256, 256, 0, streaml>>>(d Al, d Bl, ..);
cudaMemCpyAsync (d _Cl, h C+i+SegSize,

SegSize*sizeof (float), .., streaml);

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

W VirginiaTech

Invent the Future

A View Closer to Reality

Kernel Engine

{7

endencies
| Kernel 1
7
/' Kernel 2

Stream 0 ﬁ % ﬁStream 1

Operations (Kernels, MemCpys)

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VirginiaTECh Data Transfer and CUDA Streams

Invent the Future

Not quite the overlap we want ...

» C.1 blocks A.2 and B.2 in the copy engine queue

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

A Better Multi-Stream Host Code

Data Transfer and CUDA Streams

for (int i=0; i<n; i+=SegSize*2) {

// enqueue A0, BO --> Al, Bl
cudaMemCpyAsync (d A0, h A+i; SegSize*sizeof(float),.., streaml);
cudaMemCpyAsync (d BO, h B+i; SegSize*sizeof (float),.., streaml);
cudaMemCpyAsync (d Al, h A+i+SegSize,

SegSize*sizeof (float), .., streaml);
cudaMemCpyAsync (d Bl, h B+i+SegSize,

SegSize*sizeof (float), .., streaml);
// enqueue kernel 0, kernel 1
vecAdd<<<SegSize/256, 256, 0, streamO) (d A0, d BO, ..);
vecAdd<<<SegSize/256, 256, 0, streaml>>>(d Al, d Bl, ..);
// enqueue CO --> Cl
cudaMemCpyAsync (d _CO, h C+i, SegSize*sizeof(float),.., streaml);
cudaMemCpyAsync (d Cl, h C+i+SegSize,

SegSize*sizeof (float), .., streaml);

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

W VirginiaTech

Invent the Future

A View Closer to Reality

Kernel Engine

{7

Kernel 1

Kernel 2

NS D siem

Operations (Kernels, MemCpys)

Stream 0O

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

W VirginiaTech

Invent the Future

Overlapped (Pieplined) Timing

» Divide large vectors into segments

» Overlap transfer and compute of adjacent
segments

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Data Transfer and CUDA Streams

Hyper Queue

» Provide multiple real queues for each
engine
» Allow much more concurrency by allowing

some streams to make progress for an
engine while others are blocked

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

M VirginiaTech

Invent the Future

Fermi (and older) Concurrency

f Stream 1
\ Su-eam 2

Stream 3

Fermi allows 16-way concurrency

— Up to 16 grids can run at once

— But (|_:.UDA streams multiplex into a single queue I

— Overlap only at stream edges

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

M VirginiaTech

Invent the Future

Kepler Improved Concurrency

— <
— :
— :

Multiple Hardware Work Queues

Stream 1

Stream 2

Stream 3

Kepler allows 32-way concurrency

No inter-stream dependencies

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

