CS 6204

Character Animation, Research and Applications

Computer Animation Overview

Animation – A broad Brush

- Traditional Methods

 Cartoons, stop motion

 Keyframing

 Digital inbetweens

 Motion Capture

 What you record is what you get

 Simulation
 - Animate what you can model (with equations)

Animation Techniques

Keyframing

Keyframing

- Traditional animation technique
- Dependent on artist to generate 'key' frames
- Additional, 'inbetween' frames are drawn automatically by computer

Keyframing

How are we going to interpolate?

Figure 10.4 Three keyframes. Three keyframes representing a ball on the ground, at its highest point, and back on the ground.

From "The computer in the visual arts", Spalter, 1999

Linear Interpolation

Figure 10.5 Inbetweening with linear interpolation. Linear interpolation creates inbetween frames at equal intervals along straight lines. The ball moves at a constant speed. Ticks indicate the locations of inbetween frames at regular time intervals (determined by the number of frames per second chosen by the user).

Simple, but discontinuous velocity

Nonlinear Interpolation

Figure 10.9 Inbetweening with nonlinear interpolation. Nonlinear interpolation can create equally spaced inbetween frames along curved paths. The ball still moves at a constant speed. (Note that the three keyframes used here and in Fig. 10.10 are the same as in Fig. 10.4.)

Smooth ball trajectory and continuous velocity, but loss of timing

Figure 10.10 Inbetweening with nonlinear interpolation and easing. The ball changes speed as it approaches and leaves keyframes, so the dots indicating calculations made at equal time intervals are no longer equidistant along the path.

Adjust the timing of the inbetween frames. Can be automated by adjusting the stepsize of parameter, t.

Keyframing

Strengths

Animator has exacting control

Weaknesses

Interpolation hooks must be simple and direct
Remember the problems with Euler angle interp?
Time consuming and skill intensive
Difficult to reuse and adjust

Animation Techniques

Motion Capture

Microsoft Motion Capture Group

Motion Analysis

Examples

- Sports video games

 Madden Football

 Many movie characters

 Phantom Menace
- Cartoons

Motion Capture Strengths

- Exactly captures the motions of the actor

 Michael Jordan's video game character will capture his style
 Event to conture date
- Easy to capture data

Motion Capture Weaknesses

Noise, noise, noise!
Magnetic system inteference
Visual system occlusions

Motion Capture Weaknesses

Aligning motion data with CG character

Limb lengths
Idealized perfect joints
Foot sliding

Reusing motion data

Difficult to scale in size (must also scale in time)

- Changing one part of motion

Motion Capture Weaknesses

- Blending segments
 - Motion clips are short (due to range and tethers)
 - Dynamic motion generation requires blending at run time
 - Difficult to manage smooth transition

Animation Techniques

Procedural Techniques

Procedural Animation

- Very general term for a technique that puts more complex algorithms behind the scenes
 Technique attempts to consolidate artistic efforts in algorithms and heuristics
- Allows for optimization and physical simulation

Procedural Animation Strengths

- Animation can be generated 'on the fly'
- Dynamic response to user
- Write-once, use-often
- Algorithms provide accuracy and exhaustive search that animators cannot

Procedural Animation Weaknesses

- We're not great at boiling human skill down to algorithms
 - How do we move when juggling?
- Difficult to generate
- Expensive to compute
- Difficult to force system to generate a particular solution
 - Bicycles will fall down