
Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

A

D

C
B

X

Y1

X

Y1 Y2

A B C D

tmin

tmax

Y2

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

A

D

C
B

X

Y1

X

Y1 Y2

A B C D

tmin

tmax

Y2

Y2

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

A

D

C
B

X

Y1

X

Y1 Y2

A B C D

tmin

tmax

Y2

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Y

? ?

? ? ? ?

tmin

tmax

Y

A large tree structure change.
A totally new tree!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Solution 1: Rebuild kd-tree each frame
 Rebuild kd-tree in a lazy manner, approximate SAH (Surface

 Area Heuristics) [Hunt et al. 06]
 Can just move objects bounding boxes around and

 transform rays (for hierarchical movement) [Wald et al. 03]
 Motion decomposition, fuzzy kd-trees [Günther et al. 06]

 Solution 2: use different hierarchical
 structure

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Bounding volume hierarchies (BVHs)
  [Wald et al. 06b, Boulos et al. 06, Lauterbach et al. 06]

 Grids
  [Wald et al. 06a]

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Ray Tracing Dynamic Scenes Using BVHs
[Lauterbach et al. 06]

Dinesh Manocha, Christian Lauterbach
University of North Carolina at Chapel Hill

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

  Tree of bounding volumes (sphere, AABB, OBB, k
-DOP, spherical shells, etc.)

 Each bounding volume encloses “nearby”
 primitives

 Parent node primitives are union of children node
 primitives

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Spatial partitioning:
 space is subdivided into disjoint regions (e.g. grid,

 kd-tree, octree, ...)
 Object hierarchy:

 groups or clusters of objects/primitives are
 subdivided (BVH, s-kd-tree)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Implications for ray tracing
 Spatial partitioning: Objects referenced in multiple

 nodes (overlap in object space)
 BVH Hierarchies: Nodes can overlap each other

 (overlap in 3D space)
 Spatial partitioning allows easier front-to

-back ordering

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Widely used for intersection computations
 Ray tracing
 Visibility culling: view frustum and occlusion culling
 Collision and proximity computations
 Other applications

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Pretty simple:
 Start from root
 If ray intersects AABB, try all children, too:

 is inner node: recurse on both children
 is leaf node: intersect with primitive(s)

 Naïve implementation far slower than kd-tree!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Intersection test more costly
 Up to 6 ray-plane intersections for AABB (slabs

 test)
 Just 1 for kd-tree

 No front-to-back ordering
 Cannot stop after finding first hit

 Nodes take more space
 32 bytes vs. 8 bytes

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 AABBs can provide tighter fit automatically
 No empty leafs, tree does not need to be as deep
 Primitives only referenced once
⇒ less nodes in hierarchy

 #nodes known in advance (2n-1)
 (if 1 primitive/leaf)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 AABBs can provide tighter fit automatically
 No empty leafs, tree does not need to be as deep
 Primitives only referenced once
⇒ less nodes in hierarchy

 #nodes known in advance (2n-1)
 (if 1 primitive/leaf)

 Can be updated easily!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 What does updating mean?
 Underlying geometry changes
 Update will ensure correctness of hierarchy

 without rebuilding it
 Should be faster than rebuild

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Post-order traversal of BVH
 Update children's AABB, then update own
 At leaf level, update from primitives
 Also update additional information such as axis

 O(n) time
 Usually a few ms for small scenes
 May become too long for large models!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Quality of BVH may decrease over
 animation
 Update does not change tree topology
 Rebuild may be necessary
 How to detect?

 In worst-case scene:
 Performance dropping an order of magnitude over

 20 animation frames
 Not as bad for normal scenes, though

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Use heuristic to detect degradation
 Assume performance lower when BVHs

 contain lots of empty space:

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 How to measure quality?
 Use ratio of surface area parent to children

 SA(parent) / (SA(child1) + SA(child2))
 Save on rebuild for each node (4 bytes/node)

 On each update: compare to initial value
 Sum up differences and normalize
 If above threshold: initiate rebuild

 ~30-40% work well in practice

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Video

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Ray Tracing Animated Scenes using
 Coherent Grid Traversal

[Wald et al. 06a]

I Wald, T Ize, A Kensler, A Knoll, S Parker
SCI Institute, University of Utah

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 A new traversal techniques for uniform grids
 … that makes packet/frustum traversal

 compatible with grids
 … thus achieves performance competitive with

 fastest kd-trees
 … and which allows for per-frame rebuilds

 (dynamic scenes)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree
 Of all these, grid is only that is not hierarchical !

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid is not hierarchical…
  Much simpler to build (similar to 3D

-rasterization, very fast)
 Build-times in the paper: 2.2M “Soda Hall” in 110 ms

  Ideally suited for handling dynamic scenes
 Full rebuild every frame, no restrictions at all !

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 All of the recent advancements of RT are for kd
-trees !
 Pre-2000: Tie between grids and kd-trees…
  [Wald ’01]: New concept “coherent ray tracing” (for kd

-tree)
 Trace “packets” of coherent rays 10x faster than single rays

  [Woop ’05]: First RT hardware prototype RPU (for kd-tree)
  [Reshetov ’05]: New concept “multilevel ray tracing” (kd

-tree)
 Trace packets using bounding frusta another 10x faster than

 CRT !

 But: (good) kd-trees are (too) costly to build…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 SIGGRAPH ‘05: Dynamic Scenes huge
 problem
 Ray tracing has become very fast (MLRT:

 ~100fps)
 If ray tracing is to ever replace rasterization, it

 must support dynamic scenes (games…)
 But: All our fast RT algos are for kd-trees…
 … and kd-trees can’t do dynamic scenes …

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 SIGGRAPH ‘05: Dynamic Scenes huge problem
 Since then, lots of research

  Lazy kd-tree construction (Razor [Stoll, Mark ‘06])
  Fast BVH and kd-tree construction (yet unpublished)
 Motion decomposition [Günther et al. ‘06]
 Dynamic BVHs [Wald et al. ‘06, Lauterbach et al. ’06]
 Hybrid BVH/kd-trees [Woop ‘06, Havran ‘06, Wachter ‘06,

 …]
 Coherent Grid Traversal [Wald et al. ’06]

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

  2005: Grid too slow to traverse (vs kd-tree)…
  Fact: Fast RT needs “packets” & “frusta”

 concepts
  Traverse multiple packets over same node of DS

 Rather simple for hierarchical data structures…
  Test both children in turn for overlap w/ packet
  If child overlaps: traverse it, else: skip it.

 (it’s as simple as that)

 … but not for grids

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Packets & grids: “Non-trivial task”
 In which order to test the nodes ? ABCD or

 ABDC ?
 What to do when packet diverges?

 3DDDA etc break in that case…
 Split diverging packet ?

 Quickly degenerates to single-ray
traversal…

 Fix by re-merging packets ?
 Non-trivial & costly …

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 First: Transform all rays into “canonical
 grid space”
 i.e., [0,0,0]-[Nx,Ny,Nz]

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

 Pick “major traversal axis” (e.g., max component of 1st
 ray)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs
 Intersect all cells in given slice

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs
 Intersect all cells in given slice

 Loop: incrementally compute next
slice’s overlap box
 4 additions…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs
 Intersect all cells in given slice

 Loop: incrementally compute next
slice’s overlap box
 4 additions…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Expensive setup phase
  Transform rays to canonical grid coordinate system
 Determine major march direction (simple)
 Compute min/max bounding planes (slopes and offsets)
 Compute first and last slice to be traversed (full frustum clip)

 But: Very simple traversal step
 Overlap box update: 4 float additions (1 SIMD instruction)
 Get cell IDs: 4 float-to-int truncations (SIMD…)
  Loop over overlapped cells (avg: 1.5-2 cells per slice)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well more

 intersections

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well more

 intersections
 Tris straddle many cells re-intersection

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well more

 intersections
 Tris straddle many cells re-intersection

 First sight: Frustum makes it worse…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well more

 intersections
 Tris straddle many cells re-intersection

 First sight: Frustum makes it worse…
 Rays isec tris outside “their” cells

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well more

 intersections
 Tris straddle many cells re-intersection

 First sight: Frustum makes it worse…
 Rays isec tris outside “their” cells
 Re-isec aggravated by width of frustum

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 First sight: Frustum makes it worse…
 But: Two easy fixes

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 First sight: Frustum makes it worse…
 But: Two easy fixes

 Bad culling SIMD Frustum culling in
Packet/Tri Isec [Dmitriev et al.] Outside frustum cull!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 First sight: Frustum makes it worse…
 But: Two easy fixes

 Bad culling SIMD Frustum culling in
Packet/Tri Isec [Dmitriev et al.]

 Re-intersection: Mailboxing [Haines]

Mailbox detects
re-intersection

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Surprise: Mailboxing & Frustum culling
 very effective
 Both standard techniques, both limited success for

 kd-trees
 Grid & Frustum: Exactly counter weak points of

 CGT …
 “Hand”

 Grid w/o FC & MB : 14 M ray-tri isecs
 Grid with FC & MB: .9 M ray-tri isecs (14x less)
 Kd-tree : .85M ray-tri isecs (5% less than grid)

 And: cost indep of #rays very cheap (amortize)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Comparison to single-ray grid
 Fast single-ray traverser, macrocell if

 advantageous, …
 Speedup 6.5x to 20.9x, usually ~10x

 Comparison to kd-tree
 To OpenRT: 2x-8x faster (2M Soda Hall: 4.5x)
 To MLRT: ~3x slower (but much less optimized)
 Tests performed on “kd-tree friendly” models

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Build time: Usually affordable even on single
 CPU…

  Traversal results (1024^2, dual 3.2 GHz Xeon PC)
 X/Y: X=raycast only; Y=raytrace+shade+texture+shadows

“Hand”
16K triangles
34.5/15.3 fps

“Poser”
78K triangles
15.8/7.8 fps

“Fairy”
174K triangles

3.4/1.2 fps

“Marbles”
8.8K triangles
57.1/26.2 fps

“Toys”
11K triangles
29.3/10.2 fps

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Comparison to state-of-the-art BVH or kd-tree
 Somewhat harder to code and “get right” than, e.g., BVH
 Usually somewhat slower (~1.5x-3x)
 More susceptible to incoherence & teapot-in-stadium cases

 Pure frustum tech.: Visits all cells in frustum even if not touched
 by any ray!

 BUT:
  It works at all ! (Who’d have thought 12m ago ?)
  ~10x faster than single-ray grid
 Benefits better from additional coherence (4x AA at 2x cost)
  “Maybe” better suited for regular data or special HW (Cell,

 GPUs)
 Most flexible wrt dynamic no limitation at all

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Have developed a new technique that
 Makes grid compatible with packets &

 frusta
 Is competitive with BVHs and kd-trees
 Most general in handling dynamic scenes

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

  [Boulos et al. 06]: Solomon Boulos, Dave Edwards, J Dylan Lacewell, Joe Kniss, Jan Kautz, Peter Shirley, and Ingo Wald. Interactive
 Distribution Ray Tracing. Technical Report, SCI Institute, University of Utah, No UUSCI-2006-022, 2006.

  [Günther et al. 06]:Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Seidel, and Philipp Slusallek. Ray tracing animated scenes
 using motion decomposition. Computer Graphics Forum, 25(3), September 2006 (to appear)

  [Havran et al. 06]: Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. On Fast Construction of Spatial Hierarchies for Ray Tracing.
 Submitted to RT’06, 2006.

  [Lauterbach et al. 06]: Christian Lauterbach, Sung-Eui Yoon, David Tuft, Dinesh Manocha. RT-DEFORM: Interactive Ray Tracing of
 Dynamic Scenes using BVHs. Technical Report TR06-10, University of North Carolina at Chapel Hill, 2006.

  [Mahovsky and Wyvill 04]: Jeffrey Mahovsky, Brian Wyvill. Fast Ray-axis Aligned Bounding Box Overlap Tests with Plücker
 Coordinates. Journal of Graphics Tools, 9(1):35-46, 2004

  [Reshetov et al. 05]: Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algorithm. ACM Trans. Graph., 24(3)
:1176–1185, 2005.

  [Rubin and Whitted 80]: Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering of complex scenes.
 Computer Graphics, 14(3):110–116, July 1980.

  [Smits98]: Brian Smits. Efficiency issues for ray tracing. Journal of Graphics Tools: JGT, 3(2):1–14, 1998. [Wächter and Keller 06]:
 Carsten Wächter and Andreas Keller. Instant Ray Tracing: The Bounding Interval Hierarchy. Rendering Techniques 2006: Eurographics
 Symposium on Rendering, 2006.

  [Wald et al. 03]: Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed Interactive Ray Tracing of Dynamic Scenes. In
 Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics (PVG), 2003.

  [Wald et al. 06a]:Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven Parker. Ray Tracing Animated Scenes using Coherent
 Grid Traversal. In ACM Transaction on Graphics (Proc. SIGGRAPH 2006).

  [Wald et al. 06b]: Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing Deformable Scenes using Dynamic Bounding Volume
 Hierarchies. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-014 (conditionally accepted at ACM Transactions on
 Graphics), 2006.

  [Woop et al. 06]: Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes.
 In Proceedings of Graphics Hardware (to appear), 2006.

  [Hunt et al. 06]: Warren Hunt, William R. Mark and Gordon Stoll, Fast kd-tree Construction with an Adaptive Error-Bounded Heuristic 2006
 IEEE Symposium on Interactive Ray Tracing.

