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CT Angiography: 
Dept. of Neuroradiology 

University of Erlangen, Germany  

CT Human Head: 
Institute for Vision and Graphics 
University of Siegen, Germany 
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Hellenic Statue of Isis: 
ARTIS, University of Erlangen- 

Nuremberg, Germany 

Sotades Pygmaios Statue 
ARTIS, University of Erlangen- 

Nuremberg, Germany 
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Micro CT, Compound Material, 
Material Science Department, 

University of Erlangen 
Hinge Bearing, 

Austrian Foundry Research Institute 
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Combustion Simulation, 
SciDACC 

Computational Fluid Dynamic  

Turbulence Simulation 
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• Rigid Grid (Voxel) 
• Reconstruction with 
trilinear interpolation 

• Irregular Structure 
• Decomposed into tetrahedra 
• Reconstruction with linear 
interpolation  
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 3D volume data  are represented by a finite number  of cross sectional
 slices (hence a 3D raster) 
 On each volume element (voxel), stores a data value (if it uses only a
 single bit, then it is a binary data set. Normally, we see a gray value of 8 to
 16 bits on each voxel.) 

N x 2D arraies                  =             3D array 



Volume Rendering 

Copyright © 2010 by Yong Cao 

A voxel is a cubic cell, which 
has a single value cover  
the entire cubic region 

A voxel is a data point 
at a corner of the cubic cell 
The value of a point inside the  
cell is determined by interpolation 
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 Mapping values to appearance 
 A Scalar value mapping to color or opacity 
 May emphasize certain value ranges (iso-surface)

 or give all ranges equal emphasis in final image
 (semi-transparent) 
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 Ray Casting 
 Image-order accumulation 

 Splatting 
 Object-order accumulation 

 Iso-surface extraction 
 Marching cube 
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  First: direct iso-surface rendering 



Volume Rendering 

Copyright © 2010 by Yong Cao 

Depth 
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Average 

•  Average: produces basically an X-ray picture 
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 Max: Maximum Intensity Projection 
used for Magnetic Resonance Angiogram 
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  Accumulate opacity while compositing colors: make transparent
 layers visible! 

Depth 
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color c = c s αs(1 - α) + c   

opacity α = α s (1 - α) + α 

1.0 

object (color, opacity) 

volumetric compositing 
Interpolation 

kernel 
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color   

opacity  

object (color, opacity) 

If alpha is close enough to 1.0, the color 
will not change much. Therefore a 
threshold for alpha (the transparency) may 
be set, guarantees an 

when possible. 
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 Use of Octrees 
 Minimizes the number transparent voxels during the

 accumulation, since a group of transparent voxels may be
 represented as a single node in the octree. 

 More efficient memory usage. 
  Interleaving methods 

 Sample every two (n) voxels as long as voxels are fully
 transparent. 

 Sample only ¼ of the points in the image and interpolate -
 Faster for interactive mode, but less quality. 

 Pyramids, k-d trees and other data-structures. 
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 Multi Cast or Super Sampling: 
  Instead of sampling one ray per pixel, sampling 4 rays per

 pixel. 
 Better image... but four times longer to render. 

 Ray subdividing: 
 Used with perspective projection. When the rays draw away

 from each other, the sampling of the volume is not
 complete.  

  The solution is to divide the ray when the rays density falls. 
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  Traverse voxels in front to back order 
  Traverse each voxel in plane, then move to next plane 

  For each voxel, accumulate color and opacity to
 each pixel it covers 

 Voxel projection covers hexagonal footprint 
 Smooth interpolation possible by applying kernel

 with fall-off away from sample point 
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 Splatting 
 Area samples 
 Ordered data access 
 More difficult for

 perspective projection 

 Ray casting 
 Point samples 
 Random data access 
 Easy for parallel or

 perspective projection 
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 Row volume data does not include normal or edges 
 Edge detection and normal calculation should be done. 
 Using 

 Marching Cube algorithm 
 Gradient estimation 

 Classification 
 Most volume data is only the density value. Read

 colors and transparency are set by classifying the
 voxels using some classification algorithms. 
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 Consists of 3 basic steps: 
 Locate the surface corresponding to a user

-specified value. 
 Create triangles. 
 Calculate normals to the surface at each vertex. 
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  To locate the surface, it uses a logical cube created
 from eight pixels (Four each from 2 adjacent layers): 



Volume Rendering 

Copyright © 2010 by Yong Cao 

 Binary vertex assignment: (p (i, j, k) >= TU ? 1: 0) 
 Set cube vertex to value of 1 if the data value at that vertex

 exceeds (or equals) the value of the surface we are
 constructing 

 Otherwise, set cube vertex to 0 
  If a vertex  = 1 then it is “inside” the surface 
  If a vertex  = 0 then it is “outside” 
 Any cube with vertices of both types is

 “intersected” by the surface. 
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  For each cube, we have 8
 vertices with 2 possible states
 each (inside or outside). 

  This gives us 28 possible
 patterns = 256 cases. 

  Enumerate cases to create a
 LUT 

  Use symmetries to reduce
 problem from 256 to 15 cases. 
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  Use vertex bit mask  to
 create an index for each
 case based on the state of
 the vertexes.  

  Using the index to tell
 which edge the surface
 intersects, we can then
 can linearly interpolate the
 surface intersection along
 the edge. 
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  To calculate surface normal, we need to determine gradient
 vector, g  (derivative of the density function). 

  To estimate the gradient vector at the surface of interest, we first
 estimate the gradient vectors at the vertices and interpolate the
 gradient at the intersection. 

  The gradient at cube vertex (i , j, k), is estimated using central
 differences along the three coordinate axes by: 

D (i, j, k) is the density at pixel 
(i, j) in slice k. 

Δx, Δy, Δz are lengths of the 
cube edges  
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 Dividing the gradient by its length produces
 the unit normal at the vertex required for
 rendering. 

 Then the algorithm linearly interpolates this
 normal to the point of intersection. 
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 Scan 2 slices and create cube 
 Calculate index for cube based on vertices 
 Use index to lookup list of edges intersected 
 Use densities to interpolate edge intersections 
 Calculate unit normal at each edge vertex using

 central differences. Interpolate normal to each
 triangle vertex 

 Output the triangle vertices and vertex normals 
 March to next position and repeat. 


