
Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

Copyright © 2010 by Yong Cao

CT Angiography:
Dept. of Neuroradiology

University of Erlangen, Germany

CT Human Head:
Institute for Vision and Graphics
University of Siegen, Germany

Volume Rendering

Copyright © 2010 by Yong Cao

Hellenic Statue of Isis:
ARTIS, University of Erlangen-

Nuremberg, Germany

Sotades Pygmaios Statue
ARTIS, University of Erlangen-

Nuremberg, Germany

Volume Rendering

Copyright © 2010 by Yong Cao

Micro CT, Compound Material,
Material Science Department,

University of Erlangen
Hinge Bearing,

Austrian Foundry Research Institute

Volume Rendering

Copyright © 2010 by Yong Cao

Combustion Simulation,
SciDACC

Computational Fluid Dynamic

Turbulence Simulation

Volume Rendering

Copyright © 2010 by Yong Cao

• Rigid Grid (Voxel)
• Reconstruction with
trilinear interpolation

• Irregular Structure
• Decomposed into tetrahedra
• Reconstruction with linear
interpolation

Volume Rendering

Copyright © 2010 by Yong Cao

 3D volume data are represented by a finite number of cross sectional
 slices (hence a 3D raster)
 On each volume element (voxel), stores a data value (if it uses only a
 single bit, then it is a binary data set. Normally, we see a gray value of 8 to
 16 bits on each voxel.)

N x 2D arraies = 3D array

Volume Rendering

Copyright © 2010 by Yong Cao

A voxel is a cubic cell, which
has a single value cover
the entire cubic region

A voxel is a data point
at a corner of the cubic cell
The value of a point inside the
cell is determined by interpolation

Volume Rendering

Copyright © 2010 by Yong Cao

 Mapping values to appearance
 A Scalar value mapping to color or opacity
 May emphasize certain value ranges (iso-surface)

 or give all ranges equal emphasis in final image
 (semi-transparent)

Volume Rendering

Copyright © 2010 by Yong Cao

 Ray Casting
 Image-order accumulation

 Splatting
 Object-order accumulation

 Iso-surface extraction
 Marching cube

Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

Copyright © 2010 by Yong Cao

Depth

Intensity
Max

Average

Accumulate

First

Va
lu

e

Volume Rendering

Copyright © 2010 by Yong Cao

Depth

Intensity

First

  First: direct iso-surface rendering

Volume Rendering

Copyright © 2010 by Yong Cao

Depth

Intensity

Average

•  Average: produces basically an X-ray picture

Volume Rendering

Copyright © 2010 by Yong Cao

 Max: Maximum Intensity Projection
used for Magnetic Resonance Angiogram

Depth

Intensity
Max

Volume Rendering

Copyright © 2010 by Yong Cao

  Accumulate opacity while compositing colors: make transparent
 layers visible!

Depth

Intensity

Accumulate

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

volumetric compositing

object (color, opacity)

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

Interpolation
kernel

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color c = c s αs(1 - α) + c

opacity α = α s (1 - α) + α

1.0

object (color, opacity)

volumetric compositing
Interpolation

kernel

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

object (color, opacity)

If alpha is close enough to 1.0, the color
will not change much. Therefore a
threshold for alpha (the transparency) may
be set, guarantees an

when possible.

Volume Rendering

Copyright © 2010 by Yong Cao

 Use of Octrees
 Minimizes the number transparent voxels during the

 accumulation, since a group of transparent voxels may be
 represented as a single node in the octree.

 More efficient memory usage.
  Interleaving methods

 Sample every two (n) voxels as long as voxels are fully
 transparent.

 Sample only ¼ of the points in the image and interpolate -
 Faster for interactive mode, but less quality.

 Pyramids, k-d trees and other data-structures.

Volume Rendering

Copyright © 2010 by Yong Cao

 Multi Cast or Super Sampling:
  Instead of sampling one ray per pixel, sampling 4 rays per

 pixel.
 Better image... but four times longer to render.

 Ray subdividing:
 Used with perspective projection. When the rays draw away

 from each other, the sampling of the volume is not
 complete.

  The solution is to divide the ray when the rays density falls.

Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

Copyright © 2010 by Yong Cao

  Traverse voxels in front to back order
  Traverse each voxel in plane, then move to next plane

  For each voxel, accumulate color and opacity to
 each pixel it covers

 Voxel projection covers hexagonal footprint
 Smooth interpolation possible by applying kernel

 with fall-off away from sample point

Volume Rendering

Copyright © 2010 by Yong Cao

 Splatting
 Area samples
 Ordered data access
 More difficult for

 perspective projection

 Ray casting
 Point samples
 Random data access
 Easy for parallel or

 perspective projection

Volume Rendering

Copyright © 2010 by Yong Cao

 Row volume data does not include normal or edges
 Edge detection and normal calculation should be done.
 Using

 Marching Cube algorithm
 Gradient estimation

 Classification
 Most volume data is only the density value. Read

 colors and transparency are set by classifying the
 voxels using some classification algorithms.

Volume Rendering

Copyright © 2010 by Yong Cao

 Consists of 3 basic steps:
 Locate the surface corresponding to a user

-specified value.
 Create triangles.
 Calculate normals to the surface at each vertex.

Volume Rendering

Copyright © 2010 by Yong Cao

  To locate the surface, it uses a logical cube created
 from eight pixels (Four each from 2 adjacent layers):

Volume Rendering

Copyright © 2010 by Yong Cao

 Binary vertex assignment: (p (i, j, k) >= TU ? 1: 0)
 Set cube vertex to value of 1 if the data value at that vertex

 exceeds (or equals) the value of the surface we are
 constructing

 Otherwise, set cube vertex to 0
  If a vertex = 1 then it is “inside” the surface
  If a vertex = 0 then it is “outside”
 Any cube with vertices of both types is

 “intersected” by the surface.

Volume Rendering

Copyright © 2010 by Yong Cao

  For each cube, we have 8
 vertices with 2 possible states
 each (inside or outside).

  This gives us 28 possible
 patterns = 256 cases.

  Enumerate cases to create a
 LUT

  Use symmetries to reduce
 problem from 256 to 15 cases.

Volume Rendering

Copyright © 2010 by Yong Cao

  Use vertex bit mask to
 create an index for each
 case based on the state of
 the vertexes.

  Using the index to tell
 which edge the surface
 intersects, we can then
 can linearly interpolate the
 surface intersection along
 the edge.

Volume Rendering

Copyright © 2010 by Yong Cao

  To calculate surface normal, we need to determine gradient
 vector, g (derivative of the density function).

  To estimate the gradient vector at the surface of interest, we first
 estimate the gradient vectors at the vertices and interpolate the
 gradient at the intersection.

  The gradient at cube vertex (i , j, k), is estimated using central
 differences along the three coordinate axes by:

D (i, j, k) is the density at pixel
(i, j) in slice k.

Δx, Δy, Δz are lengths of the
cube edges

Volume Rendering

Copyright © 2010 by Yong Cao

 Dividing the gradient by its length produces
 the unit normal at the vertex required for
 rendering.

 Then the algorithm linearly interpolates this
 normal to the point of intersection.

Volume Rendering

Copyright © 2010 by Yong Cao

 Scan 2 slices and create cube
 Calculate index for cube based on vertices
 Use index to lookup list of edges intersected
 Use densities to interpolate edge intersections
 Calculate unit normal at each edge vertex using

 central differences. Interpolate normal to each
 triangle vertex

 Output the triangle vertices and vertex normals
 March to next position and repeat.

