
Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Introduction to Ray Tracing
 What is Ray Tracing?
 Comparison with Rasterization
 Why Now? / Timeline
 Reasons and Examples for Using Ray

 Tracing
 Open Issues

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Rasterization:
Projection geometry forward

Ray Tracing:
Project image samples backwards

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Rasterization-Pipeline
 Highly successful technology
 From graphics supercomputers to

an add-on in a PC chip-set
 Advantages

 Simple and proven algorithm
 Getting faster quickly
 Trend towards full programmability

Application

Vertex Shader

Rasterization

Fragment Shader

Fragment Tests

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

  Primitive operation of all interactive
 graphics !!
 Scan converts a single triangle at a time

  Sequentially processes every triangle
 individually
 Cannot access more than one triangle at a time
  But most effects need access to the entire scene:

 Shadows, reflection, global illumination

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

-  Global effects
-  Parallel (as nature)
-  Fully automatic
-  Demand driven
-  Per pixel operations
-  Highly efficient

 Fundamental Technology for Next Generation Graphics

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Rasterization
 For each triangle:

 Find the pixels it covers
 For each pixel: compare to closest triangle so far

 Ray tracing
 For each pixel:

 Find the triangles that might be closest
 For each triangle: compute distance to pixel

Requires Z-buffer: track!
distance per pixel

Requires spatial index: a spatially!
sorted arrangement of triangles

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Definition: Rasterization
 Given a set of rays and a primitive, efficiently compute

 the subset of rays hitting the primitive
  Uses 2D grid as an index structure for efficiency

 Definition: Ray Tracing
 Given a ray and set of primitives, efficiently compute the

 subset of primitives hit by the ray
  Uses a (hierarchical) 3D spatial index for efficiency

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

  3D object space index (e.g. kd-tree)
 Limits scene dynamics (may require index rebuilt)
 Increases scalability with scene size O(log n)
 Efficiently supports small & arbitrary sets of rays

 Few rays reflecting off of surface ray tracing problem

  2D image space grid
 Rays limited to regular sampling & planar perspective

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Convergence: 2D grid plus object space index
 Brings rasterization closer to ray tracing

 Performs front to back traversal with groups of rays
 At leafs parallel intersection computation using rasterization

 Introduces same limitations (e.g. scene dynamics)
 But coarser index may be OK (traversal vs. intersection cost)

 Computation split into HW and application SW
 More complex, latency, communication bandwidth, …

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Per Pixel Efficiency
 Surface shaders principally have same complexity
 Rasterization:

 Incremental computation between pixels (triangle setup)
 Overhead due to overdraw (Z-buffer)

 Ray tracing:
 No incremental computation (less important with complexity)
 Caching works well even for finely tessellated surfaces
 May shoot arbitrary rays to query about global environment

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Benefits of On-Demand Computation
 Only required computations efficiency

 E.g.: must not compute entire reflection map

 No re-sampling of pre-computed data accuracy
 Exact computation reliability
 Fully performed in renderer (not app.) simplicity
 Data loaded only if needed resources

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Hardware Support
 Rasterization has mature & quickly evolving HW

 High-performance, highly parallel, stream computing engine

 Ray tracing mostly implemented in SW
 Requires flexible control flow, recursion & stacks, flexible i/o, …
 Requires virtual memory and demand loading due scene size
 Requires loops in the HW pipeline (e.g. generating new rays)
 Depend heavily on caching and suitable working sets

  Not well supported by current HW

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Requirements
 High floating point performance

 Traversal & intersection computations
 Flexible control flow, multiple threads

 Recursion, efficient traversal of kd-tree, …
 Exploitation of coherence

 Caching, packets, efficient traversal, …
 High bandwidth

 Between traversal, intersection, and shading; to
 caches

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 What are the reasons for industry to choose
Realtime Ray Tracing?
 Highly realistic images by default
 Physical correctness and dependability
 Support for massive scenes
 Integration of many different primitive types
 Realtime global illumination

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Highly Realistic Images by Default
 Typical effects are automatically accounted for

 E.g.: shadows, reflection, refraction, …
 No special code necessary, but tricks can still be used

 All effects are correctly ordered globally
 Do need for application to do sorting (e.g. for

 transparency)
 Orthogonality of geometry, shading, lighting, …

 Can be created independently and used without side
 effects

 Reusability: e.g. shader libraries

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Volkswagen Beetle with correct shadows and (multi-)reflections on curved surfaces

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Physical Correctness and Dependability
 Numerous approximations caused by

 rasterization
 Might be good enough for games (but maybe

 not?)
 Industry needs dependable visual results

 Benefits
 Users develop trust in the visual results
 Important decisions can be based on virtual

 models

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Fully ray traced car head lamp, faithful visualization requires up to 50 rays per pixel

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Rendered directly from trimmed NURBS surfaces, with smooth environment lighting

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

BTF Data Courtesy R. Klein, Uni Bonn

Rendered with accurately measured BTF data
that accounts for micro lighting effects

Textured Phong for
comparison

Real-time Ray Tracing

Copyright © 2010 by Yong Cao VR scene illuminated from realtime video feed, AR with realtime environment lighting

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Massive Scenes
 Scales logarithmically with scene size
 Supports billions of triangles

 Benefits
 Can render entire CAD models without

 simplification
 Greatly simplifies and speeds up many tasks

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Boeing 777 Model:
350 million triangles
30 GB on disk

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

71 Trillion Triangles

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Flexible Primitive Types
 Triangles
 Volumes data sets

 Iso-surfaces & direct visualization
 Regular, rectilinear, curvilinear, unstructured,

 …
 Splines and subdivision surfaces
 Points

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Triangles, Bezier splines, and subdivision surfaces fully integrated

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Volume visualization using multiple iso-surfaces in combination with surface rendering

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Realtime ray tracing of point clouds (1 Mpoints each)

24 MPoints,

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Declarative Graphics Interface
 Application specifies scene once, plus updates
 Rendering fully performed by renderer (e.g. in

 HW)
 Similar to scene graphs, PostScript, or latest

 GUIs
 Benefits

 Greatly simplifies application programming
 Allows for complete HW acceleration

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Global Illumination
 Simulating global lighting through tracing rays
 Indirect diffuse and caustic illumination
 Fully recomputed at up to 20 fps

 Benefits
 Add the subtle but highly important clue for

 realism
 Allows flexible light planning and control

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Conference room (380 000 tris, 104 lights) with full global illumination in realtime

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Dynamic scenes
 Changes to geometry updates to spatial

 index
 Key: Need information from application !!!

 No information must inspect everything
O(n)

 Approaches
 Separate scenes by temporal characteristic
 Build index lazily, build fuzzy index
 Adapt built parameters (fast vs. thorough)

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Efficient Anti-Aliasing & Glossy Reflection
 Requires many samples for proper integration

 Image plane Can we do better than super
-sampling?

 Shading and texture aliasing ray differentials
 (integration?)

 Large/detailed scenes geometry aliasing, temporal
 noise

 Super-sampling too costly and LOD undesirable

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Hardware Support
 Goal: realtime ray tracing on every desktop

 >60 fps, 2-3 Mpix, huge models, complex lighting, …
 Possible Solutions

 Faster, multi-core CPUs: might take too long
 Cell: Highly interesting, but no caches
 GPUs: very promising with Fermi
 Custom HW: RPU (flexible GPU + custom

 traversal)

