
Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Simulate light rays from light source to
 eye

Reflected ray Incident ray

Eye Light

Surface

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Trace rays from light
 Lots of work for little return

Eye

Light
Image
Plane

Object

Light Rays

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Light

Eye

SC

SA

SD

SB

SA shiny,
 transparent

SB,SD diffuse,
 opaque

SC shiny,
 opaque

Image Plane

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

The light that point PA emits to the eye comes from:

 light sources
other objects (reflection)
other objects (refraction)

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Local illumination model:
I = Ia+Idiff+Ispec

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

What is the color that is reflected to PA ?
The color of PC.

What is the color of PC ?

Pc

n

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

What is the light that is reflected to PA ?
The color of PC . as viewed by PA

What is the color of PC reflected towards PA?
Just like PA :
raytrace PC i.e compute the
three contributions from

1.  Light sources
2.  Reflection
3.  refraction

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Transparent materials

How do you compute the refracted
 contribution?

You raytrace the refracted ray.
1.  Lights
2.  Reflection
3.  Refraction

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Diffuse objects do not receive light from
 other objects.

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

The color that the pixel is assigned
 comes from:
light sources
other objects (reflection)
other objects (refraction)

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

  For each pixel construct a ray: eye pixel
raytrace(ray)
 P = closest intersection
color_local = ShadowRay(light1, P)+…
 + ShadowRay(lightN, P)
color_reflect = raytrace(reflected_ray)
color_refract = raytrace(refracted_ray)
color = color_local
 + kre*color_reflect
 + kra*color_refract

return(color)

A recursive function!

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

SA

SB SC

SD

T R

R

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Light

Eye

SC

SA

SD

PA

SB

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 The more the better.
 Infinite reflections at the limit.

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Setting the camera and the image plane
 Computing a ray from the eye to every

 pixel and trace it in the scene
 Object-ray intersections
 Shadow, reflected and refracted ray at

 each intersection

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Width 2W, Height 2H
Number of pixels nCols x nRows

 Camera coordinate system (eye, u,v,n)
 Image plane at -N

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Pixel P(r,c) has coordinates in camera
 space:

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Pixel location

 Ray through pixel:

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Want to know: at what point (p) does ray
 intersect triangle?

 Compute lighting, reflected rays,
 shadowing from that point

ro

rd

<?, ?, ?>
(t = ???)

p

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Step 1 : Intersect with plane
 (Ax + By + Cz + D = 0) Plane normal

 n = <A, B, C>

p

p = -(n. ro + D) / (n. rd)

rd

ro

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Step 2 : Check against triangle edges

p

V1

V2

V0

n

Plug p into (p. Ei + di) for each edge

if signs are all positive or negative,
 point is inside triangle!

V0V1

E0
Ei = ViVi+1 x n (plane A, B, C)
di = -A

.N (plane D)

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Could use plane normals (flat shading)
 Better to interpolate from vertices

p
n

nV1

nV2

nV0

b

a
c

V1

V2

V0

n = anV0 + bnV1 + cnV2

Find areas

area(V0V1V2)

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Unit sphere at origin - ray intersection:

 That’s a quadratic equation

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray(t)

t=0

t= ∞
Intersections

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

  t1 < t2

Ray(t)

t=0

t= ∞
Intersections

t1

t2

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Where does S+ct hit the transformed
 sphere G ?

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Inverse transformed ray

 Drop 1 and 0 to get S’+c’t
 For each object

 Inverse transform ray getting S’+c’t
 Find intersection thit

 Use thit in the untransformed ray S+ct to
 find the intersection

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 For each light intersect shadow ray with
 all objects.

 If no intersection is found
 apply local illumination
 at intersection

 If in shadow no contribution

Lights

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Raytrace the reflected ray

Rayrf(t)

Ray(t)

N

a

a

P

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Raytrace the refracted ray
Snell’s law

N

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 color(r,c) = color_shadow_ray + Kf*colorrf
 + Kr*colorrfa

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

for each pixel on screen
 1. determine ray from eye through pixel
 2. find closest intersection of ray with an object
 3. cast off reflected and refracted ray, recursively
 4. calculate pixel color, draw pixel
end

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

1280x1024 image with 10 rays/pixel
1000 objects (triangle, CSG, NURBS)
3 levels recursion

 39321600000 intersection tests
 100000 tests/second -> 109 days!

Must use an acceleration method!

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Use simple shape for quick test, keep a
 hierarchy

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Break your space into pieces
 Search the structure linearly

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 You can always throw more processors at
 it.

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

Recursive algorithm
Function main()

 for each pixel (c,r) on screen
 determine ray rc,r from eye through pixel
 color(c,r) = raytrace(rc,r)

 end for
End
Function raytrace(r)

 find closest intersection P of ray with objects
 clocal = Sum(shadowRays(P,Lighti))
 cre = raytrace(rre)

 cra = raytrace(rra)
 return c = clocal+kre*cre+kra*cra

end

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 Participating media
 Transculency
 Sub-surface scattering (e.g. Human skin)
 Photon mapping

Ray Tracing Algorithm

Copyright © 2010 by Yong Cao

 View dependent
 Computationally expensive
 Good for refraction and reflection effects

