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─ Lessons learned from a simple application 
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 Matrix Multiplication 
 Used as an example throughout the course 

 Goal for today: 
 Show the concept of “Computation-to-Core Mapping” 

  Block  schedule, Occupancy, and thread schedule  

 Assumption 
 Deal with square matrix for simplicity 
  Leave memory issues later 

  With global memory and local registers 
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// Matrix multiplication on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width) 
{    
    for (int i = 0; i < Width; ++i) 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 
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P = M * N of size WIDTH x WIDTH 
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// Matrix multiplication on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width) 
{    
    for (int i = 0; i < Width; ++i) 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 
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P = M * N of size WIDTH x WIDTH 

Pay attention 
here! 
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  Thread mapping: 
  Define the finest computational unit, and

 map it onto each thread 
  Main criterion : None Dependency 
  In our first scheme: 

Unit: Calculation of one element of P 

  Block mapping: 
  Simple: One block 
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width) 
{ 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd; 
   … 
1. // Allocate and Load M, N to device memory  
    cudaMalloc(&Md, size); 
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

     cudaMalloc(&Nd, size); 
     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

     // Allocate P on the device 
    cudaMalloc(&Pd, size); 
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2.   // Kernel invocation code – to be shown later 
     … 

3.    // Read P from the device 
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

       // Free device matrices 
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 
     } 
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// Matrix multiplication kernel – per thread code 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 

    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 
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   for (int k = 0; k < Width; ++k) { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 

  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 
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    // Setup the execution configuration 
       dim3 dimGrid(1, 1); 
       dim3 dimBlock(Width, Width); 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 
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  One Block of threads compute
 matrix Pd 
  Other Multi-processors are not

 used. 
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  Each thread 
  Loads a row of matrix Md 
  Loads a column of matrix Nd 
  Perform one multiply and addition

 for each pair of Md and Nd
 elements 

  Compute to off-chip memory
 access ratio close to 1:1 (not very
 high) 
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  Size of matrix limited by the
 number of threads allowed in a
 thread block 
  Maximum threads per block: 512 
  Can only do 22 x 22 matrix 
  You can put a loop around the

 kernel call for cases when Width
 > 22. But multiple kernel launch
 will cost you. 
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  Thread mapping:  the same with the first one 
  Block mapping: 

  Create 2D thread blocks, each of which compute
 a (TILE_WIDTH)2 sub-matrix (tile) of the result
 matrix 
 Each has (TILE_WIDTH)2 threads 

  Generate a 2D Grid of (WIDTH/TILE_WIDTH)2

 blocks 
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 More blocks (WIDTH/TILE_WIDTH)2  

 Support larger matrix 
 The maximum size of each dimension of

 a grid of thread blocks is 65535. 
 Max Width = 65535 x TILE_WIDTH 

 Use more multi-processors 
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 Break-up Pd into tiles 
 Each block calculates one tile 

 Each thread calculates one element 
 Block size equal tile size 
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

Pd[Row*Width+Col] = Pvalue; 
} 
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    // Setup the execution configuration 
       dim3 dimGrid (Width/TILE_WIDTH, Width/TILE_WIDTH); 
        dim3 dimBlock (TILE_WIDTH, TILE_WIDTH); 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 
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 For Matrix Multiplication using multiple
 blocks, should I use 8X8, 16X16 or 32X32
 blocks? 

 Why? 
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  Up to 8 blocks to each SM as resource
 allows 

  SM in G80 can take up to 768 threads 
  Could be 256 (threads/block) * 3

 blocks  
  Or 128 (threads/block) * 6 blocks, etc. 

  SM in GT200 can take up to 1024
 threads 
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  Each Block is executed as 32-
thread Warps 

  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
  Each Block is divided into 

256/32 = 8 Warps 
  There are 8 * 3 = 24 Warps  
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 How much a Multiprocessor is occupied: 
Occupancy = Actually warps / Totally allowed 
 GT200 SM allows 32 warps 
 G80 SM allow 24 warps 

 For example: 
 One block per SM, 32 threads per block 

 (32/32) / 32 = 3.125% (Very bad) 

 4 blocks per SM, 256 threads per block 
 (256/32) * 4 / 32 = 100% (Very good) 
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 There are three factors: 
 Maximum number of warps 
 Maximum registers usage 
 Maximum share memory usage 
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  For Matrix Multiplication using multiple blocks,
 should I use 8X8, 16X16 or 32X32 blocks? 

  For G80 GPU: 
  For 8X8, we have 64 threads per Block. Since each SM can

 take up to 768 threads, there are 12 Blocks. However, each
 SM can only take up to 8 Blocks, only 512 threads will go
 into each SM! (Occupancy  = 66.6%) 

  For 16X16, we have 256 threads per Block. Since each SM
 can take up to 768 threads, it can take up to 3 Blocks and
 achieve full capacity unless other resource considerations
 overrule. (Occupancy  = 100%) 

  For 32X32, we have 1024 threads per Block. Not even one
 can fit into an SM! (Can not support) 
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  For Matrix Multiplication using multiple blocks,
 should I use 8X8, 16X16 or 32X32 blocks? 

  For GT200 GPU: 
  For 8X8, we have 64 threads per Block. Since each SM can

 take up to 1024 threads, there are 16 Blocks. However,
 each SM can only take up to 8 Blocks, only 512 threads will
 go into each SM! (Occupancy  =50%) 

  For 16X16, we have 256 threads per Block. Each SM takes
 4 Blocks and achieve full capacity unless other resource
 considerations overrule. (Occupancy  = 100%) 

  For 32X32, we have 1024 threads per Block. Each SM takes
 1 Block and achieve full capacity unless other resource
 considerations overrule. (Occupancy  = 100%) 
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 Step 1: 
 Define your computational unit, map each unit to a

 thread 
 Avoid dependency 
 Increase compute to memory access ratio 

 Step 2: 
 Group your threads into blocks 

 Eliminate hardware limit 
 Take advantage of shared memory 


