Invent the Future

Computation to Core Mapping

Computation to Core Mapping

- Lessons learned from a simple application

A Simple Application

$>$ Matrix Multiplication
$>$ Used as an example throughout the course
Goal for today:
$>$ Show the concept of "Computation-to-Core Mapping"
> Block schedule, Occupancy, and thread schedule
$>$ Assumption
$>$ Deal with square matrix for simplicity
$>$ Leave memory issues later
> With global memory and local registers

VirginiaTech
 Invent the Future

The algorithm and CPU code

$\mathrm{P}=\mathrm{M}$ * N of size WIDTH \times WIDTH
// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int Width)
\{
for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) \{
double sum $=0$;
for (int k=0; $k<$ Width; ++k) \{
double $\mathrm{a}=\mathrm{M}[\mathrm{i}$ * width +k$]$;
double $b=N[k$ * width $+j]$;
sum += a * b;
\}
$P[i$ * Width + j] = sum;
\}
\}

VirginiaTech
 Invent the Future

The algorithm and CPU code

$\mathrm{P}=\mathrm{M}$ * N of size WIDTH x WIDTH
// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int Width)
\{
for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) \{
double sum = 0;
for (int k = 0; k < Width; ++k)
double $a=M[i *$ width tek $]$;
double $b=N[k$ * width $+j]$;
sum += a * b;
\}
$P[i$ * Width + j] = sum;
\}
\}

First Mapping Scheme

> Thread mapping:
> Define the finest computational unit, and map it onto each thread
> Main criterion : None Dependency
> In our first scheme:
Unit: Calculation of one element of P
$>$ Block mapping:
> Simple: One block

Step 1: Memory layout

$M_{0,0}$	$M_{1,0}$	$M_{2,0}$	$M_{3,0}$
$M_{0,1}$	$M_{1,1}$	$M_{2,1}$	$M_{3,1}$
$M_{0,2}$	$M_{1,2}$	$M_{2,2}$	$M_{3,2}$
$M_{0,3}$	$M_{1,3}$	$M_{2,3}$	$M_{3,3}$

M
 > (column\#, row\#)

 (column\#, row\#)

 (column\#, row\#)}

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline M_{0,0} & M_{1,0} & M_{2,0} & M_{3,0} & M_{0,1} & M_{1,1} & M_{2,1} & M_{3,1} & M_{0,2} & M_{1,2} & M_{2,2} & M_{3,2} & M_{0,3} & M_{1,3} & M_{2,3} & M_{3,3} \\
\hline
\end{array}
$$

Step 2: Input Matrix Data Transfer (Host Code)

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
$\{$
int size = Width * Width * sizeof(float); float* Md , Nd , Pd ;

1. // Allocate and Load M, N to device memory
cudaMalloc(\&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc(\&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
// Allocate P on the device
cudaMalloc(\&Pd, size);

Step 3: Output Matrix Data Transfer (Host Code)

2. // Kernel invocation code - to be shown later
...
3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
\}

Invent the Future

Computation to Core Mapping

Step 4: Kernel Function

// Matrix multiplication kernel - per thread code
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) \{
// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue $=0$;

Computation to Core Mapping

Step 4: Kernel Function (cont.)

```
    for (int k= 0; k < Width; ++k) {
        float Melement = Md[threadldx.y*Width+k];
        float Nelement = Nd[k*Width+threadldx.x];
        Pvalue += Melement * Nelement;
    }
    Pd[threadldx.y*Width+threadldx.x] = Pvalue;
}
```


Step 5: Kernel Invocation (Host Code)

// Setup the execution configuration dim3 $\operatorname{dim} G r i d(1,1) ;$
dim3 dimBlock(Width, Width);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Issues with the First Mapping Scheme

> One Block of threads compute matrix Pd
> Other Multi-processors are not used.

Issues with the First Mapping Scheme

$>$ Each thread
$>$ Loads a row of matrix Md
> Loads a column of matrix Nd
> Perform one multiply and addition for each pair of Md and Nd elements
$>$ Compute to off-chip memory access ratio close to 1:1 (not very high)

Issues with the First Mapping Scheme

$>$ Size of matrix limited by the number of threads allowed in a thread block
> Maximum threads per block: 512
$>$ Can only do 22×22 matrix
> You can put a loop around the kernel call for cases when Width >22. But multiple kernel launch will cost you.

VirginiaTech
 Invent the Future

Solution: the Second Mapping Scheme

> Thread mapping: the same with the first one
> Block mapping:
> Create 2D thread blocks, each of which compute a (TILE_WIDTH) ${ }^{2}$ sub-matrix (tile) of the result matrix
> Each has (TILE_WIDTH)² threads
$>$ Generate a 2D Grid of (WIDTH/TILE_WIDTH) ${ }^{2}$ blocks

Computation to Core Mapping

About the Second Mapping

$>$ More blocks (WIDTH/TILE_WIDTH) ${ }^{2}$
$>$ Support larger matrix
$>$ The maximum size of each dimension of a grid of thread blocks is 65535.
$>$ Max Width $=65535 \times$ TILE_WIDTH
Use more multi-processors

VirginiaTech
 Invent the Future
 Algorithm concept using tiles

$>$ Break-up Pd into tiles
$>$ Each block calculates one tile
> Each thread calculates one element
> Block size equal tile size

Computation to Core Mapping

Example

Computation to Core Mapping

Block Computation

Kernel Code using Tiles

```
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
    Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
Pd[Row*Width+Col] = Pvalue;
}
```


Revised Kernel Invocation (Host Code)

// Setup the execution configuration dim3 dimGrid (Width/TILE_WIDTH, Width/TILE_WIDTH); dim3 dimBlock (TILE_WIDTH, TILE_WIDTH);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Questions?

$>$ For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?
$>$ Why?

Block Scheduling

> Could be 256 (threads/block) * 3 blocks
> Or 128 (threads/block) * 6 blocks, etc.
$>$ SM in GT200 can take up to 1024 threads

Thread scheduling in Multiprocessing

$>$ Each Block is executed as 32thread Warps
> If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
$>$ Each Block is divided into 256/32 = 8 Warps

> There are 8 * 3 = 24 Warps

Occupancy of Multiprocessor

$>$ How much a Multiprocessor is occupied:
Occupancy = Actually warps / Totally allowed
> GT200 SM allows 32 warps
>G80 SM allow 24 warps
$>$ For example:
$>$ One block per SM, 32 threads per block
$>(32 / 32) / 32=3.125 \%$ (Very bad)
>4 blocks per SM, 256 threads per block
$>(256 / 32)$ * 4 / $32=100 \%$ (Very good)

Invent the Future

CUDA Occupancy Calculator

$>$ There are three factors:
$>$ Maximum number of warps
$>$ Maximum registers usage
$>$ Maximum share memory usage

Answers to Our Questions

> For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?
> For G80 GPU:
$>$ For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM! (Occupancy = 66.6\%)
$>$ For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule. (Occupancy = 100\%)
$>$ For 32X32, we have 1024 threads per Block. Not even one can fit into an SM! (Can not support)

Answers to Our Questions (Cont')

> For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?
> For GT200 GPU:
> For 8X8, we have 64 threads per Block. Since each SM can take up to 1024 threads, there are 16 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM! (Occupancy =50\%)
$>$ For 16X16, we have 256 threads per Block. Each SM takes 4 Blocks and achieve full capacity unless other resource considerations overrule. (Occupancy = 100\%)
$>$ For 32X32, we have 1024 threads per Block. Each SM takes 1 Block and achieve full capacity unless other resource considerations overrule. (Occupancy = 100\%)

Computation-to-Core Mapping

$>$ Step 1:
$>$ Define your computational unit, map each unit to a thread
$>$ Avoid dependency
$>$ Increase compute to memory access ratio
$>$ Step 2:
$>$ Group your threads into blocks
> Eliminate hardware limit
> Take advantage of shared memory

