
Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

─ Lessons learned from a simple application

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

2

 Matrix Multiplication
 Used as an example throughout the course

 Goal for today:
 Show the concept of “Computation-to-Core Mapping”

  Block schedule, Occupancy, and thread schedule

 Assumption
 Deal with square matrix for simplicity
  Leave memory issues later

  With global memory and local registers

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

3

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i

k

k

j

P = M * N of size WIDTH x WIDTH

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

4

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i

k

k

j

P = M * N of size WIDTH x WIDTH

Pay attention
here!

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

5

  Thread mapping:
  Define the finest computational unit, and

 map it onto each thread
  Main criterion : None Dependency
  In our first scheme:

Unit: Calculation of one element of P

  Block mapping:
  Simple: One block

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

(tx, ty)

ty

tx

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

M (column#, row#)

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;
 …
1. // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

2. // Kernel invocation code – to be shown later
 …

3. // Read P from the device
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
 }

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

9

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

10

Nd

Md Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  One Block of threads compute
 matrix Pd
  Other Multi-processors are not

 used.

 Grid 1
Block 1

48

Thread
)2, 2(

 WIDTH

Md Pd

Nd

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Each thread
  Loads a row of matrix Md
  Loads a column of matrix Nd
  Perform one multiply and addition

 for each pair of Md and Nd
 elements

  Compute to off-chip memory
 access ratio close to 1:1 (not very
 high)

 Grid 1
Block 1

48

Thread
)2, 2(

 WIDTH

Md Pd

Nd

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Size of matrix limited by the
 number of threads allowed in a
 thread block
  Maximum threads per block: 512
  Can only do 22 x 22 matrix
  You can put a loop around the

 kernel call for cases when Width
 > 22. But multiple kernel launch
 will cost you.

 Grid 1
Block 1

48

Thread
)2, 2(

 WIDTH

Md Pd

Nd

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

15

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

by

bx

TILE_WIDTH

  Thread mapping: the same with the first one
  Block mapping:

  Create 2D thread blocks, each of which compute
 a (TILE_WIDTH)2 sub-matrix (tile) of the result
 matrix
 Each has (TILE_WIDTH)2 threads

  Generate a 2D Grid of (WIDTH/TILE_WIDTH)2

 blocks

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 More blocks (WIDTH/TILE_WIDTH)2

 Support larger matrix
 The maximum size of each dimension of

 a grid of thread blocks is 65535.
 Max Width = 65535 x TILE_WIDTH

 Use more multi-processors

16

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

by

bx

TILE_WIDTH

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

17

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

 Break-up Pd into tiles
 Each block calculates one tile

 Each thread calculates one element
 Block size equal tile size

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

TILE_WIDTH = 2

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 // Setup the execution configuration
 dim3 dimGrid (Width/TILE_WIDTH, Width/TILE_WIDTH);
 dim3 dimBlock (TILE_WIDTH, TILE_WIDTH);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 For Matrix Multiplication using multiple
 blocks, should I use 8X8, 16X16 or 32X32
 blocks?

 Why?

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

23

  Up to 8 blocks to each SM as resource
 allows

  SM in G80 can take up to 768 threads
  Could be 256 (threads/block) * 3

 blocks
  Or 128 (threads/block) * 6 blocks, etc.

  SM in GT200 can take up to 1024
 threads

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Each Block is executed as 32-
thread Warps

  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
  Each Block is divided into

256/32 = 8 Warps
  There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

… Block 1 Warps

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 How much a Multiprocessor is occupied:
Occupancy = Actually warps / Totally allowed
 GT200 SM allows 32 warps
 G80 SM allow 24 warps

 For example:
 One block per SM, 32 threads per block

 (32/32) / 32 = 3.125% (Very bad)

 4 blocks per SM, 256 threads per block
 (256/32) * 4 / 32 = 100% (Very good)

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 There are three factors:
 Maximum number of warps
 Maximum registers usage
 Maximum share memory usage

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  For Matrix Multiplication using multiple blocks,
 should I use 8X8, 16X16 or 32X32 blocks?

  For G80 GPU:
  For 8X8, we have 64 threads per Block. Since each SM can

 take up to 768 threads, there are 12 Blocks. However, each
 SM can only take up to 8 Blocks, only 512 threads will go
 into each SM! (Occupancy = 66.6%)

  For 16X16, we have 256 threads per Block. Since each SM
 can take up to 768 threads, it can take up to 3 Blocks and
 achieve full capacity unless other resource considerations
 overrule. (Occupancy = 100%)

  For 32X32, we have 1024 threads per Block. Not even one
 can fit into an SM! (Can not support)

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  For Matrix Multiplication using multiple blocks,
 should I use 8X8, 16X16 or 32X32 blocks?

  For GT200 GPU:
  For 8X8, we have 64 threads per Block. Since each SM can

 take up to 1024 threads, there are 16 Blocks. However,
 each SM can only take up to 8 Blocks, only 512 threads will
 go into each SM! (Occupancy =50%)

  For 16X16, we have 256 threads per Block. Each SM takes
 4 Blocks and achieve full capacity unless other resource
 considerations overrule. (Occupancy = 100%)

  For 32X32, we have 1024 threads per Block. Each SM takes
 1 Block and achieve full capacity unless other resource
 considerations overrule. (Occupancy = 100%)

Computation to Core Mapping

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Step 1:
 Define your computational unit, map each unit to a

 thread
 Avoid dependency
 Increase compute to memory access ratio

 Step 2:
 Group your threads into blocks

 Eliminate hardware limit
 Take advantage of shared memory

