
Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

─ Global Memory Access Pattern and Control Flow

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Optimization Strategies
 Global Memory Access Pattern (Coalescing)
 Control Flow (Divergent branch)

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Highest latency instructions: 400-600 clock
 cycles
  Likely to be performance bottleneck

 Optimizations can greatly increase performance
 Best access pattern: Coalescing
 Up to 10x speedup

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 A coordinated read by a half-warp (16 threads)
 A contiguous region of global memory:

  64 bytes - each thread reads a word: int, float, …
  128 bytes - each thread reads a double-word: int2, float2, …
  256 bytes – each thread reads a quad-word: int4, float4, …

 Additional restrictions on G8X architecture:
 Starting address for a region must be a multiple of region

 size
  The kth thread in a half-warp must access the kth element in

 a block being read

 Exception: not all threads must be participating
 Predicated access, divergence within a halfwarp

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

All threads participate

Some threads do not participate

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Permuted access by threads

Misaligned starting address (not a multiple of 64)

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

__global__ void accessFloat3(float3 *d_in, float3 d_out)

{
int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];
a.x += 2;
a.y += 2;
a.z += 2;
d_out[index] = a;

}

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  float3 is 12 bytes
  Each thread ends up executing 3 reads

  sizeof(float3) ≠ 4, 8, or 12
  Half-warp reads three 64B non-contiguous regions

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Similarly, step 3 start at offset 512

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Use shared memory to allow coalescing
  Need sizeof(float3)*(threads/block) bytes of SMEM
  Each thread reads 3 scalar floats:

  Offsets: 0, (threads/block), 2*(threads/block)
  These will likely be processed by other threads, so sync

 Processing
  Each thread retrieves its float3 from SMEM array

  Cast the SMEM pointer to (float3*)
  Use thread ID as index

  Rest of the compute code does not change!

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Use a structure of arrays instead of Array of
 Structure

  If Array of Structure is not viable:
  Force structure alignment: __align(X), where X = 4, 8, or 16
 Use SMEM to achieve coalescing

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Main performance concern with
 branching is divergence
  Threads within a single warp take different paths
  Different execution paths are serialized

  The control paths taken by the threads in a warp are
 traversed one at a time until there is no more.

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

14

  A common case: avoid divergence when branch
 condition is a function of thread ID
  Example with divergence:

  If (threadIdx.x > 2) { }
  This creates two different control paths for threads in a block
  Branch granularity < warp size; threads 0 and 1 follow different

 path than the rest of the threads in the first warp
  Example without divergence:

  If (threadIdx.x / WARP_SIZE > 2) { }
  Also creates two different control paths for threads in a block
  Branch granularity is a whole multiple of warp size; all threads in

 any given warp follow the same path

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

15

  Given an array of values, “reduce”
 them to a single value in parallel

  Examples
  sum reduction: sum of all values in

 the array
  Max reduction: maximum of all

 values in the array
  Typically parallel implementation:

  Recursively halve # threads, add
 two values per thread

  Takes log(n) steps for n elements,
 requires n/2 threads

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

16

 Assume an in-place reduction using
 shared memory
 The original vector is in device global memory
 The shared memory used to hold a partial sum

 vector
 Each iteration brings the partial sum vector closer

 to the final sum
 The final solution will be in element 0

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

18

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

2 4 6 8 10 12 14

4 8

8

12

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

20

  In each iterations, two control flow paths will be
 sequentially traversed for each warp
  Threads that perform addition and threads that do not
  Threads that do not perform addition may cost extra cycles

 depending on the implementation of divergence

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

21

  No more than half of threads will be executing at any time
  All odd index threads are disabled right from the beginning!
  On average, less than ¼ of the threads will be activated for all

 warps over time.
  After the 5th iteration, entire warps in each block will be disabled,

 poor resource utilization but no divergence.
  This can go on for a while, up to 4 more iterations (512/32=16= 24),

 where each iteration only has one thread activated until all warps retire

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

22

  Replace divergent branch

  With strided index and non-divergent branch

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

No divergence until less than 16 sub sum.

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

24

Bank Conflict due to the Strided Addressing

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Replace strided indexing

  With reversed loop and threadID-based indexing

Optimization Strategies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

27

 Only the last 5 iterations will have
 divergence

 Entire warps will be shut down as
 iterations progress
 For a 512-thread block, 4 iterations to shut down

 all but one warps in each block
 Better resource utilization, will likely retire warps

 and thus blocks faster
 Recall, no bank conflicts either

