
Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Introduce some of the most relevant “advanced”
 features of CUDA
  The majority of features here will probably not be necessary or

 useful for any particular application

 CUDA Programming Guide (CPG) 3.1 sections will
 be referenced

2

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Tools
 A note on pointer-based data structures
 Warp-level intrinsics
 Streams
 Events
  Textures
 Atomic operations
 Page-locked memory & zero-copy access
 Multi-GPU
 Graphics interoperability
 Dynamic compilation

3

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Some nvcc features:
 --ptxas-options=-v
 Print the smem, register and other resource

 usages

 #pragma unroll X
 You can put a pragma right before a loop to tell

 the compiler to unroll it by a factor of X
 Doesn't enforce correctness if the loop trip count isn't a

 multiple of X

 CPG E.2

4

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  The cuda profiler can be used from a GUI or on
 the command line
 Cuda profiler collects information from specific counters for

 things like branch divergence, global memory accesses, etc.

5

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  printf and cuprintf in kernel function
  cudagdb

 Debugger with gdb-like interface that lets you set
 breakpoints in kernel code while it's executing on the
 device, examine kernel threads, and contents of host and
 device memory

 Parallel Nsight for Visual Studio
 Build-in interfaces for debug in GPU

 Break points
  Local variables

 Multi-GPU support
 Video tutorial:

  http://developer.download.nvidia.com/tools/ParallelNsight/Videos
/Parallel_Nsight_1.0_CUDADebug.wmv

6

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Device pointers and host
 pointers are not the same

  For an internally-consistent
 data structure on the
 device, you need to write
 data structures with device
 pointers on the host, and
 then copy them to the
 device

7

Host Device

data

ptr

data

ptr

data

ptr

data

ptr

data

ptr

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 warpsize
 Another built-in variable for the number of threads

 in a warp
 If you have to write code dependent on the warp size, do

 it with this variable rather than “32” or something else

 Warp voting
 Warp And, Warp Or (__all and __any)

 Allows you to do a one-bit binary reduction in a warp with
 one instruction, returning the result to every thread

 CPG B.2

8

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 All device requests made
 from the host code are
 put into a queue
 Queue is read and

 processed asynchronously
 by the driver and device

 Driver ensures that
 commands in the queue are
 processed in sequence.
 Memory copies end before
 kernel launch, etc.

9

host thread

memcpy
launch
sync

fifo

device driver

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 To allow concurrent
 copying and kernel
 execution, you need to
 use multiple queues,
 called “streams”
 Cuda “events” allow the

 host thread to query and
 synchronize with the
 individual queues.

 CPG 3.2.7.5
10

host thread

device driver

Stream 1 Stream 2

Event

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 CUDA uses Events for timing purpose and
 synchronization
 GPU timer
 Synchronization (wait until an event is recorded)

 CPG 3.2.7.6

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  texture<Type, Dim, ReadMode> texRef(norm,
 fMode, aMode)

 Creates a reference to a texture object
  Type: the element type of the stored texture

 Can be short vector types, like char4 or uint2

 Dim: the dimensionality of the texture
 ReadMode: choice of return type from fetch

 functions
  cudaReadModeElementType: fetches the “real” elements
  cudaReadModeNormalizedFloat: elements automatically

 converted to normalized floats with magnitude [0,1] when
 fetched

12

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  texture<Type, Dim, ReadMode> texRef(norm,
 fMode, aMode)

  norm: selects normalized indexes or not
  0: texture indexes are integers [0,width-1]
  1: texture indexes are floats [0,1]

  fMode: filtering mode
  cudaFilterModePoint: fetch nearest element
  cudaFilterModeLinear: linearly interpolate result from nearest

 points – only for floating-point Type

  aMode: addressing mode
  cudaAddressModeClamp or cudaAddressModeWrap, for

 whether accesses are clamped to image edge wrap around

13

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 After creating a texture reference, you must bind
 it to a region or memory before use.

  The best way to allocate memory for textures is to
 use cudaArrays

 Compared to global memory, textures have some
 extra overhead, but have some bandwidth
 benefits
 Cached: gives bandwidth benefit when locality exists

 latency still high, even if cached
 Coalescing requirements do not apply

14

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Integer atomic ops to global memory
 Supported for compute capability 1.1 and higher (G92 on)
  Fundamentally has the same bandwidth and coalescing

 attributes as normal global memory accesses
 Consumes bandwidth for read and write
 Uncoalesced accesses still burn excess bandwidth
 Non-blocking instructions

  Integer atomic ops to shared memory
 Supported for compute capability 1.2 and higher (GT200 on)

 Major features to look into for doing histograms

15

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Page-locked memory is memory guaranteed to
 actually be in memory
  In general, the operating system is allowed to “page” your

 memory to a hard disk if it's too big, not currently in use, etc.

  cudaMallocHost() / cudaFreeHost()
 Allocates page-locked memory on the host

 Significantly faster for copying to and from the GPU
 Beginning with CUDA 2.2, a kernel can directly access host

 page-locked memory – no copy to device needed
 Useful when you can't predetermine what data is needed
 Less efficient if all data will be needed anyway
 Could be worthwhile for pointer-based data structures as well

16

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 One workstation can support multiple GPUs, each
 of which should be controlled by a CPU thread in
 different contexts (as least the same number of CPU cores as
 the number of GPUs)

 Select GPU by calling cudaSetDevice()
  Inter-GPU communication needs to go through

 host, using memcpy (pinned memory and async)
  The CPU code can use OpenMP and MPI interface

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Want to render and compute with the
 same data?
 CUDA allows you to map OpenGL and Direct3D

 buffer objects into CUDA
 Render to a buffer, then pass it to CUDA for

 analysis
 Or generate some data in CUDA, and then render

 it directly, without copying it to the host and back

18

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 The CUDA driver has a just-in-time
 compiler built in
 Currently only compiles PTX code
 Still, you can dynamically generate a kernel in

 PTX, then pass it to the driver to compile and run
 Some applications have seen significant speedup

 by compiling data-specific kernels

19

