

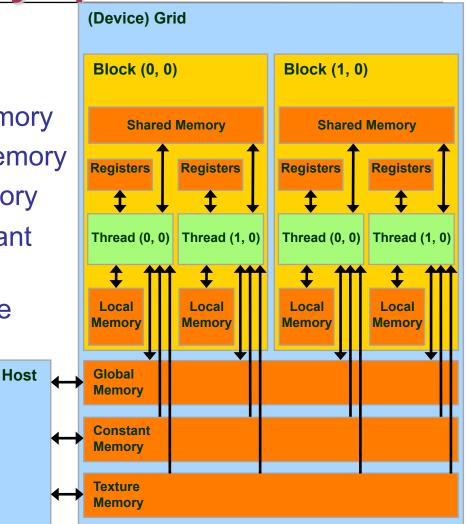
GPU Memory II

- Memory Hardware and Bank Conflict

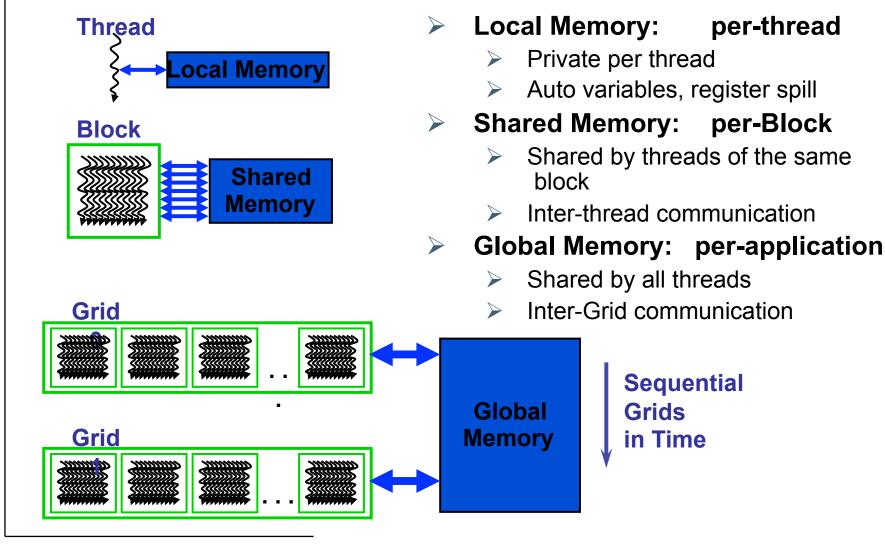
CUDA Device Memory Space: Review

Each thread can:

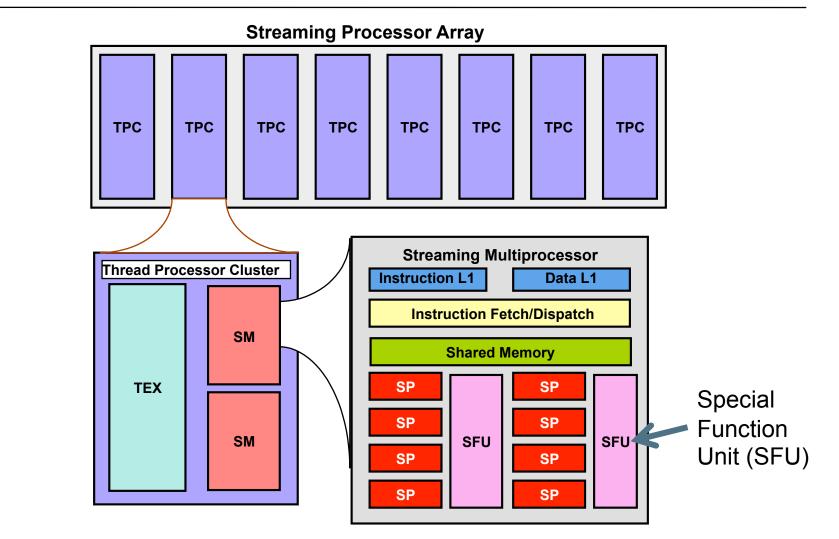
- R/W per-thread registers
- R/W per-thread local memory
- R/W per-block shared memory
- R/W per-grid global memory
- Read only per-grid constant memory
- Read only per-grid texture memory
- The host can R/W global, constant, and texture memories



Parallel Memory Sharing



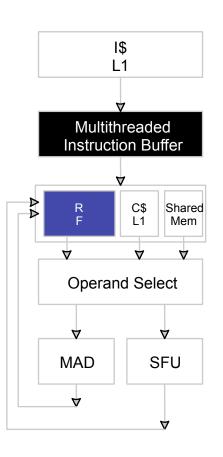
Hardware Overview



Register File

Register File (RF)

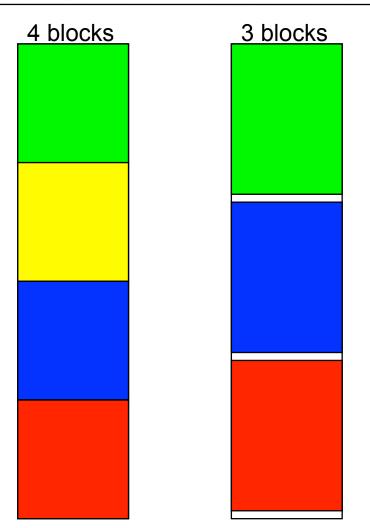
- ➢ 32 KB
- Provides 4 operands/clock
- Texture pipe can also read/write RF
 - 2 SMs share 1 TEX
- Load/Store pipe can also read /write RF



Programmer View of Register File

There are 8192 registers in each SM in G80

- Registers are dynamically partitioned across all Blocks assigned to the SM
- Once assigned to a Block, the register is NOT accessible by threads in other Blocks
- Each thread in the same Block only access registers assigned to itself



Matrix Multiplication Example

- If each Block has 16X16 threads and each thread uses 10 registers, how many thread can run on each SM?
 - Each Block requires 10*256 = 2560 registers
 - > 8192 = **3** * 2560 + change
 - So, three blocks can run on an SM as far as registers are concerned
- How about if each thread increases the use of registers by 1?
 - > Each Block now requires 11*256 = 2816 registers
 - > 8192 < 2816 *3
 - Only two Blocks can run on an SM, 1/3 reduction of parallelism!!!

More on Dynamic Partitioning

- Dynamic partitioning gives more flexibility to compilers/programmers
 - One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
 - This allows for finer grain threading than traditional CPU threading models.
 - The compiler can tradeoff between instruction -level parallelism and thread level parallelism

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

ILP vs. TLP Example

Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads have 200 cycles

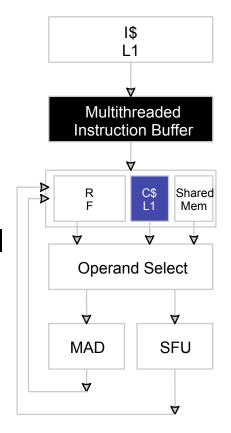
> 3 Blocks can run on each SM

- If a Compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
 - Only two can run on each SM
 - However, one only needs 200/(8*4) = 7 Warps to tolerate the memory latency
 - Two Blocks have 16 Warps. The performance can be actually higher!

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Constant

- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads in a Block!

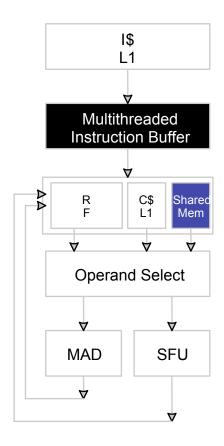


Shared Memory

- Each Multi-processor has 16 KB of Shared Memory
 - > 16 banks of 32bit words
 - > Will discuss about accessing pattern later

Visible to all threads in a thread block

read and write access



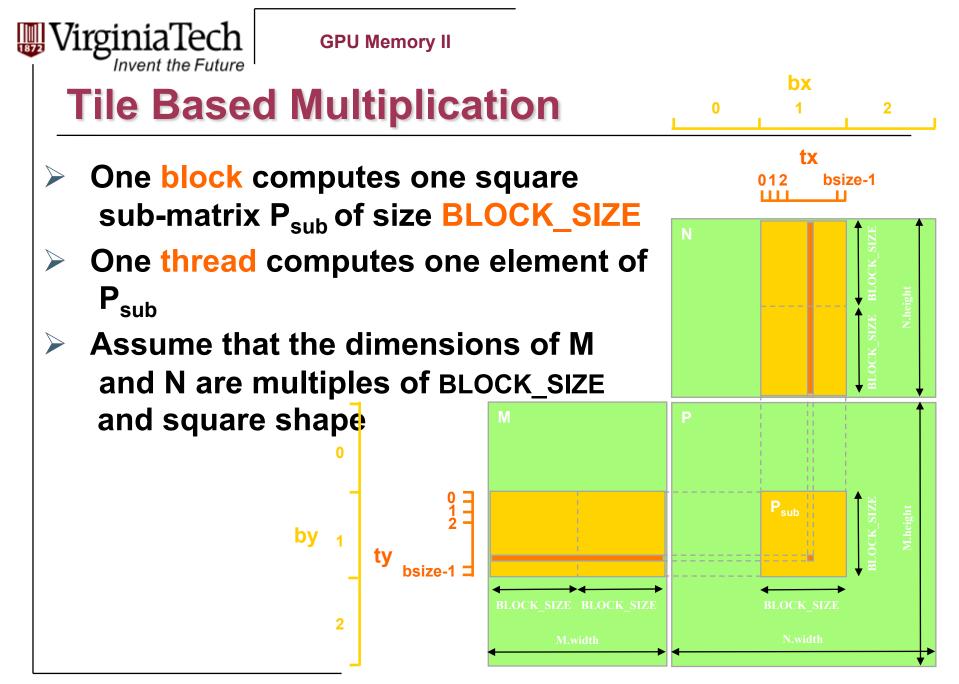
Matrix Multiplication Example

Explore Tile-based implementation with Shared Memory.

Question:

How is shared memory organized?

What are the issues when accessing shared memory?



```
roinia
                         GPU Memory II
      Invent the Future
 Tiled Matrix Multiplication Kernel --
         void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
  global
1.
    shared float Mds[TILE WIDTH][TILE WIDTH];
    shared float Nds[TILE WIDTH][TILE WIDTH];
   int bx = blockIdx.x; int by = blockIdx.y;
3.
   int tx = threadIdx.x; int ty = threadIdx.y;
4.
  int Row = by * TILE WIDTH + ty;
5.
  int Col = bx * TILE_WIDTH + tx;
6.
    float Pvalue = 0;
7.
     for (int m = 0; m < Width/TILE WIDTH; ++m) {</pre>
8.
     // Coolaborative loading of Md and Nd tiles into shared memory
       Mds[ty][tx] = Md[Row*Width + (m*TILE WIDTH + tx)];
9.
10.
       Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
11.
         syncthreads();
12.
       for (int k = 0; k < TILE WIDTH; ++k) {
13.
       Pvalue += Mds[ty][k] * Nds[k][tx];
14.
        Synchthreads();
15.
       }
16.
       Pd[Row*Width+Col] = Pvalue;
}
```


Matrix Multiplication Shared Memory Usage

- Each Block requires 2* BLOCK_SIZE ² * 4 bytes of shared memory storage
 - For BLOCK_SIZE = 16, each BLOCK requires 2KB, up to 8 Blocks can fit into the Shared Memory of an SM
 - Since each SM can only take 768 threads, each SM can only take 3 Blocks of 256 threads each
 - Occupancy is not limited by Shared memory

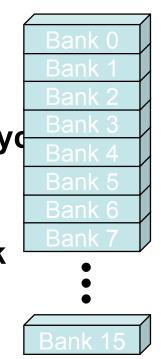
Copyright $\ensuremath{\textcircled{O}}$ 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Shared Memory Organization

- Parallel Memory Architecture:
 - Memory is divided into banks
 - Essential to achieve high bandwidth

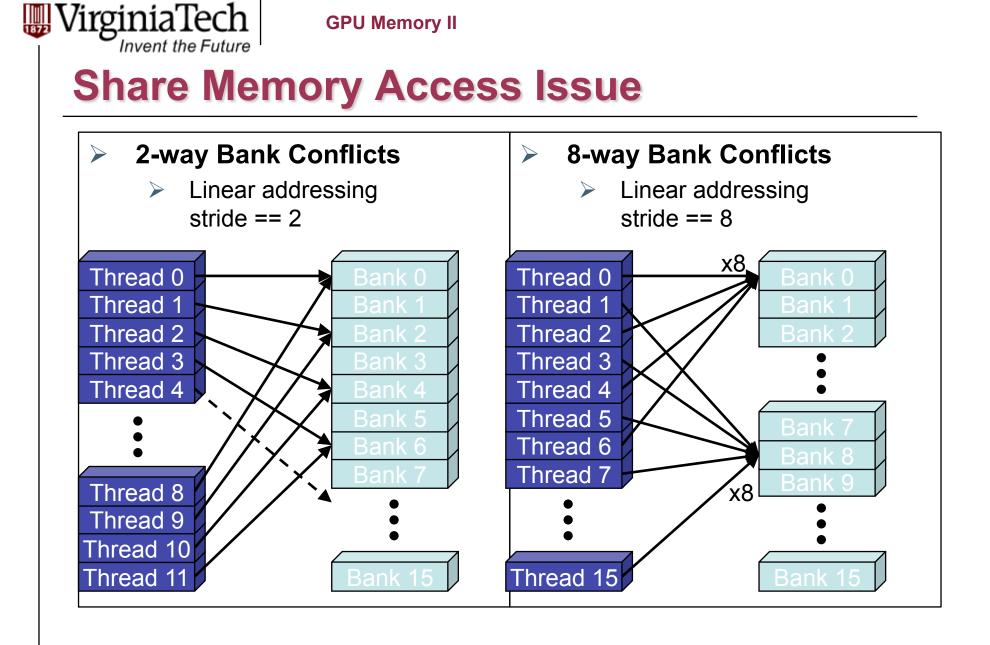
Each bank can service one address per cyc

- A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized



Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes





Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

How addresses map to banks in CUDA

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks

G80 has 16 banks

- > So bank = address % 16
- Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp

Copyright $\textcircled{\sc c}$ 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Share Memory Performance

Shared memory is as fast as registers if there are no bank conflicts

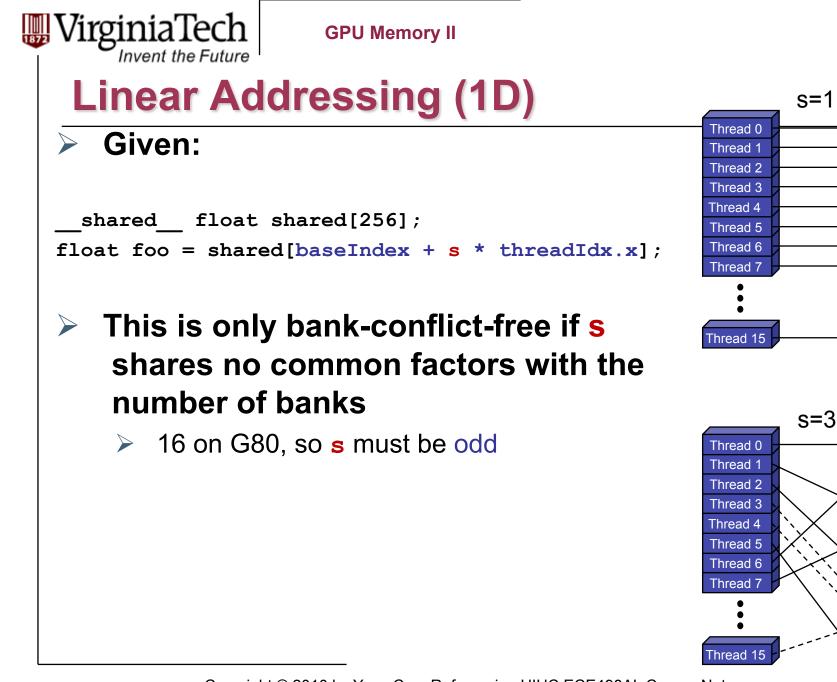
The fast case:

- If all threads of a half-warp access different banks, there is no bank conflict
- If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)

> The slow case:

- Bank Conflict: multiple threads in the same half-warp access the same bank
- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank

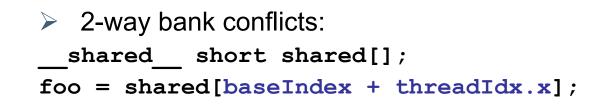
Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

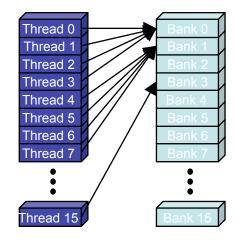


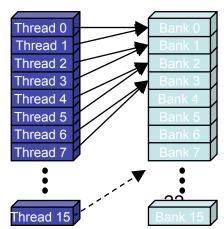
Data types and bank conflicts

> This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]







Structs and Bank Conflicts

Struct assignments compile into as many memory accesses as there are struct members:

```
Thread 0
     struct vector { float x, y, z; };
                                                                Thread 1
     struct myType {
                                                                Thread 2
                                                                Thread 3
         float f;
                                                                hread 4
         int c;
                                                               Thread 5
                                                                Thread 6
     };
                                                                Thread 7
      shared struct vector vectors[64];
      shared struct myType myTypes[64];
                                                               Thread 15
    This has no bank conflicts for vector; struct size is 3 words
\geq
         3 accesses per thread, contiguous banks (no common factor with 16)
     \geq
     struct vector v = vectors[baseIndex + threadIdx.x];
    This has 2-way bank conflicts for my Type; (2 accesses per thread)
\geq
     struct myType m = myTypes[baseIndex + threadIdx.x];
```

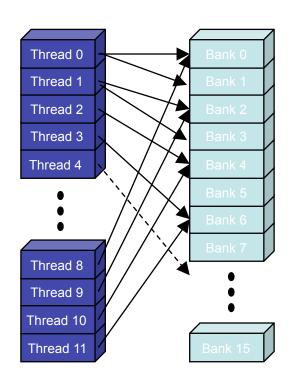
Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Common Array Bank Conflict Patterns 1D

- Each thread loads 2 elements into shared memory:
 - 2-way-interleaved loads result in
 2-way bank conflicts:

```
int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];
```

- This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffic.
 - Not in shared memory usage where there is no cache line effects but banking effects



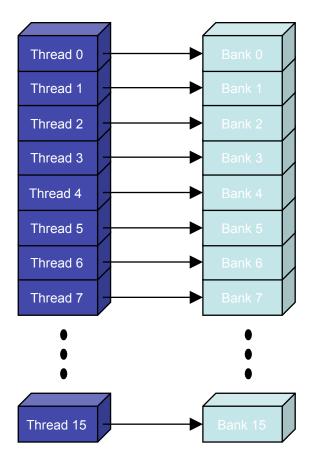
Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

A Better Array Access Pattern

Each thread loads one element in every consecutive group of blockDim elements.

```
shared[tid] = global[tid];
shared[tid + blockDim.x] =
```

```
global[tid + blockDim.x];
```



Common Bank Conflict Patterns (2D)

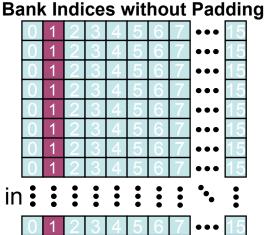
- Operating on 2D array of floats in shared memory
 - e.g. image processing

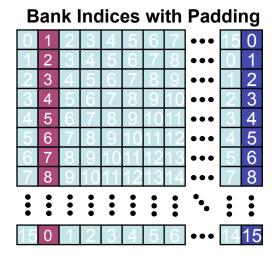
Example: 16x16 block

- Each thread processes a row
- So threads in a block access the elements in each column simultaneously (example: row 1 in purple)
- > 16-way bank conflicts: rows all start at bank 0

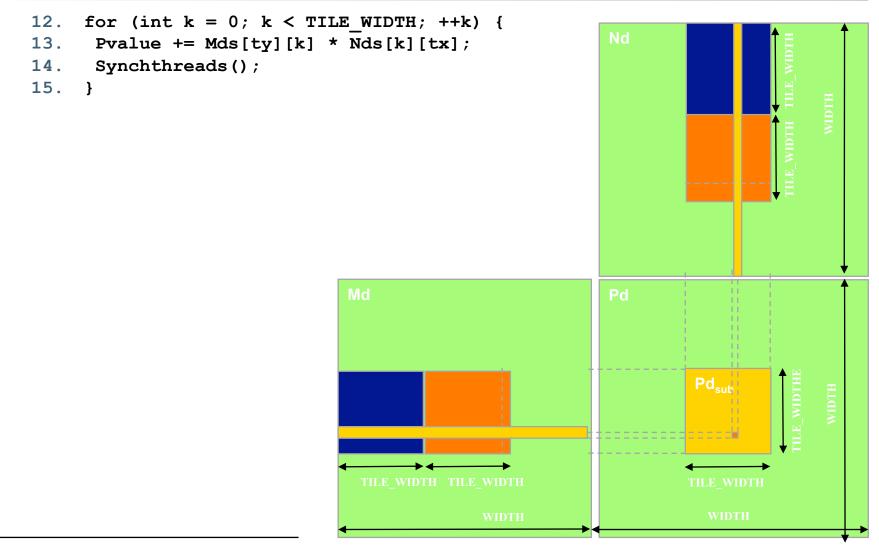
Solution 1) pad the rows

- Add one float to the end of each row
- Solution 2) transpose before processing
 - Suffer bank conflicts during transpose



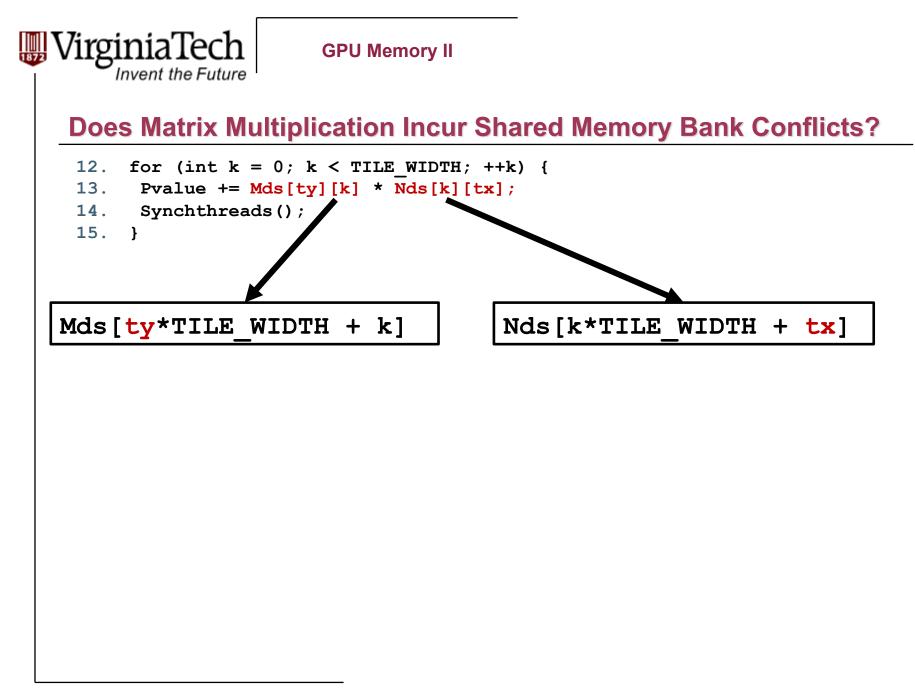


Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

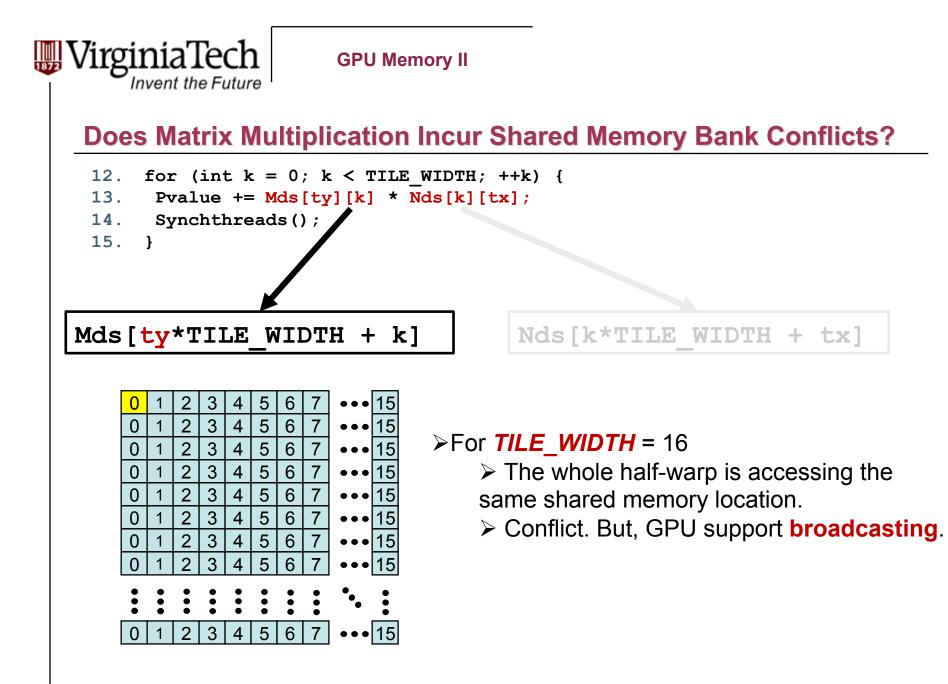


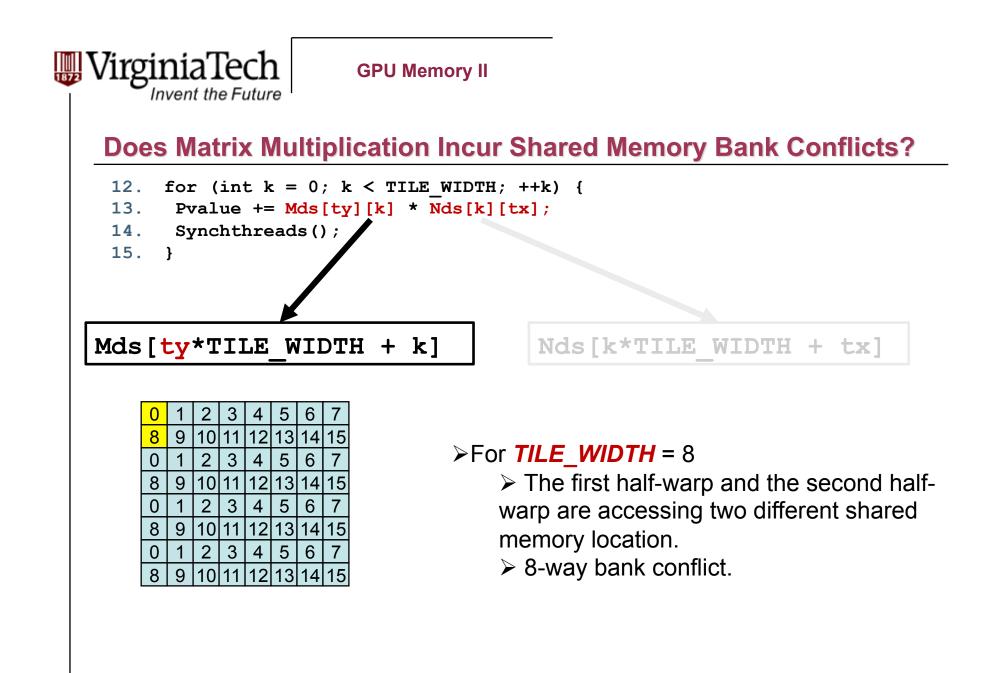
Copyright $\ensuremath{\mathbb{C}}$ 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

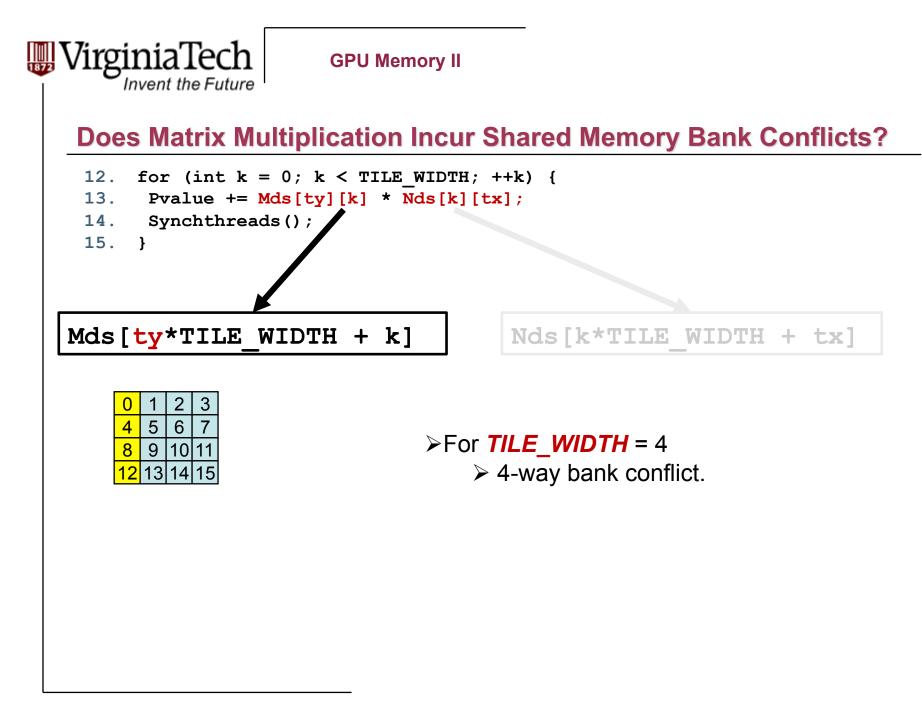
27

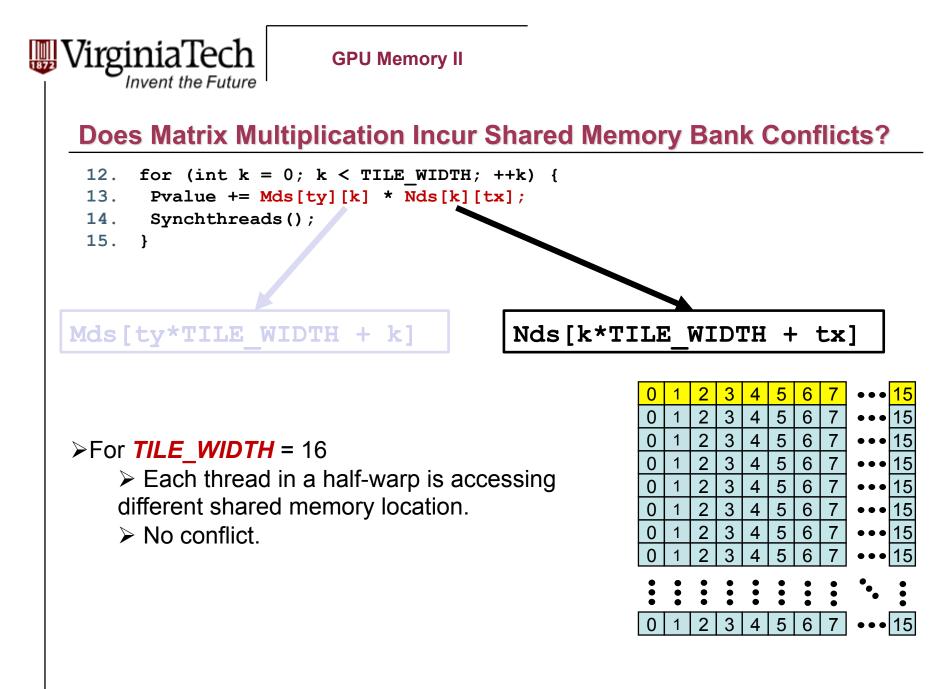


Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

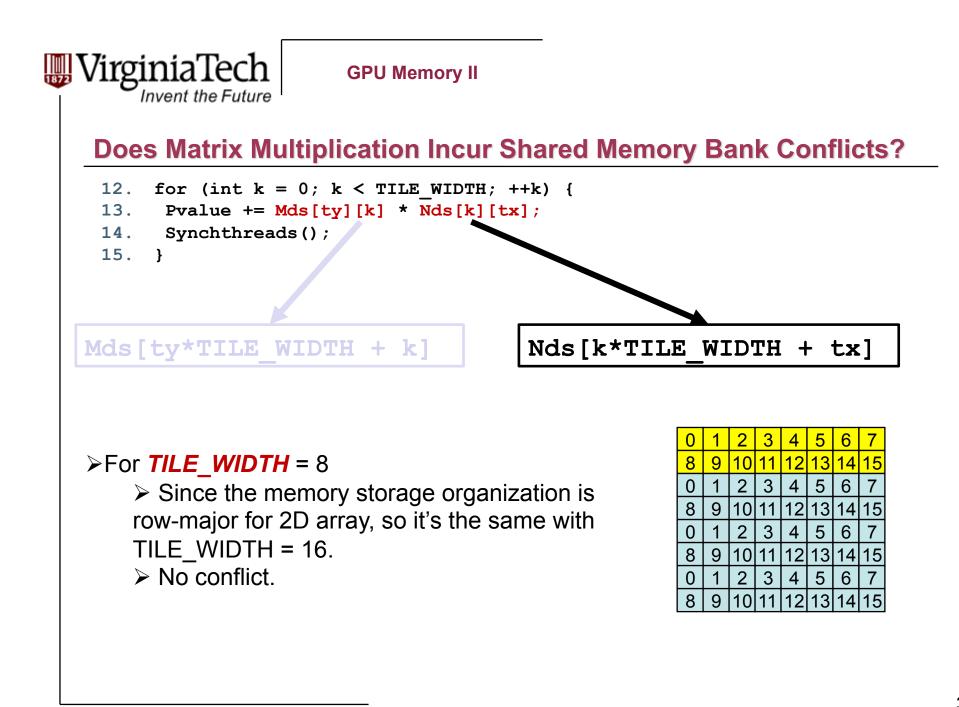








Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes



Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes