
GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

─ Memory Hardware and Bank Conflict

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

2

  Each thread can:
  R/W per-thread registers
  R/W per-thread local memory
  R/W per-block shared memory
  R/W per-grid global memory
  Read only per-grid constant

 memory
  Read only per-grid texture

 memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

•  The host can R/W
global, constant, and
texture memories

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Local Memory: per-thread
  Private per thread
  Auto variables, register spill

  Shared Memory: per-Block
  Shared by threads of the same

 block
  Inter-thread communication

  Global Memory: per-application
  Shared by all threads
  Inter-Grid communication

Thread

Local Memory

Grid
0

. .
. Global

Memory

. . .

Grid
1

Sequential
Grids
in Time

Block

Shared
Memory

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

TPC TPC TPC TPC TPC TPC TPC TPC

TEX

SM

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1 Thread Processor Cluster Streaming Multiprocessor

SM
Shared Memory

Streaming Processor Array

Special
Function
Unit (SFU)

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Register File (RF)
  32 KB
  Provides 4 operands/clock

  Texture pipe can also read/write
 RF
  2 SMs share 1 TEX

  Load/Store pipe can also read
/write RF

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  There are 8192 registers in
 each SM in G80
  Registers are dynamically

 partitioned across all Blocks
 assigned to the SM

  Once assigned to a Block, the
 register is NOT accessible by
 threads in other Blocks

  Each thread in the same Block
 only access registers
 assigned to itself

4 blocks 3 blocks

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

7

  If each Block has 16X16 threads and each thread
 uses 10 registers, how many thread can run on
 each SM?
 Each Block requires 10*256 = 2560 registers
  8192 = 3 * 2560 + change
 So, three blocks can run on an SM as far as registers are

 concerned
 How about if each thread increases the use of

 registers by 1?
 Each Block now requires 11*256 = 2816 registers
  8192 < 2816 *3
 Only two Blocks can run on an SM, 1/3 reduction of

 parallelism!!!

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

8

 Dynamic partitioning gives more flexibility
 to compilers/programmers
 One can run a smaller number of threads that

 require many registers each or a large number of
 threads that require few registers each
 This allows for finer grain threading than traditional CPU

 threading models.

 The compiler can tradeoff between instruction
-level parallelism and thread level parallelism

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

9

  Assume that a kernel has 256-thread Blocks, 4 independent
 instructions for each global memory load in the thread
 program, and each thread uses 10 registers, global loads
 have 200 cycles
  3 Blocks can run on each SM

  If a Compiler can use one more register to change the
 dependence pattern so that 8 independent instructions
 exist for each global memory load
  Only two can run on each SM
  However, one only needs 200/(8*4) = 7 Warps to tolerate the

 memory latency
  Two Blocks have 16 Warps. The performance can be actually

 higher!

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Immediate address constants
  Indexed address constants
  Constants stored in DRAM, and cached

 on chip
  L1 per SM

  A constant value can be broadcast to all
 threads in a Warp
  Extremely efficient way of accessing a value

 that is common for all threads in a Block!

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Each Multi-processor has 16 KB of
 Shared Memory
  16 banks of 32bit words
  Will discuss about accessing pattern later

  Visible to all threads in a thread
 block
  read and write access

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Explore Tile-based implementation with
 Shared Memory.

 Question:
 How is shared memory organized?
 What are the issues when accessing shared

 memory?

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

13

  One block computes one square
 sub-matrix Psub of size BLOCK_SIZE

  One thread computes one element of
 Psub

  Assume that the dimensions of M
 and N are multiples of BLOCK_SIZE
 and square shape M

N

P

Psub

BLOCK_SIZE

N.width M.width

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7.   float Pvalue = 0;

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
 // Coolaborative loading of Md and Nd tiles into shared memory

9.   Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10.   Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11.   __syncthreads();

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }
16.   Pd[Row*Width+Col] = Pvalue;
}

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

15

 Each Block requires 2* BLOCK_SIZE 2 * 4 bytes of
 shared memory storage
  For BLOCK_SIZE = 16, each BLOCK requires 2KB, up to 8

 Blocks can fit into the Shared Memory of an SM
 Since each SM can only take 768 threads, each SM can only

 take 3 Blocks of 256 threads each
 Occupancy is not limited by Shared memory

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

16

  Parallel Memory Architecture:
  Memory is divided into banks
  Essential to achieve high bandwidth

  Each bank can service one address per cycle
  A memory can service as many simultaneous

accesses as it has banks
  Multiple simultaneous accesses to a bank

result in a bank conflict
  Conflicting accesses are serialized Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  No Bank Conflicts
  Linear addressing

stride == 1

  No Bank Conflicts
  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  2-way Bank Conflicts
  Linear addressing

stride == 2

  8-way Bank Conflicts
  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

19

  Each bank has a bandwidth of 32 bits per clock
 cycle

  Successive 32-bit words are assigned to
 successive banks

  G80 has 16 banks
  So bank = address % 16
  Same as the size of a half-warp

  No bank conflicts between different half-warps, only within a
 single half-warp

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

20

  Shared memory is as fast as registers if there are no
 bank conflicts

  The fast case:
  If all threads of a half-warp access different banks, there is no

 bank conflict
  If all threads of a half-warp access the identical address, there

 is no bank conflict (broadcast)

  The slow case:
  Bank Conflict: multiple threads in the same half-warp access

 the same bank
  Must serialize the accesses
  Cost = max # of simultaneous accesses to a single bank

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

21

  Given:

__shared__ float shared[256];
float foo = shared[baseIndex + s * threadIdx.x];

  This is only bank-conflict-free if s
 shares no common factors with the
 number of banks
  16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

22

  This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

  But not if the data type is smaller
  4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

  2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

23

  Struct assignments compile into as many memory accesses as there
 are struct members:

struct vector { float x, y, z; };
struct myType {

 float f;
 int c;

};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];

  This has no bank conflicts for vector; struct size is 3 words
  3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

  This has 2-way bank conflicts for my Type; (2 accesses per thread)

struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

24

  Each thread loads 2 elements into
 shared memory:
  2-way-interleaved loads result in

2-way bank conflicts:

int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];

  This makes sense for traditional CPU
 threads, locality in cache line usage and
 reduced sharing traffic.
  Not in shared memory usage where there

 is no cache line effects but banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

25

  Each thread loads one element in
 every consecutive group of
 blockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] =
 global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
26

  Operating on 2D array of floats in shared
 memory
  e.g. image processing

  Example: 16x16 block
  Each thread processes a row
  So threads in a block access the elements in

 each column simultaneously (example: row 1 in
 purple)

  16-way bank conflicts: rows all start at bank 0

  Solution 1) pad the rows
  Add one float to the end of each row

  Solution 2) transpose before processing
  Suffer bank conflicts during transpose

Bank Indices without Padding
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 10 2
4 5 6 7 8 9 10 11 3
5 6 7 8 9 10 11 12 4
6 7 8 9 10 11 12 13 5
7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0
1
2
3
4
5
6
8

15

Bank Indices with Padding

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
27

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
28

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Mds[ty*TILE_WIDTH + k] Nds[k*TILE_WIDTH + tx]

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
29

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Mds[ty*TILE_WIDTH + k] Nds[k*TILE_WIDTH + tx]

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

 For TILE_WIDTH = 16
  The whole half-warp is accessing the
same shared memory location.
  Conflict. But, GPU support broadcasting.

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
30

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Mds[ty*TILE_WIDTH + k] Nds[k*TILE_WIDTH + tx]

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

 For TILE_WIDTH = 8
  The first half-warp and the second half-
warp are accessing two different shared
memory location.
  8-way bank conflict.

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
31

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Mds[ty*TILE_WIDTH + k] Nds[k*TILE_WIDTH + tx]

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
 For TILE_WIDTH = 4

  4-way bank conflict.

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
32

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Mds[ty*TILE_WIDTH + k] Nds[k*TILE_WIDTH + tx]

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

 For TILE_WIDTH = 16
  Each thread in a half-warp is accessing
different shared memory location.
  No conflict.

GPU Memory II

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
33

12.   for (int k = 0; k < TILE_WIDTH; ++k) {
13.   Pvalue += Mds[ty][k] * Nds[k][tx];
14.   Synchthreads();
15.   }

Mds[ty*TILE_WIDTH + k] Nds[k*TILE_WIDTH + tx]

 For TILE_WIDTH = 8
  Since the memory storage organization is
row-major for 2D array, so it’s the same with
TILE_WIDTH = 16.
  No conflict.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

