Invent the Future

GPU Memory II

- Memory Hardware and Bank Conflict

CUDA Device Memory Space: Review
> Each thread can:
> R/W per-thread registers
> R/W per-thread local memory
> R/W per-block shared memory
> R/W per-grid global memory
> Read only per-grid constant memory
> Read only per-grid texture memory

- The host can R/W global, constant, and texture memories
(Device) Grid

$$
\text { Block }(0,0) \quad \text { Block }(1,0)
$$

Shared Memory

Thread (0,0) Thread (1, 0)
Thread (0, 0) Thread (1, 0)

VirginiaTech

Parallel Memory Sharing

Hardware Overview

Streaming Processor Array
 GPU Memory II

Register File

$>$ Register File (RF)
> 32 KB
> Provides 4 operands/clock
> Texture pipe can also read/write RF
> 2 SMs share 1 TEX
> Load/Store pipe can also read /write RF

Programmer View of Register File

> There are 8192 registers in each SM in G80
> Registers are dynamically partitioned across all Blocks assigned to the SM
> Once assigned to a Block, the register is NOT accessible by threads in other Blocks
$>$ Each thread in the same Block only access registers assigned to itself

3 blocks

Matrix Multiplication Example

$>$ If each Block has 16X16 threads and each thread uses 10 registers, how many thread can run on each SM?
> Each Block requires 10*256 = 2560 registers
$>8192=3$ * 2560 + change
$>$ So, three blocks can run on an SM as far as registers are concerned
$>$ How about if each thread increases the use of registers by 1?
$>$ Each Block now requires 11*256 = 2816 registers
$>8192<2816$ *3
$>$ Only two Blocks can run on an SM, 1/3 reduction of parallelism!!! GPU Memory II

More on Dynamic Partitioning

$>$ Dynamic partitioning gives more flexibility to compilers/programmers
$>$ One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
$>$ This allows for finer grain threading than traditional CPU threading models.
$>$ The compiler can tradeoff between instruction -level parallelism and thread level parallelism

ILP vs. TLP Example

> Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads have 200 cycles
> 3 Blocks can run on each SM
> If a Compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
$>$ Only two can run on each SM
> However, one only needs 200/(8*4) = 7 Warps to tolerate the memory latency
> Two Blocks have 16 Warps. The performance can be actually higher!

Constant

$>$ Immediate address constants
> Indexed address constants
> Constants stored in DRAM, and cached on chip

> L1 per SM

$>$ A constant value can be broadcast to all threads in a Warp
$>$ Extremely efficient way of accessing a value that is common for all threads in a Block!

Shared Memory

> Each Multi-processor has 16 KB of Shared Memory
> 16 banks of 32bit words
> Will discuss about accessing pattern later
$>$ Visible to all threads in a thread block
> read and write access

$>$ Explore Tile-based implementation with Shared Memory.
$>$ Question:
$>$ How is shared memory organized?
$>$ What are the issues when accessing shared memory?

Tile Based Multiplication

> One block computes one square sub-matrix $\mathrm{P}_{\text {sub }}$ of size BLOCK_SIZE
> One thread computes one element of $\mathrm{P}_{\text {sub }}$
> Assume that the dimensions of M and \mathbf{N} are multiples of BLOCK_SIZE and square shape


```
    global__void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__float Mds[TILE_WIDTH] [TILE_WIDTH];
2. __shared__float Nds[TILE_WIDTH] [TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
    // Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k) {
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. Synchthreads();
15. }
16. Pd[Row*Width+Col] = Pvalue;
}
```


Matrix Multiplication Shared Memory Usage

$>$ Each Block requires 2* BLOCK_SIZE 2 * 4 bytes of shared memory storage
$>$ For BLOCK_SIZE $=16$, each BLOCK requires 2 KB , up to 8 Blocks can fit into the Shared Memory of an SM
> Since each SM can only take 768 threads, each SM can only take 3 Blocks of 256 threads each
$>$ Occupancy is not limited by Shared memory

Shared Memory Organization

> Parallel Memory Architecture:
> Memory is divided into banks
> Essential to achieve high bandwidth
$>$ Each bank can service one address per cy
> A memory can service as many simultaneous accesses as it has banks
> Multiple simultaneous accesses to a bank result in a bank conflict
> Conflicting accesses are serialized

Share Memory Access Issue

Share Memory Access Issue

How addresses map to banks in CUDA

$>$ Each bank has a bandwidth of 32 bits per clock cycle
> Successive 32-bit words are assigned to successive banks
$>$ G80 has 16 banks
> So bank = address \% 16
> Same as the size of a half-warp
$>$ No bank conflicts between different half-warps, only within a single half-warp

Invent the Future

Share Memory Performance

$>$ Shared memory is as fast as registers if there are no bank conflicts
$>$ The fast case:
> If all threads of a half-warp access different banks, there is no bank conflict
$>$ If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)
> The slow case:
> Bank Conflict: multiple threads in the same half-warp access the same bank
> Must serialize the accesses
$>$ Cost = max \# of simultaneous accesses to a single bank

Data types and bank conflicts

$>$ This has no conflicts if type of shared is 32-bits:

```
foo = shared[baseIndex + threadIdx.x]
```

$>$ But not if the data type is smaller
> 4-way bank conflicts:
__shared__ char shared[];
foo $=$ shared[baseIndex + threadIdx.x];
> 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Structs and Bank Conflicts

> Struct assignments compile into as many memory accesses as there are struct members:

```
struct vector { float x, y, z; };
struct myType {
        float f;
        int c;
};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];
```


$>$ This has no bank conflicts for vector; struct size is $\mathbf{3}$ words
>3 accesses per thread, contiguous banks (no common factor with 16)
struct vector $v=$ vectors[baseIndex + threadIdx.x];
> This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType $m=$ myTypes[baseIndex + threadIdx.x];

Common Array Bank Conflict Patterns 1D

> Each thread loads 2 elements into shared memory:
> 2-way-interleaved loads result in 2-way bank conflicts:
int tid $=$ threadIdx. \mathbf{x};
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];
> This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffic.

$>$ Not in shared memory usage where there is no cache line effects but banking effects

A Better Array Access Pattern

Each thread loads one element in every consecutive group of blockDim elements.

```
shared[tid] = global[tid];
shared[tid + blockDim.x] =
    global[tid + blockDim.x];
```


25

Common Bank Conflict Patterns (2D)

> Operating on 2D array of floats in shared memory
> e.g. image processing
> Example: 16x16 block
$>$ Each thread processes a row
$>$ So threads in a block access the elements in
Bank Indices without Padding
 each column simultaneously (example: row 1 in : : : : : : : : : : purple)
> 16-way bank conflicts: rows all start at bank 0
Bank Indices with Padding

1					...	0
2					...	
3					..	2
4					.	3
5					...	4
6					...	5
7					..	
8						
: : : : : : : \quad :						
$\square 0$						

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

```
12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. Synchthreads();
15. }
```


Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

0	1	2	3	4	5	6	7		
0	1	2	3	4	5	6	7	\cdots	15
0	1	2	3	4	5	6	7	\cdots	15
0	1	2	3	4	5	6	7	\cdots	15
0	1	2	3	4	5	6	7	\cdots	15
0	1	2	3	4	5	6	7	$\cdots \bullet$	15
0	1	2	3	4	5	6	7		
0	1	2	3	4	5	6	7	$\cdots \bullet$	15

$>$ For TILE_WIDTH = 16
$>$ The whole half-warp is accessing the same shared memory location.
> Conflict. But, GPU support broadcasting.

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15

>For TILE_WIDTH = 8
$>$ The first half-warp and the second halfwarp are accessing two different shared memory location.
> 8-way bank conflict.

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

>For TILE_WIDTH = 4
> 4-way bank conflict.

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?
12. for (int $k=0 ; k<T I L E$ WIDTH; $++k$) \{
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. Synchthreads ();
15. \}

Mds [ty*TIエE WIDTH + k]
Nds [k*TILE_WIDTH + tx]
$>$ For TILE_WIDTH $=16$
$>$ Each thread in a half-warp is accessing different shared memory location.
$>$ No conflict.

0	1	2	3	4	5	6	7	15
0	1	2	3	4	5	6	7	15
0	1	2	3	4	5	6	7	15
0	1	2	3	4	5	6	7	15
0	1	2	3	4	5	6	7	15
0	1	2	3	4	5	6	7	15
0	1	2	3	4	5	6	7	- 15
0	1	2	3	4	5	6	7	
		:	:	:	:			
0	1	2	3	4	5	6	7	-15

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?
12. for (int $k=0 ; k<T I L E$ WIDTH; $++k$) \{
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. Synchthreads ();
15. \}

Mds [ty*TIエE WIDTH + k]
Nds[k*TILE_WIDTH + tx]
>For TILE_WIDTH = 8
$>$ Since the memory storage organization is row-major for 2D array, so it's the same with TILE_WIDTH = 16.
$>$ No conflict.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15

