MBSVT 1.0
Modules | Functions/Subroutines | Variables
D:/Mis_Documentos/investigacion/proyectos/VT optimization project/MBSVT/trunk/restric.f90 File Reference

Modules

module  restric
 

Module of primitive constraints. It's NOT a user module, it's used by the solver.


Functions/Subroutines

subroutine restric::restric_Setup
subroutine restric::deallocfi
subroutine restric::r_UnitEulParam (ir, iEul)
 Primitive constraint of unitary Euler parameters assume ${\bf p}$ is the Euler parameter.the constraint equation is : $ {\bf p}^T{\bf p}-1 $.
subroutine restric::r_dot1GB (ir, iEul2, u, v)
 Primitive dot-1 constraint of a body attached on the ground.
subroutine restric::r_dot1 (ir, iEul1, iEul2, u, v)
 Primitive dot-1 constraint assume $\bf p_1$ and $\bf p_2$ are the Euler parameter of body 1 and body 2 and $\bf u$ and $\bf v$ are two vectors attached on body 1 and body 2 in the body reference frame, the constraint equation is : $ A({\bf p_1}){\bf u}^{T}A({\bf p_2}){\bf v}$.
subroutine restric::r_sphericalGB (ir, irg2, iEul2, pt1, pt2)
 Primitive constraints of a spherical joint of a body attached to the ground The three constraint equations are : $ {\bf r}_2+{\bf A}_2{\bf s}_2^{'P}-{\bf s}_1^{P} $.
subroutine restric::r_spherical (ir, irg1, irg2, iEul1, iEul2, pt1, pt2)
 Primitive constraints of a spherical joint between two bodies The three constraint equations are : $ {\bf r}_2+{\bf A}_2{\bf s}_2^{'P}-{\bf r}_1-{\bf A}_1{\bf s}_1^{'P} $.
subroutine restric::r_revoluteGB (ir, irg2, iEul2, pt1, pt2, u1, v1, vec2)
 Primitive constraints of a revolute joint of a body attached to the ground The first three constraint equations are : $ {\bf r}_2+{\bf A}_2{\bf s}_2^{'P}-{\bf s}_1^{P} $ The fouth constraint equation is: $ {\bf f}_1^T{\bf A}_2{\bf h}_2 $ The fifth constraint equation is: $ {\bf g}_1^T{\bf A}_2{\bf h}_2 $.
subroutine restric::r_revolute (ir, irg1, irg2, iEul1, iEul2, pt1, pt2, u1, v1, vec2)
 Primitive constraints of a revolute joint between two bodies The three constraint equations are : $ {\bf r}_2+{\bf A}_2{\bf s}_2^{'P}-{\bf r}_1-{\bf A}_1{\bf s}_1^{'P} $ The fouth constraint equation is: $ ({\bf A}_1{\bf f}_1)^T{\bf A}_2{\bf h}_2 $ The fifth constraint equation is: $ ({\bf A}_1{\bf g}_1)^T{\bf A}_2{\bf h}_2 $.
subroutine restric::r_transGB (ir, irg2, iEul2, pt1, pt2, vec1y, vec1x, vec2x, vec2z)
 Primitive constraints of a translational joint of a body attached to the ground The first constraint equation is: $ {\bf f}_1^T{\bf A}_2{\bf h}_2 $ The second constraint equation is: $ {\bf g}_1^T{\bf A}_2{\bf h}_2 $ The third constraint equation is: $ {\bf f}_1^T{\bf A}_2{\bf d}_{12} $ The forth constraint equation is: $ {\bf g}_1^T{\bf A}_2{\bf d}_{12} $ The fifth constraint equation is: $ {\bf f}_1^T{\bf A}_2{\bf f}_2 $.
subroutine restric::r_trans (ir, irg1, irg2, iEul1, iEul2, pt1, pt2, vec1y, vec1x, vec2x, vec2z)
 Primitive constraints of a translational joint between two bodies. The first constraint equation is: $ ({\bf A}_1{\bf f}_1)^T{\bf A}_2{\bf h}_2 $ The second constraint equation is: $ ({\bf A}_1{\bf g}_1)^T{\bf A}_2{\bf h}_2 $ The third constraint equation is: $ ({\bf A}_1{\bf f}_1)^T{\bf A}_2{\bf d}_{12} $ The forth constraint equation is: $ ({\bf A}_1{\bf g}_1)^T{\bf A}_2{\bf d}_{12} $ The fifth constraint equation is: $ ({\bf A}_1{\bf f}_1)^T{\bf A}_2{\bf f}_2 $.
subroutine restric::r_Drive_rgEul (ir, ind, i_MOTOR)
 Primitive driving constraints for a generalized coordinate of the system.
subroutine restric::r_Drive_distGB (ir, irg2, iEul2, pt1, pt2_loc, i_MOTOR)
 Primitive driving constraints for a distance between a point in the ground and a point of one body.
subroutine restric::r_Drive_dist (ir, irg1, irg2, iEul1, iEul2, pt1_loc, pt2_loc, i_MOTOR)
 Primitive driving constraints for a distance between two points of two bodies.

Variables

REAL(8), dimension(:), allocatable restric::PROTECTED
REAL(8), dimension(:), allocatable restric::fi